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Abstract

We outline the retrieval of images from a network of se-
curity cameras by means of an attribute-based query. Our
approach is based on detectors for several object classes
which enable combined queries to retrieve people based on
characteristic pieces of luggage. The approach works in-
dependently of camera recording frame rates since it does
not rely on tracking or background assumptions, and it re-
quires neither real training images nor manual annotations
since it is entirely trained on synthetic data. By performing
an approximate 3D auto-calibration for each camera from
a few detected humans and exploiting object-level context
in a 3D coordinate system, we can significantly improve the
precision of otherwise weakly performing detectors for in-
conspicuous object classes. We evaluate our approach on
data from an airport security camera network and demon-
strate the system’s ability to respond to combined appear-
ance and 3D metric contextual attribute queries over multi-
ple cameras.

1. Introduction

When trying to take into account the sketchy descrip-
tions given by witnesses, the image-based retrieval of indi-
viduals from large-scale surveillance camera records turns
out to be particularly challenging. It is difficult to iden-
tify people in crowded videos with PAL resolutions based
on vague pieces of information such as ”of medium height,
wears a dark shirt”. Consequently, adding every potentially
available contextual piece of evidence to the query, such
as descriptions of the pieces of luggage carried (e.g. has
a red backpack™), could significantly improve the query’s
discriminative power. However, individual detectors for
relatively inconspicuous object classes still do not perform
sufficiently well, as is demonstrated in the VOC2010 chal-
lenge [7]. This is not surprising when looking for example
at the sparse appearance and geometry clues of a backpack
in figure 1.
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Figure 1. Without spatial context, the two image regions are dif-
ficult to interpret; this is a typical problem for detectors of incon-
spicuous object classes.

Consequently, the use of object-level context has been
advocated in order to exploit the co-occurrence of object
classes which might otherwise not be detectable individ-
ually [6]. However, their deployment in real application
scenarios is frequently prevented by small object sizes and
the fact that pure 2D image-space context does not pro-
vide enough spatial discrimination in multi-view detection
settings (see figure 2). More sophisticated 3D context re-
quires information on scene geometry, but most current ap-
proaches rely on restrictive prior assumptions on scene lay-
out [11] or manual calibration, neither of which is accept-
able for flexible surveillance tasks. In addition, low record-
ing frame rates may prevent the use of tracking for the es-
timation of vanishing points from ground plane trajecto-
rics [14], and manually annotated training data sets con-
taining all possible context configurations between object
classes are usually unavailable.

In the present paper, we outline an approach which is
trained on purely synthetic data without knowledge or de-
pendency on a real scenario, therefore being much more
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Figure 2. Spatial context for a person and a trolley: the 2D detec-
tion of the person (solid gray line) allows to derive a 2D image
area in which to search for a trolley (red dashed line). However,
the 2D context does not take into account 3D perspective changes
(e.g. alarge camera tilt as shown here). In contrast, the projected
3D context (see figure 6) models the search area more accurately
(red solid line).

universally applicable. It does not rely on tracking and es-
timates the approximate 3D scene geometry for each cam-
era from a few human detections in single frames in a fully
unsupervised way. The resulting 3D geometrical context
between people and different pieces of luggage such as
trolleys, suitcases and backpacks, is exploited in order to
improve the detection precision for these challenging ob-
ject classes. Consequently, retrieval queries combining ob-
ject classes, appearance clues and metric information (e.g.
“tall person, wearing a dark shirt, carrying a red back-
pack and a trolley”) can be answered efficiently. We eval-
uate our approach on a realistic data set from an airport
surveillance camera network containing approx. 6000 im-
ages which stem from short video sequences and single
frames and demonstrate a significant improvement achieved
with our context approach over individual object detectors.
The paper is structured as follows: section 2 summarizes
previous work on attribute-based retrieval, context-based
object detection and camera calibration. An overview of
the proposed approach is given in section 3. In section 4,
a detailed description of the processing chain is provided.
Experimental results are outlined in section 5.

2. Related Work

The present work outlines an approach to the attribute-
based retrieval of individual surveillance camera frames.
Numerous previous publications address similar tasks: [9]
describes tracking and motion classification to perform
attribute-based vehicle retrieval for calibrated cameras. [10]
uses multi-layer adaboost classifiers for vehicle search
which are trained on partially synthetic training data,
while [20, 23] present methods where classifiers are trained
for individual body parts to retrieve people via fine-grained
attribute queries. Although many other approaches do not
explicitly focus on retrieval, they can potentially be used
to facilitate this task: e.g. [2] describes the tracking of
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Figure 3. We apply object detectors, approximate camera auto-
calibration and 3D object-level context filtering to sequences of
frames from different surveillance cameras without temporal co-
herence. As a result, complex attribute-based retrieval queries can
be answered which combine object class, appearance and metric
information.

pedestrians and the stable association of their trajectories,
whereas motion-segmented silhouettes [22] or temporal sil-
houette templates [5] can be used to infer if a person is car-
rying an object. In contrast, the present approach does not
require consecutive video sequences. Instead of tracking or
motion segmentation, it relies exclusively on classifiers for
people and pieces of luggage which makes the approach in-
dependent of camera frame rates, background and motion
assumptions. In recent years, latent part-based object de-
tectors [8] based on HOG descriptors [4] have yielded im-
pressive results for many object classes. In [13, 19], the
use of synthetic training data has decreased the dependence
on specific real training data sets and allowed systemati-
cally varying training viewpoints and imaging conditions;
in the context of detecting humans, real and synthetic train-
ing results compared favourably in [15, 17]. Consequently,
we build on these results in training [8] exclusively on syn-
thetic 3D human models. Still, significantly reduced de-
tection performances can be observed for certain inconspic-
uously textured and shaped object classes [7]. However,
for surveillance tasks, inconspicuous object classes such as
suitcases are highly relevant. In order to improve their de-
tection results, the present paper exploits object-level con-
text from 3D spatial co-occurrence between detectors for
conspicuous classes, c¢.g. pecople, and detectors for less
conspicuous but more task-relevant classes, e¢.g. picces of
luggage. The use of context has been advocated before to
model object-to-object as well as object-to-scene dependen-



cies; an overview is given in [6]. 3D spatial context for cali-
brated scenes has been used in [21] to improve people detec-
tion and tracking by adapting detectors to local scene con-
straints; in contrast, our approach does not require prior cal-
ibration and it is therefore closer to [11] who estimate a 3D
camera model to remove geometrically unlikely detections,
or [1, 3, 24] who recover partial 3D geometry to incorporate
the expected visibility of objects. However, [18, 11] assume
prior knowledge on scene geometry, and many classical ap-
proaches to auto-calibration from object detections rely on
tracking (e.g. [12]), require the computation of vanishing
lines (e.g. [14]) or assume identical object heights [16]. In
contrast, our approach approximates intrinsic and extrinsic
camera parameters with a probabilistic approach to align the
distribution of detected human heights with a known human
height prior without relying on tracking. Although less pre-
cise, the approach is sufficient to provide the framework for
evaluating the 3D spatial context between human and vari-
ous luggage detections.

3. Overview

Figure 3 gives an overview of the system proposed in this
paper. We assume a realistic scenario where frames from
different uncalibrated pan-tilt-zoom surveillance cameras in
a large-scale network are stored in a database for a forensic
retrieval of people based on appearance, metric information
and the kind of luggage they carry. To reduce network load
and storage space, only single frames are recorded which
prevents the use of tracking approaches relying on temporal
coherence. Each frame is tagged to indicate if the operator
moved the camera since the last stored frame. Our approach
proceeds as follows:

1. For each camera in the network, its frames are
grouped into sets without intermediate camera move-
ment events. Object class detectors for humans and
different types of luggage are applied to each frame of
the set; see section 4.1. If at least one human detec-
tion is found in the current set, the next process step is
triggered.

An approximate auto-calibration of the intrinsic and
extrinsic parameters of the camera belonging to the
current set is performed; see section 4.2. Note that
the camera parameters are known to be constant within
one set. We use a maximum likelihood estimation that
aligns the height distribution of the human detections
after 3D reconstruction with a known target height dis-
tribution. The estimation allows for the removal of
object detections (humans and luggage) which are in-
consistent with the 3D scene geometry (see figure 7,
center).

By combining the reconstructed 3D scene geometry
with a static 3D context model for humans carrying
different pieces of luggage (see figure 6), we can sig-
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Figure 4. Part-based object class detectors are trained on synthetic
data. We only show the root filter for each class.

nificantly improve the precision of the luggage detec-
tions.

4. Meta-data from all filtering steps can now be stored in
a database in order to efficiently and precisely process
attribute-based queries; see the experimental section 5
and figures 10,11,12 for examples.

4. Processing Chain

In this section, we describe the processing chain of our
approach.

4.1. Object Class Detector

The present work builds on the current state-of-the-art
detection approach of [8] which learns discriminative multi-
scale deformable part models based on HOG descriptors.
In [8], a part model for an object is subdivided into a global
root filter and several latent part filters which represent an
object as a flexible constellation of several components.
Instead of using real training data, we follow the ideas
of [13, 19] and train our object class detectors with syn-
thetic 3D object models which do not require any manual
annotations and allow generating a large amount of training
data. In figure 4, the resulting root model and a training ex-
ample for each object class are shown. See section 5.1 for
details on the data generation.

4.2. 3D Auto-Calibration

Given a set of frames from a camera without interme-
diate camera movement, we propose a 3D auto-calibration
step in order to determine the framework for evaluating 3D
object-level context. The calibration step is based on a
Bayesian formulation to align the distribution of detected
human heights with a known human height prior; it can be
considered a gencralization of the idea outlined in [11]. We
describe a simplified camera model and derive a relation-
ship between a detected person in an image and its cor-
responding height in the scene. We then approximate the
intrinsic and extrinsic camera parameters via a maximum



likelihood estimation.The following notations will be used:
world coordinates Xy, = (X, Y, Zy); camera coordi-
nates Xo = (X, Ye, Z.); camera height Y, defined in the
world coordinate system; pixel coordinates u (u,v);
camera tilt #; focal length f; and camera optical cen-
ter (U, ve).

4.2.1 Camera Model

We rely on a simplified camera model and assume zero roll
and an optical center of the camera in the center of the im-
age plane. The ground plane is defined by Y,, = 0 where
all human detections in one set of frames per camera are as-
sumed to have their foot points located on this ground plane.
Our approach is independent of the camera yaw angle and
could theoretically sustain a changing camera yaw within
one set of frames, as long as the same ground plane assump-
tion holds. We use a perspective projection model with unit
aspect ratio. In homogeneous coordinates, the transforma-
tion from world coordinates to camera coordinates is given
by

X 1 0 0 0 X
Y.| _ |0 cos 0 sin@ —Y, cos6 Y. o
Z.| 7 |0 —sin® cos@ Y, sin @ Zw

1 0 0 0 1 1

The transformation from camera to pixel coordinates
which defines the perspective projection @ then has the

form
u 1 f 0 wu. O i(,c
v|=— 1|0 f w. O ZC 2)
1 Zelo 0 1 0 N

From equation 1 and equation 2 we can solve for Y,,:

Zw(vecosO — v, cos — fsin@)

fcosO +vsinf — v.sind
Yo (vsinf — v.sin6 + f cos )

+ fcosO +vsinf — v.sind

3)

In this paper, we assume that all detected humans have
foot points located on the ground plane. Given the top and
bottom position of a human detection in an image, v; and vy,
we can solve equation 3 for depth Z,,, since Y,, = 0 at vy:

g ~Y, (vpsin@ — v, sin @ + f cos0)

)

vy cos 0 — v cosO — fsin6

From equation 4 and equation 3 we can now solve for
the human height Y,” in the scene, given the top and bottom
position of a human detection in an image:

Y S (v, sin v sin 04 f cos )
vy cos 0 0 cos O Jsino

(ve cosO — v.cosO — fsin0)

yh
w fcosO + vy sin — v.sind
Y. (vesin@ — vesin @ + f cos0)

w

JcosO + v, sin0 — v.sind

)
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Figure 5. Visualization of the ground plane estimation for one
camera.

4.2.2 Maximum Likelihood Estimation

When assuming the camera optical center to be in the cen-
ter of the image plane, three camera parameters « for the
simplified camera model remain: camera tilt 6, camera
height Y, and focal length f (cf. equation 1 and equa-
tion 2); camera yaw does not need to be estimated for the
present task. Based on N reliable (i.e. highly scored) hu-
man detections w = [(v¢, Vp)1,- - ., (Vt, vp) N] Within a set
of frames for a camera, we can determine the camera pa-
rameters o« = [0, f,Y,5] by solving

(6)

& = argmax p(w|a).
o

In order to estimate the camera parameter o, we assume
that the heights of humans follow a Gaussian distribution N
with known mean p and variance o. Taking the logarithm
of equation 6, the optimal camera parameters ¢ align the

distribution of reconstructed human heights Y}*, with the
human height prior p such that
N
& = argmax| N in(2ro?) — —— S (VP (@) - w3 O
o 2 202 K

This in turn allows computing metric heights for each
object detection. Although the estimation results are ap-
proximate and depend strongly on the presence of a suffi-
cient number of accurate human detections and on the accu-
racy of the human height prior, they are sufficient to discard
detection outliers which are inconsistent with the estimated
3D scene and provide the framework for the subsequent 3D
object-level context; in addition, the metric information can
be used in the subsequent retrieval querics. See figure 5 for
a visualization of the reconstructed ground plane for one
camera.

4.3. 3D Object-Level Spatial Context

We aim at modeling the 3D spatial context for different
types of luggage. Since the possibilities of interaction be-
tween a person and a given piece of luggage are limited and
the availability of 3D scene information allows us to model



Figure 6. 3D spatial context for luggage carried by a person: if
human pose information is provided by the detector, the probabil-
ity of occurrence of different types of luggage (red: trolley, green:
suitcase, blue: backpack) can be modeled with 3D Gaussian el-
lipsoids (left) whose 2D projections can be computed efficiently.
In the simplified case of pose-free 2D human detections, the ellip-
soids become rotation-invariant tori (right).

their co-occurrence in 3D, we propose a static 3D context
model as shown on the left of figure 6. If we assume that
the detection step provides an estimate of the person’s ori-
entation, the probability of occurrence of each type of lug-
gage can be modeled with a 3D Gaussian A/ with center
#(3p) and covariance C(3py such that the probability of oc-
currence of a piece of luggage at a 3D position Xy, follows

p(Xwlv, 3Dy, Cspy) =N (XwlPopspy, RuCrspy) ®)

where for a given human pose v, P, = [Ry|t,] with ro-
tation R,, and translation t,,. From the calibration step, the
projection ®,, for given camera parameters « = [0, f, Y,£]
allows to derive the probability of occurrence at position u
in image space from

p(ulv, ey, Capy,a) =N (u|®a(Popipy) Pa(RuCupy)) - )

To simplify the computation of the projected covari-
ance, we approximate ¢, by a Taylor expansion localized
at P, 13 py and assume the projection to be locally affine,

@0 (RuC3p)) & Ja, (Popip)) - RoCepy - Jo, (Popepy)  (10)

where Jo_, is the Jacobian of the projection ®,,. If no ori-
entation is provided as part of the human detection, the lug-
gage co-occurrences are modeled as rotation-invariant tori
centered around the human (figure 6, right) which can be
approximated by a sct of Gaussians whose projections can
be derived analogously. As a result, luggage detections can
be re-scored based on their probability of occurrence, given
the nearby human detections and the 3D scene estimation.

4.4. Attribute Extraction

For each scored contextual detection pair of a human and
a piece of luggage, we extract a set of semantic attributes
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as described below and store the detections with their at-
tributes in a database (see figure 3). The attributes can then
be used to answer combined queries such as “tall person
wearing a light-colored shirt and black pants, carrying a red
trolley” in an efficient way. The query results are presented
to the user in descending order based on the detection score
of the piece of luggage and its contextual weight derived
from equation 9.

Luggage type: The output of the object detector af-
ter contextual filtering for the three different pieces of lug-
gage (trolley, backpack and suitcase) can be included in the
query.

Luggage color: We extract the dominant color for each
detected piece of luggage, following the approach of [10]:
the HSL color space is quantized into 5 colors - red, green,
blue, white and black. The dominant color for each luggage
detection is computed by converting each detection into the
HSL space and assigning each pixel to one of the five pre-
defined colors. The color with the majority of votes is then
assigned as the dominant color of the detection, which can
be included in the user query. The color quantization has
only limited robustness towards lighting changes, but it is
sufficient to answer user queries containing relative color
attributes such as light-colored, red, green, blue or dark.

Human height: Since each human detection is assigned
a metric height from section 4.2.2, the user can specify
height constraints for a human. Note that the queries can
only be answered within the precision of the 3D reconstruc-
tion, which is approximate and may display slight varia-
tions for each set of frames processed as outlined in sec-
tion 4.2.2. Consequently, approximate query formulations,
e.g. "of small height”, are preferable and correspond better
to typical user input. We quantize human height attributes
into the three categories small, average and tall, based on
variation levels in the prior human height distribution.

Human color: We divide the area of each human detec-
tion box into an upper part and a lower part; each part is
color-quantized separately in the same way as for the lug-
gage. As a result queries such as “person wearing a light-
colored shirt and blue pants” can be answered.

5. Experimental Results

In this section, we summarize the results achieved with a
Matlab implementation of the present approach on a realis-
tic data set. We describe the synthetic training data set, the
test data set and the impact of the proposed context model
on object class detection and query retrieval precision.

5.1. Data Set

From an airport surveillance network we collected 6148
frames from three cameras under different pan-tilt-zoom
settings. Although the data set also contains some con-
secutive sequences, no overall temporal consistency of the



Figure 7. Filtered detections after each processing step (cf. figure 3). Initial 2D detections (left) of humans (green) and backpacks (red)
show the difficulty of detecting inconspicuous objects. After 3D auto-calibration, detections which are inconsistent with scene scale and
geometry can be removed (center), but different luggage types still cannot be differentiated reliably. When applying the 3D context model
centered around the human detections, the precision of the backpack detector is significantly improved (right).
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Figure 8. Impact of the proposed 3D context model on object class detector performance for the three luggage types trolley (left), suitcase
(center) and backpack (right) on the entire test data set for all cameras. We show the pure 2D detector results (green), the results after
filtering outliers based on the metric scene calibration (blue) and the final result of the 3D object-level context (red).

recorded frames is present. For evaluation the test data set 5.3. Object Class Detection
was manually annotated with ground truth labels indicat-
ing image location and object class for three types of lug-
gage: trolleys (3217 annotated object instances in the en- context model relative to the baseline performance of the
tire data set), suitcases (995 annotated instances), and back- individual 2D detectors before and after metrically filtering
packs (2051 annotated instances). For the reconstruction we with the estimated 3D scene geometry: Figure 8 compares

assume a human height distribution with a mean of 1.8m precision vs. recall for the three luggage classes obtained
and a standard deviation of 0.1, with the pure 2D detections (green), the 2D detections af-

ter metrically filtering based on the 3D scene reconstruction
(blue) and the result when incorporating our 3D object-level

We assess the impact of the proposed 3D object-level

5.2. Training Data context model (red). Since the 2D detector currently does
not provide pose information, we use the rotation-invariant

The object detectors for each object class were trained context model as outlined in section 4.3. The baseline de-
using synthetic 3D models. We purchased a number of tex- tections for an example frame and the backpack detector are
tured CAD models from reseller furbosquid.com to account illustrated in figure 7 before (left) and after (center) metric
for the typical variations in object class appearance, notably filtering based on 3D scenc context. The right image of
32 humans in different poses, 2 trolleys, 5 backpacks and figure 7 shows the output of the final 3D object-to-object
9 suitcases. The models were rendered in front of all real context model. Note that the backpack class is the least dis-
negative training images from the data set of [4] in addi- criminative of the three luggage classes, and the detector
tion to 30 images of typical airport background scenes not output is relatively unreliable. Even after removal of metri-
contained in the test set. Figure 4 shows some examples. cally impossible detections, its precision is insufficient for
Training annotations arc automatically generated from the the intended retrieval task. In figure 8 we compare preci-
projected bounding boxes of the CAD models. Training fol- sion vs. recall for each object class detection cvaluated on
lows the standard procedure outlined in [8]. the entire test set. We observe a notable increase in aver-
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age precision for all three luggage classes, ranging between
5% — 20%. The trolley class is the most discriminative of
the three classes; consequently, the performance gain is less
pronounced. For the other two classes, the achieved gain in
precision is crucial for the subsequent query tasks. Note that
some recall is lost in the 3D context step, since the human
detector fails to detect some context-relevant persons, usu-
ally due to significant occlusion. The detector performance
is not significantly improved by metrically filtering based on
the reconstructed scene constraints alone, since the amount
of high-scoring false positive detections for inconspicuous
object classes remains large.

5.4. Query

In order to evaluate the impact of the proposed approach
on a retrieval task, we determined the retrieval precision at
rank 25 (P(25)) for different queries of varying complexity
for which we could guarantee that at least 25 query-relevant
frames were present in the test set; this evaluation criterion
is used in traditional image retrieval benchmarks'. Note
that in the test data set, people can be captured multiple
times by the same camera or appear in more than one cam-
era. For the simple queries, we compare the retrieval preci-
sion of the 2D detectors and the context model; the complex
queries involving metric information can only be answered
using the context model, thus no comparison is given. Since
the groundtruth annotations only indicate luggage location
and type, no metadata is available to automatically evalu-
ate complex color-based and metric queries; consequently,
we determined P(25) for our test queries manually. All re-
trieval results are ranked based on their scores. Figure 9
plots P(25) for a few selected queries; figures 10,11,12
show some examples of retrieved frames for differently
complex queries; we omit results showing the same per-
son over several frames in order to illustrate the variation
in the retrieval result. Although the color-quantization fails
for some lighting configurations, our 3D context approach
can significantly improve the retrieval results over the indi-
vidual 2D detectors. Once again, the performance depends
significantly on the discernibility of each luggage class and
on the presence of reliable human detections; still, it is ap-
parent that the query results would not be useable without
the proposed 3D context model.

6. Conclusion

In the present work we describe an approach to retrieve
frames from a network of surveillance cameras based on
complex attribute-based queries for persons and the luggage
they carry. We show that a simple 3D spatial context model
in conjunction with an approximate 3D auto-calibration can
significantly improve the performance of object class detec-
tors for inconspicuous object classes such as different types

Lttp:/fwww.imageclef.org
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Figure 10. Example responses for the query "human of average
height with red trolley™.
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of luggage, which might otherwise not be detectable indi-
vidually. Future work will focus on integrating recent re-
sults on human pose estimation from single images in order
to further improve the discriminatory power of the 3D con-
text model.
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Figure 11. Example responses for the query “human of average
height with dark backpack, light-colored shirt and dark pants”.
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Figure 12. Example responses for the query “tall human with dark
suitcase, light-colored shirt and dark pants”.
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