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Abstract

Bayesian EKF (Extended Kalman Filter) is cross-
fertilized with Navier’s equations solid deformation mod-
eling to compute 3D non-rigid structure from monocular
camera motion. The method operates with a projective
camera and autonomously computes –for every sequence
frame– both the geometry and the matches. The combina-
tion results in an sequential efficient method to code the rich
available physical priors, particularly relevant for medical
monocular endoscope sequences such as those observing
the abdominal cavity.

The scene is modeled as a planar triangular mesh where
each triangular element is modeled as a thin-plate. Navier’s
equations are solved numerically by means of FEM (Finite
Element Method), being the FEM nodes the 3D points of
the estimated sparse structure. Despite the assumed elastic
model is only valid for small deformations, the eventually
large scene deformation is accurately computed, because
the EKF extracts partial measurements of the actual scene
deformation at frame rate.

Ground truth is computed from a real sequence gath-
ered with hand-held stereo camera. The observed non-rigid
scene is a silicone cloth fixed on a stretcher. It is deformed
under the action of an unknown force applied on the sili-
cone surface. It is shown how the estimation resulting from
applying the proposed algorithm a monocular sequence is
statistically consistent with the ground truth.

1. Introduction
Since the initial proposal in [8], EKF (Extended Kalman

Filter) monocular SLAM (Simultaneous Localization And
Mapping) methods have proven valid for computing both
scene structure and camera motion in real time at video
rate. These methods successfully implement Bayesian es-
timator from image sequences, the prior that the camera
moves smoothly according to the laws of dynamics is coded
by means of a constant velocity model, regarding the scene,
it is assumed as perfectly rigid. The rigidity assumption
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Figure 1. A moving camera observes a non-rigid structure. The
nodes where the external forces are acting and their magnitude are
unknown. Boundary points undergo a rigid motion with respect to
the camera. It is prior knowledge what nodes are boundary points.

enforced by means of JCBB (Joint Compatibility Branch
and Bound) [16], as shown in [7], or by means of 1-point
RANSAC [6], has proven a key factor for robust perfor-
mance.

We propose to extend Bayesian EKF sequential process-
ing to estimate the structure and motion when observing a
non-rigid scene by a hand-held monocular camera, eventu-
ally in real time. We aim to process medical endoscope se-
quences of body cavities such as the abdominal cavity. The
cavity walls can be modeled as plates –thin solids–, and we
assume a set of unknown magnitude forces acting on the
surface Fig. 1. We propose to code 3D structure as a lin-
ear elastic solid following the Navier’s equations. Despite
the proposed elastic model is a low cost one, only exact
for small deformations, a eventually large scene deforma-
tion can be accurately estimated, because the EKF is able to
combine the available measurements of the deformed struc-
ture at frame rate with the elastic model.

Being a monocular sequence, the structure at rest has to
be initially estimated by processing an initial subsequence
without any non-rigid deformation. Navier’s equations so-
lution needs boundary conditions, in our case they are a
set of known points to have a rigid motion. The Navier’s
equations are numerically solved by FEM (Finite Element
Method).

The actual parameters defining the material elastic prop-



erties and the plate thickness are unknown. We propose to
factor out these parameters from the state equation and use
them to normalize the deforming external forces in order to
ease the EKF tuning.

A set of salient scene points, the map, are selected to be
estimated. We will refer to the map points as nodes because
they are the nodes defining the discretization used to formu-
late the FEM solution to the Navier’s equations.

Real imagery experimental validation is provided for
a hand-held camera observing silicone cloth fixed in a
stretcher while an unknown force acts on the cloth surface.
The boundary conditions i.e. the identity of boundary points
not undergoing non-rigid motion are known as priors. The
computed structure and motion are shown to be compatible
with a stereo ground truth.

2. Related Work
NRSfM (Non-Rigid Structure from Motion) computes,

per each image in the sequence, both camera location and
3D structure when the image was taken. Being an under-
constrained problem, additional smoothing constraints are
necessary. Most of the approaches are based in the seminal
work by Bregler et al. [4] where the time varying structure
is coded as a time varying linear combination of predefined
shapes. The camera model is orthographic. Factorization
enforcing orthonormality closed form solution is computed
by means of SVD. Factorization methods have been ex-
tended for the perspective case by [23, 13]. However, closed
form solutions are reported to be noise sensitive by [3, 21].

Bundle adjustment (BA) has been applied to solve shape
basis approaches to NRSfM. BA can additionally incorpo-
rate temporal and spatial smoothness priors both on the de-
formations and motion [9, 1]. Torresani et al. in [21] intro-
duce a probabilistic linear dynamic model coding deforma-
tion weight as Gaussians solved by Expectation Maximiza-
tion.

Methods based on linear shape basis have shown poor
performance when dealing with large scene deformations.
To cope with this limitation Fayad et al. in [11] replace the
linear model by a quadratic deformation global model.

In contrast to previous global methods, our proposal is
based on triangular elements where the consistency has
been enforced to build global surfaces. Several proposals
for local methods have been done. Rabaud and Belongie in
[18] exploit the concept of locally smooth manifold learn-
ing. Varol et al. in [22] propose planar models. Fayad et
al. in [10] propose quadratic models. Taylor et al. in [20]
propose isometric models where local distance is preserved.
In our proposal the local elements are modeled according to
Navier’s equations within a FEM approach.

A more recent approach to provide additional constraints
has been template based methods [19, 17]. They propose to
compute correspondences between the current image and

a reference image in which the 3D shape is known. The
3D structure is coded as a triangular mesh. On one hand
temporal consistency has been proposed as an additional
constraint. On the other hand geometrical constraints such
as developable surfaces, smooth surfaces (global and local
smoothness) or distance constraints are also applied.

The physics based FEM applied to non-rigid structure
detection can be tracked back to [15], tomography imagery
is used as input, in our proposal we also use FEM models
but a computer vision projective camera provides the input.
More recently, and closer to us, is the work by Ilić and Fua
[14] using FEM for the first time in computer vision. They
proposed an expensive non-linear model accurate for large
deformations, they focus on beam like structures, modeled
as 1D FEM, including in the formulation forces and bound-
ary conditions, resulting in a robust and accurate tracking
method. We similarly exploit FEM models but we tackle a
2D scene, discretized as a triangular mesh. In contrast our
model is low cost and only it is valid for small deformations,
but combined with the EKF and digesting all the images of
video sequence is able to accurately estimate large scene
deformations.

Most of the above mentioned methods assume the
matches as available from a previous tracking process, and
then it is computed the structure from motion in batch mode,
simplified camera models are frequent. In contrast, our pro-
posal is purely sequential –providing an estimate for the
sequence frames– and both estimation and matching are
coupled in a sequential Bayesian approach for a general
full perspective camera, making the most of the priors that
Navier’s equations can feed in the problem.

3. Non-Rigid Structure FEM Modeling
Given a linear elastic solid, Ω, the steady state Navier’s

equations Eq. (1) and the boundary conditions Eq. (2)
[24, 25] model the solid deformation. Both equations use
Einstein’s index notation.

(λ+G)aj,ij +Gai,jj + fi = 0 in Ω, (1)

ai = ai in Γ (2)

where Γ is the solid boundary. ai is the displacement vector.
fi is the volumetric force. λ and G are the Lamé parame-
ters that define the material elastic properties, both of them
are defined in terms of the Young’s modulus, E, and the
Poisson’s ratio, ν, being λ = νE

(1+ν)(1−2ν) and G = E
2(1+ν) .

To code the geometry we assume the solid is a plate,
modeled by its middle plane, because it has a small thick-
ness (Fig. 3). We approximate the continuous curvature sur-
face by a planar triangular mesh. Each triangular element is
defined by its 3 vertexes denominated nodes. Each trian-
gular mesh element is transformed to a normalized trian-
gle in natural coordinates (ξ, η) (Fig. 2). It used the stan-
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Figure 2. Normalized triangle in natural coordinates (left) and ge-
ometric transformation to real triangle (right).

dard approach [24] where the geometry within the normal-
ized triangle is coded by the nodal linear shape functions
Nj (ξ, η) j = 1, 2, 3.

Navier’s equations are solved numerically, applying
FEM, resulting in a linear equation system:

KW aW = fW (3)

where KW is the global stiffness matrix (the superindex W

denotes world: global coordinates). aW is the nodal dis-
placement vector –displacements for every vertex–, and fW

is the nodal force vector –forces acting in every vertex–.
FEM methods compute KW by assembling matrices cor-
responding to every triangle in the discretization. The rest
of the section is devoted to computing the elemental stiff-
ness matrix. For readability, the assembly process is not
described.

The elemental stiffness matrix, K̄e (the bar denotes co-
ordinates in local reference, the superindex e denotes el-
emental), in its planar triangular domain Ωe is defined as
(Fig. 2):

K̄
e
=

∫ 1

0

∫ 1−ξ

0

B�DB |J| dη dξ (4)

where B is composed of the shape function derivatives. D
is the behaviour matrix depending on the material elastic
properties. |J|, the Jacobian of the transformation from the
natural to the local coordinates. The integral in Eq. (4), is
computed applying Hammer’s numerical integration for tri-
angles.

J is the Jacobian matrix of the transformation from nat-
ural (ξ, η) to local (x̄, ȳ) coordinates. For our linear shape
functions:

J =

(
∂x̄
∂ξ

∂ȳ
∂ξ

∂x̄
∂η

∂ȳ
∂η

)
=

(
x̄2 − x̄1 ȳ2 − ȳ1
x̄3 − x̄1 ȳ3 − ȳ1

)
. (5)

In our case, the nodal displacements for the j node are:

āmb
j =

(
ūj v̄j w̄j θx̄j θȳj θz̄j

)�
, (6)

where (ūj , v̄j) are the x̄, ȳ displacements due to the mem-
brane contribution. The membrane effect is approximated
by a linear shape function within the element. w̄j , θx̄j and
θȳj are due to the bending contribution they represent z̄ dis-
placement, θx̄j rotation, and θȳj respectively. The bending
effect is approximated by a quadratic shape function (DKT
element [2]) within the element. The superindexes mb, m
and b denote membrane and bending, membrane only, and
bending only contributions respectively. The relation be-
tween the nodal forces f̄e and the nodal displacements āe in
each element is:

(K̄
e
)mb (āe)mb = (f̄

e
)mb. (7)

The matrix (K̄
e
)mb is formed by assembling

K̄
mb
ij i, j = 1, 2, 3, corresponding to node pairs i, j,

membrane and bending contributions (ε ≈ 0):

K̄
mb
ij =

⎛
⎜⎜⎜⎝
K̄

m
ij

... 0
... 0

0
... K̄

b
ij

... 0

0
... 0

... ε

⎞
⎟⎟⎟⎠ . (8)

Next, B is defined in terms of Bm
j j = 1, 2, 3, mem-

brane contribution per node that have to be assembled, and,
Bb, the bending contribution:

Bm
j =

1

|J|

⎛
⎜⎜⎝
J22Nj,ξ − J12Nj,η 0

0 J11Nj,η − J21Nj,ξ

J11Nj,η − J21Nj,ξ J22Nj,ξ − J12Nj,η

⎞
⎟⎟⎠ ,

(9)

Bb =
1

|J|

⎛
⎜⎜⎝

J22N
�
x,ξ − J12N

�
x,η

J11N
�
y,η − J21N

�
y,ξ

J11N
�
x,η − J21N

�
x,ξ + J22N

�
y,ξ − J12N

�
y,η

⎞
⎟⎟⎠ ,

(10)
where Nj,ξ =

∂Nj

∂ξ , Nj,η =
∂Nj

∂η and N�x,ξ, N�y,ξ contain
the shape function derivatives for the DKT element [2].

Next D matrix is defined in terms of the membrane and
bending contributions. It depends on the plate thickness h
and elastic parameters Young’s modulus E and the Pois-
son’s ratio ν:

Dm =
Eh

1− ν2

⎛
⎜⎜⎝
1 ν 0

ν 1 0

0 0 1−ν
2

⎞
⎟⎟⎠ , (11)

Db =
Eh3

12(1− ν2)

⎛
⎜⎜⎝
1 ν 0

ν 1 0

0 0 1−ν
2

⎞
⎟⎟⎠ . (12)

KW is assembled from the Ke set. The Ke set is as-
sembled from Kmb

ij . Kmb
ij has to be transformed from local
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Figure 3. Solid discretize by linear triangular elements. World and
local coordinates.

to global coordinates (Fig. 3). The transformation T is ap-
plied:

Kmb
ij = T� K̄

mb
ij T , (13)

T =

(
Λ 0
0 Λ

)
(14)

where Λ defines the transformation from local, (x̄i, ȳi, z̄i),
to global, (xi, yi, zi), coordinates:⎛

⎝x̄i

ȳi
z̄i

⎞
⎠ = Λ

⎛
⎝xi − x0

yi − y0
zi − z0

⎞
⎠ , (15)

Λ =

⎛
⎝cos (x̄, x) cos (x̄, y) cos (x̄, z)
cos (ȳ, x) cos (ȳ, y) cos (ȳ, z)
cos (z̄, x) cos (z̄, y) cos (z̄, z)

⎞
⎠(16)

where (x0, y0, z0) are the per each triangular element local
origin coordinates in the global frame. A different Λ has to
be considered per each element and per each sample time,
however indexes have been dropped for simplicity.

4. Coding Elastic Models in EKF
This section is devoted to combining the EKF with FEM

for the sequential estimation.

4.1. State Vector Definition

As in standard EKF SLAM, we use a single joint state
vector containing camera pose and feature estimates, with
the assumption that the camera moves with respect to the
structure. The whole state vector x =

(
x�v ,y

�)� is com-
posed of the camera state, xv and all the structure nodes
y =

(
y�1 , . . . ,y

�
n

)�
.

For the camera motion we propose the classical constant
velocity model [8]. Camera state:

xv =
(
rWC�,qWC�,vW�

, ωC�
)�

, (17)

where rWC is camera translation, qWC is the quaternion
representing orientation with respect to the world frame,

vW and ωC are linear and angular velocities. We assume
that linear and angular accelerations aW and αC affect the
camera, producing at each step an impulse of linear velocity,
VW = aWΔt, and angular velocity ΩC = αCΔt, with an
zero-mean Gaussian distribution being Qxv

its covariance.
The state equation for the camera is:

gv =

⎛
⎜⎜⎜⎜⎝
rWC
k+1

qWC
k+1

vW
k+1

ωC
k+1

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

rWC
k + (vW

k +VW )Δt

qWC
k × q ((ωC

k +ΩC)Δt)

vW
k +VW

ωC
k +ΩC

⎞
⎟⎟⎟⎟⎠ , (18)

where q ((ωC
k + ΩC)Δt) is the quaternion defined by the

rotation vector (ωC
k +ΩC)Δt.

Our contribution is to code the structure as non-rigid by
means of the compliance matrix Eq. (20) Ck

(
ŷW
k

)
, de-

pending on the current undeformed structure geometry ŷW
k .

The acting deforming normalized force ΔSW is causing re-
cursively at each step an incremental deformation, so next
step, Ck+1 will be computed over the deformed structure
ŷW
k+1. We assume ΔSW follows a zero-mean Gaussian dis-

tribution being Qy its covariance. So, the state equation for
the structure:

gy = yW
k+1 = yW

k +CkΔSW , (19)

where Ck results from Ck after removing the rows and
columns corresponding to rotations. Because we are inter-
ested only in middle plane nodes location where the rotation
effect is null. Ck is defined to solve linear system Eq. (3)
as:

Ck = KW
k

−1
. (20)

Linear elastic materials are characterized by E, ν and
the thin-plate thickness h. We assume almost incompress-
ible material and hence ν = 0.499 is known. However
both E and h are unknown. The external force for i node,(
ΔfW

xi , ΔfW
yi , ΔfW

zi

)�
is normalized as ΔSW

i :

ΔSW
i =

1

Eh

(
ΔfW

xi , ΔfW
yi , ΔfW

zi

)�
, (21)

to concentrate the unknown magnitudes in the state noise
vector. However, the Ck compliance matrix still depends
on a h2 factor.

For tuning, on the one hand we propose to tune ΔSW
i as

a diagonal matrix, where the standard deviation value codes
the tangential deformation, measured in length units, when
applied the typical tangential force. On the other hand, if
the typical force is applied normal to the surface, the de-
formation will be bigger than the tangential deformation,
approximately proportional to 1

h2 . So we use h2 to code
this anisotropy.

The covariance Qy governs the magnitudes of the forces
acting on the structure. A null Qy codes a rigid scene.
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4.2. Coding Priors about Scene: Forces and Bound-
ary Conditions

The general Eq. (19) assumes 3D forces acting on every
structure node. It also assumes as known which scene points
are boundary points and hence their motion is rigid with
respect to the camera. The forces acting on boundary points
are null.

Stiffness matrix KW
k is defined by the node connectivity

and the identity of the boundary points, it is mainly a sparse
band diagonal matrix. If the proper boundary points are
defined, KW

k is invertible.
The normalized force vector, ΔSW :

ΔSW =
(
ΔsW

�
0
)�

, (22)

ΔsW =
(
ΔsW1

�
. . . ΔsWi

�
. . . ΔsWp

�
)�
(23)

is a zero vector except in the first 3p components, ΔsW ,
corresponding to the non-rigid nodes where the forces are
acting. p is the number of non-rigid nodes, n is the total
number of nodes. So the product CkΔSW = AkΔsW

where A3n×3p is a submatrix formed by selecting the ele-
ments in Ck acting on non null ΔSW . So Eq. (19) is sim-
plified to:

gy = yW
k+1 = yW

k +AkΔsW . (24)

4.3. Initialization

We are assuming that the moving camera first observes
the structure at rest –because no force is acting on the 3D
structure–, so the 3D structure at rest can be estimated. Af-
terwards, the scene model is switched to non-rigid Eq. (24).

The 3D structure at rest is computed using the classi-
cal EKF monocular SLAM. Map points are initialized in
inverse depth and then converted to Euclidean XY Z cod-
ing. The 3D structure at rest is considered to be accurately
estimated when most of the scene points are switched to

XY Z [5] coding, then scene model is switched to non-
rigid. Boundary points have to be identified prior to non-
rigid model switching.

In the experimental section it is shown that once the 3D
structure at rest is estimated, the non-rigid model can deal
both with deforming and non deforming scenes.

4.4. EKF Formulation

To sum up, the state equations are Eq. (18) and (24) and
the corresponding Jacobians for the EKF are:

Fk =

(
∂gv

∂xv
0

0
∂gy

∂y

)
=

⎛
⎜⎜⎜⎜⎜⎝

I 0 IΔt 0 0

0
∂qWC

k+1

∂qWC
k

0
∂qWC

k+1

∂ωC
k

0

0 0 I 0 0
0 0 0 I 0
0 0 0 0 I

⎞
⎟⎟⎟⎟⎟⎠ ,

(25)

Gk =

(
∂gv

∂n
∂gy

∂n

)
=

⎛
⎜⎜⎜⎜⎝
IΔt 0 0

0
∂qWC

k+1

∂ΩC 0
I 0 0
0 I 0
0 0 Ak

⎞
⎟⎟⎟⎟⎠ , (26)

where n = (aW
�

αC� ΔsW
�
)� is the state vector

noise.

4.5. Measurement Equation

Each observed feature imposes a constraint between the
camera location and the corresponding map feature (Fig. 4).
The observation of a point yi =

(
Xi, Yi, Zi

)�
defines a ray

coded by a directional vector hC =
(
hx hy hz

)�
in

the camera frame:

hC = RCW

⎛
⎝ Xi

Yi

Zi

− rWC

⎞
⎠ , (27)

where RCW is the rotation matrix corresponding to qWC .
The camera does not directly observe hC but its projection
in the image according to the pinhole model. Projection to
a normalized retina and then camera calibration is applied:

h =

(
u
v

)
=

(
u0 − f

dx

hx

hz

v0 − f
dy

hy

hz

)
, (28)

where (u0, v0) is the camera principal point, f is the focal
length and (dx, dy) is the pixel size. Finally, a distortion
model has to be applied to deal with real camera lenses. In
this work we have used the standard two parameter distor-
tion model from photogrammetry.



5. Experimental Results

The proposed method has been validated observing a
synthetic silicone cloth (Fig. 5). As the silicone is texture-
less, artificial markers have been painted on its surface. The
silicone has been placed in a circular stretcher to fix the
boundary conditions. The silicone is observed with a mo-
bile stereo rig at 30Hz, its resolution is 640 × 480. The
silicone suffers noticeable deformation resulting from the
action of a force applied in its central point. For testing the
proposed monocular algorithm the right camera sequence,
at half resolution 320 × 240 is processed. To provide a
quantitative comparison, the stereo pair at full resolution
is used to produce a ground truth for both non-rigid struc-
ture and camera motion at 10 selected key camera locations.
The ground truth has been computed using commercial pho-
togrammetric software to process the selected stereo pairs.

The sequence is composed of 2699 images. The first
899 correspond to a non-deforming structure, because no
force is applied. After image #900 the silicone is being
pushed with a stick handled by a person. The full sequence
is processed according to the proposed algorithm. At frame
360 all the points are switched to XY Z coding and hence
the 3D structure at rest is regarded as estimated. To fix the
monocular unknown scale factor, the distance from the cam-
era to a selected boundary point is fixed to its ground truth
value. A measurement equation where the selected point is
observed with a minute measurement error ε, is included in
the EKF estimation. Once the scaled 3D structure at rest is
estimated, the non-rigid model is applied. It has to be noted
that between frames 360 and 899, the estimation assumes
a non-rigid scene despite the actual images correspond to a
rigid scene, however, the non-deforming scene is accurately
estimated (see Fig. 7 and the accompanying video1).

Fig. 6 shows a general perspective view of the recon-
structed structure and the corresponding ground truth. Fig-
ure 7 details the structure evolution in a cross section. In
frame #2 it can be seen the quite uncertain initialized struc-
ture from just one image. #475 and #899 correspond to the
estimation when no force is applied. Next frames show the
evolution corresponding to the deforming scene. It is worth
noting how the boundary points covariance is small because
they are coded as rigid points. It is also remarkable the con-
sistency between estimation and the ground truth, both for
the structure and for the camera trajectory (Fig. 8). The es-
timation is consistent, and the estimated covariance is small
so the quantitative comparison reports an accurate non-rigid
estimation.

Regarding computing budget, there is room for further
research, but the additional cost with respect to EKF is just
the inversion of a sparse matrix to compute the compliance
matrix Ck. It is roughly double in size the covariance ma-

1http://webdiis.unizar.es/%7Ejosemari/4dmod11.avi

Figure 5. Mobile stereo rig observing a silicone cloth fixed in a
circular stretcher.

Figure 8. Estimated camera trajectory and its corresponding co-
variance, compared wrt. ground truth. Top view (above), lateral
view (below).

trix, so the cost is comparable to that of the EKF, so frame
rate real time is achievable for maps about hundred points.

6. Conclusions and Future Work
It has been shown how a rigorous coding of Navier’s

equations by FEM numerical method is an adequate tool
to include physical priors in the EKF to solve a NRSfM
problem, being a method that can eventually perform in
real time. The experimental validation shows that estimated
structure is consistent –both the structure and motion– with
respect to the ground truth. Given the small covariances
and the consistency we can conclude that the experiments
provide a quantitative estimation of the method accuracy.

It has to be stressed that we have used a full perspective
camera, and the method computes both the NRSfM problem
and also the matching for all the frames in a video sequence.

The elastic model considered is the simplest possible,
linear elastic defined in just in terms of E and ν, and for
the case of small deformations. Despite the simple model a
large deformation problem has been solved, due to the se-
quential estimation that corrects the estimated deformation
at frame rate, resulting in an accurate estimation at a low
computational cost.

Next steps are a real time implementation and the pro-



Figure 6. (left) frame #899 structure at rest, (center) frame #1670 deformed structure and (right) frame #2699 deformed structure. Black
points and the mesh code the ground truth. Blue points code the estimated structure. Covariance, in red, is only represented in top view to
ease visibility. Covariance in the structure at rest is almost imperceptible.

cessing of real medical image sequences, similar to those
in [12] where the map points correspond to natural land-
marks in the images, focusing in being able to register the
scene non-rigid deformations and to perform robustly under
motion clutter. The proposed algorithm is particularly well
suited to this case because monocular endoscope observa-
tions are frequent and rich priors about the observed scene
elastic properties are available.
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