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Abstract
The Variable Time-Shift Hidden Markov Model (VTS-

HMM) is proposed for learning and modeling pairs of cor-
related streams. Unlike previous coupled models for time
series, the VTS-HMM accounts for varying time shifts be-
tween correlated events in pairs of streams having different
properties. The VTS-HMM is learned on a set of pairs of
unaligned streams and, thus, learning entails simultaneous
estimation of the varying time shifts and of the parameters
of the model. The formulation is demonstrated in the anal-
ysis of videos of dyadic social interactions between chil-
dren and adults in the Multimodal Dyadic Behavior Dataset
(MMDB). In dyadic social interactions, an agent starts an
interaction with one or more “initiating behaviors” that
elicit one or more “responding behaviors” from the partner
within a temporal window. The proposed VTS-HMM explic-
itly accounts for varying time shifts between initiating and
responding behaviors in these behavior streams. The exper-
iments confirm that modeling of these varying time shifts in
the VTS-HMM can yield improved estimation of the level of
engagement of the child and adult and more accurate dis-
crimination among complex activities.

1. Introduction
Social dyadic interactions encompass the set of recipro-

cal behaviors of two individuals interacting over time [1, 7].
The study of dyadic interactions is of interest in several
domains. In social and cognitive sciences, there is inter-
est in measuring and modeling human behaviors with the
goal of automatically analyzing the individuals’ social skills
for the detection of developmental disorders [23, 19]. In
fields such as human-computer interfaces, robotics, enter-
tainment (games, advertising, etc.), understanding and an-
alyzing dyadic interactions is of interest for designing hu-
manlike robots/agents that can communicate in a natural
way with the user [6]. Measuring and modeling of social in-
teractions is also important for video indexing and retrieval
in meeting analysis [25], as well as in surveillance [10].

During dyadic interactions, each participant tends to ini-
tiate or invite reciprocal responses from his peer by means

Figure 1. Top row: samples from a video showing a Ball Game.
Second and third rows: samples from the two agents’ streams. The
arrows represent temporal associations discovered by our method.

of both verbal (speech/vocalization) and nonverbal (facial
expression, eye gaze, body pose, gestures, etc.) behaviors.
In this paper, we consider only body gestures, and we re-
fer to the pairs of corresponding initiating and response
behaviors within a temporal window as reciprocal behav-
iors. These behaviors may be either communicative ges-
tures (pointing, nodding, waving, etc.) or action gestures
(turning pages in a book, rolling a ball, etc.). Fig. 1 shows
a simple example of reciprocal behaviors: the two agents
are playing with a ball; while the first agent is throwing the
ball, the other participant is facing the “thrower”, waiting
and then catching the ball. In this example, behaviors like
the agent asking for the object or directing the eye gaze to-
wards the thrower are considered communicative behaviors,
while the act of catching the ball is an action gesture.

In reciprocal behaviors, the response time of the agents,
the duration of the behaviors, the intensity, rapidity and kind
of gestures may vary both within the same pair of individu-
als and across pairs of individuals. All these issues make the
interaction modeling challenging, as the agents’ behaviors
may be overlapping in time or delayed.

To address the above challenges, we formulate a Vari-
able Time-Shift Hidden Markov Model (VTS-HMM). The
VTS-HMM jointly models a pair of correlated streams of
observations, where events in the two interacting streams
are subjected to both variable time delays and variable dura-
tions. To demonstrate our formulation, we apply our model
to the analysis of pairs of agents’ behavior streams during
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dyadic social interactions. Given a set of training videos,
our method automatically estimates the temporal alignment
of the agents’ streams and the VTS-HMM parameters.

In the VTS-HMM formulation, learning the model for
temporal alignment of the agents’ behaviors includes both
adjusting for variable reaction times and accounting for dif-
ferent durations of a behavior that occurs repeatedly.

The main contributions of this paper are:
• a method to model a dyadic social interaction as a

mixture of reciprocal behaviors; in our framework, the
agents’ behaviors are jointly modeled in order to take
into account the influence of one agent on the other
during the interaction;
• a formulation for temporally aligning the agents’ be-

havior streams based on the VTS-HMM;
• an unsupervised training procedure based on

expectation-maximization that puts potentially
coupled behaviors in correspondence while learning
the parameters of the VTS-HMM.

We adopted the VTS-HMM for the analysis of videos
of dyadic social interactions between children and adults
in the Multimodal Dyadic Behavior Dataset (MMDB) [23].
These experiments confirm that taking into account the
alignment of the correlated behaviors can help in discrimi-
nating among interactions and measuring the quality of an
interaction, e.g., the level of engagement of the participants.

The plan of the paper is as follows. In Sec. 2, we present
some related work. In Sec. 3 we present the probabilis-
tic framework used to model the interaction considering the
agents’ behavioral reciprocity. In Secs. 4 and 5, we present
the method used to infer the temporal alignment and the
learning procedure respectively. In Sec. 6, we present our
experimental results. Finally, in Sec. 7 we discuss conclu-
sions and future work.

2. Related Work
There is extensive previous work on modeling and ana-

lyzing human behaviors during interactions. In works such
as [25], the goal is detecting the focus of attention of the
participants in a meeting, where eye gaze, speech and fa-
cial expressions play an important role. In contrast, we aim
to model the reciprocal behaviors of the agents in dyadic
interactions with a focus on the body motion.

Other works [10, 15, 24, 20, 16] employ pre-trained
event models and some “grammar” to represent complex ac-
tivities mainly for surveillance applications. Training spe-
cific event detectors requires a substantial amount of anno-
tated data. In practice, it is not straightforward to know all
possible kinds of events that will be necessary to model an
interaction. As also demonstrated in [8, 22], it is possible to
use low-level visual events directly to represent an activity.

Previous works focus on discovering the causalities of
detected events. In [21], a data-driven approach inspired

by Granger’s causal analysis for time series is used to ana-
lyze causality in video sequences, while in [22] and in [11],
the focus is on learning the structure of the causal graph of
events detected during an activity. These works focus either
on simple single-person activities or on complex activities
involving several individuals; in the latter case, the activity
is modeled without separating the behaviors of the interact-
ing individuals and ignoring the temporal granularity and
delay of the coupled behaviors.

In our work, we model the reciprocal behaviors in pairs
of streams representing the agents’ behaviors. First the
agents are detected and tracked across time. Then, low-
level visual features are extracted at each frame. To ac-
count for the variable time shifts, we temporally align the
agents’ streams so as to maximize the co-occurrences of
spatio-temporal features in the two time series. In contrast
to previous methods, we explicitly model the time delays
in the agents’ behaviors. During training, the dynamics of
the reciprocal behaviors and the temporal warping of the
agents’ streams is learned jointly.

A closely related model is the Coupled Hidden Markov
Model (CHMM). In [4], the CHMM is used to model the
movements of two hands: each of the hands is modeled by
an HMM, and the states of the HMMs are coupled to model
the dependence of the two hands’ movements. In [18], the
CHMM is used for visual-audio modeling. The method
takes unaligned streams as input, but (crucially) does not
account for varying time shifts. Indeed, in the CHMM, ob-
servations from the two streams are assumed to be condi-
tionally independent; our proposed VTS-HMM formulation
does not make this assumption and models them jointly.

We note also that our temporal streams alignment
method is related to behavior-based video alignments [9]
where two videos taken with different cameras but depict-
ing the same behavior are aligned based on visual similar-
ities. However, in our problem, the behaviors we aim to
model are not necessarily similar (as performed by differ-
ent agents), but probably are correlated. Therefore no vi-
sual similarities may be used to account for the sequence
alignment. Instead, we rely on the co-occurrences of the
visual features in the agents’ streams, and we use a max-
imum likelihood approach to temporally align the streams
based on the VTS-HMM. In this sense, our method is re-
lated to several recent works that use Dynamic Time Warp-
ing (DTW) [26, 27]. In [26], DTW and mutual information
are used to align pairs of segmented actions of the same
type. In contrast, we do not focus on single actions but on
complex activities, and we model the dynamics underlying
the interaction. As the two streams are aligned based on the
interaction model, then we can state that any pair of agents’
streams is aligned to a common reference; thus the streams
are made comparable through the interaction model.



Figure 2. Dynamical model for a social interaction: z is the hidden
state, (x̃, ỹ) are the coupled behaviors in the agents’ streams.

3. Modeling Social Interaction
We assume that two time series of bags of low-level vi-

sual events are given to describe the behaviors of each agent.
Given a set of similar dyadic interactions, if the recipro-
cal behaviors of the agents would be perfectly aligned, we
would expect that the low-level visual events of the agents’
reciprocal behaviors would be maximally associated. How-
ever, we do not observe the aligned behaviors directly, but
their shifted and warped versions. To account for differ-
ent velocities and response times, we align the two agents’
streams while maximizing the co-occurrences of features
in the two time series. The problem of estimating the best
alignment entails finding the time-shifted instants in the two
agents’ streams when correlated bags of spatio-temporal
features are observed.

Assuming that the emerging agents’ behaviors are recip-
rocal and may switch between different modes, a natural
choice to model an interaction is adopting a mixture model.
For aligning the behaviors streams, we propose the Vari-
able Time-Shift Hidden Markov Model (VTS-HMM). Our
formulation is more flexible than standard HMM in that it
embeds the latent warping of the behavioral streams and
accounts for the different time delays that can be observed
during the interaction. Our method differs from DTW in
that it enables the alignment of streams that are correlated
but not necessarily similar. Finally, our formulation is dif-
ferent than the stochastic DTW in [17] in that, by means of
the latent variables, it takes advantage of a switching mech-
anism, which permits us to choose the best model to use for
aligning the behavioral streams. In this way, our method
accounts for the significant variations that can be observed
in the agents’ behaviors.

3.1. Interaction Model

In our framework, the behaviors of agent A1 are de-
scribed as the stream X = {x1, x2, ..., xN}, where xn is
a bag of low-level visual events detected at time n. A com-
mon representation for a bag of low-level visual events is
a frequency histogram of visual words; therefore, xn(α)
will represent the number of occurrences that the α-th vi-
sual word is detected at time n for agent A1. The behavior
of agent A2 is described as the stream Y in a similar way.

In our model, the hidden state zn represents the evolution
of the coupled behaviors (x̃n, ỹn) during the dyadic interac-
tion across time, while the emission probability models the

Figure 3. Augmented dynamical model for a social interaction: z is
the hidden variable, xh and yk are the coupled behaviors detected
at time h and k in the agents’ streams.

coupled behaviors of the agents (see Fig. 2).
At each step n, the agents’ behaviors are represented

as the corresponding bag of visual words in the aligned
streams, while the coupled behaviors are represented as the
joint co-occurrences of words in the agents’ bag of features
representation, i.e., a joint histogram of visual words.

Given the aligned streams, the joint probability for our
model is:

p(X̃, Ỹ , Z) = π(z1) ·
N∏
i=1

p(x̃i, ỹi|zi)
N∏
j=2

p(zj |zj−1)

where p(x̃i, ỹi|zi) is the probability of having the joint ob-
servation (x̃i, ỹi) given the state zi, while p(zj |zj−1) repre-
sent the transition model for the social interaction.

As we do not observe the aligned behaviors X̃ and Ỹ ,
but their shifted and warped versions X and Y , we align
the agents’ reciprocal behaviors by maximizing the likeli-
hood of the streams given the interaction model. Therefore,
we modify the interaction model as shown in Fig. 3. In this
model, the state has been augmented with the time instants
h and k that should be coupled in the streams X and Y .
H = {hi} and K = {ki} represent the temporal align-
ment of the agents’ streams, while Z = {zi} represents the
sequence of hidden states.

The joint probability for this model is:
p(X,Y, Z,H,K) = πz(z1) · πh,k(h1, k1)·
N∏
i=1

p(xhi , yki |zi, hi, ki)
N∏
j=2

p(zj |zj−1) · p(hj , kj |hj−1, kj−1)

where p(xhi , yki |zi, hi, ki) is the probability of having the
joint observation (xhi , yki) given the state zi, the hi-th ob-
servation in stream X , and the ki-th observation in stream
Y . Therefore (xhi , yki) is the same as (x̃i, ỹi).

The conditional probability p(zj |zj−1) represents
the transition model for the social interaction, while
p(hj , kj |hj−1, kj−1) represents the temporal dynamics in
the stream warping.

3.2. Probabilistic Model
In our implementation, the state transition probability

p(zn|zn−1), and the priors πz and πh,k are modeled as
multinomial distributions.

We consider that the pair (h, k) is reachable only from a
subset of possible states defined as:



J(h, k) = {(h− α, k − β)}α=u,β=vα=0,β=0 − {(h, k)} (1)

where u and v are the maximal number of observations that
may be jumped in each stream. The temporal dynamics are
modeled as a uniform distribution:

p(hn, kn|hn−1, kn−1) =

{
c, if(hn−1, kn−1) ∈ J(hn, kn)
0, otherwise

where the sum of c over all the possible pairs (hn, kn) is 1.
The conditional distribution of the coupled behaviors

(xh, yk) given the state z is modeled as a joint multinomial
distribution. For each value of z, the parameters of this dis-
tribution have the form of a matrix φz whose rows corre-
spond to visual words in the stream X , while the columns
correspond to visual words in the stream Y , that is:

p(xh, yk|z, h, k) = γ
∏
i,j

φz(i, j)(xh(i)·yk(j))

where γ is the normalization constant in a multinomial dis-
tribution, and φz(i, j) is the probability of observing the
pair of words (i, j) in the streams X and Y while in state z.

4. Inference of the Temporal Alignment
The streams’ temporal alignment is found by inferring

the hidden statesZ,H , andK. We adopt a maximum likeli-
hood approach and use dynamic programming to maximize
the log-likelihood of the alignment.

For each pair of bags (xh, yk) in a temporal window,
given the state z, the logarithm of the emission probability
M(xh, yk|z) is defined as:

M(xh, yk|z) = log(p(xh, yk|z, h, k, φz)). (2)

As the probability p(hn, kn|hn−1, kn−1) is uniform, it
may be omitted during inference. For each pair of bags
(xhn , ykn) in a temporal window, and for each value of
the hidden variable zn, we compute the best hypothesis that
could have generated the current pair as:

S(xhn , ykn , zn) =M(xhn , ykn |zn)+
max
zn−1

(hn−1,kn−1)∈
J(xhn ,ykn )

{S(xhn−1
, ykn−1

, zn−1) + log(p(zn|zn−1))}. (3)

The variable S is initialized considering the prior on the
hidden states; therefore:

S(xh1
, yk1 , z1) =M(xh1

, yk1 |z1) + log(π(z1)). (4)

The best alignment H , K, and the set of hidden vari-
ables Z are computed by back-tracking, once the end of the
stream has been reached. Algs. 1 and 2 give the pseudo-
code for inferring the temporal alignment.

For each video sequence, we consider an initial time de-
lay τ necessary to define the alignment starting time. The
meaning of this delay is that one of the two agents’ streams
(depending on the sign of the delay) must be shifted back

Algorithm 1: Inference of the Temporal Alignment
Input : X and Y , agents’ streams;

φ, πz and Az , parameters of the model
Output: H, K temporal alignment; Z hidden states;

τ initial time delay
for τ ← τmin to τmax do

if τ > 0 then
Xs ← (shift X by τ frames); Ys ← Y

else
Xs ← X; Ys ← (shift Y by −τ frames)

( Hτ , Kτ , Zτ , Sτ )← Align(Xs, Ys, φ, πz, Az);
τ ← argmax(S)
H← Hτ ; K← Kτ ; Z← Zτ ;

Algorithm 2: Align
Input : X and Y , agents’ streams;

φ, πz and Az , parameters of the model
Output: H, K temporal alignment; Z hidden states;

L likelihood for the alignment
for h← 1 to #(X) do

for k ← 1 to #(Y ) do
for z ← 1 to ZM do

M(h, k, z)← log(p(xh, yk|z, h, k, φz));
S(h, k, z)← − inf;

for h← 1 to #(X) do
for k ← 1 to #(Y ) do

for zn ← 1 to ZM do
if h = 1 & k = 1 then

S(1, 1, z)←M(1, 1, z) + log(πz(z));
else

Compute J as in Eq. 1;
Compute S(h, k, zn) as in Eq. 3;
Store best hypothesis for (h, k, zn);

Compute best align. (H,K) and Z by back-tracking;
set L to likelihood of the best alignment; L← L / #(H);

in time to align the first reciprocal behavior. Therefore τ
represents the value of either h1 or k1.

In our implementation, the time delay assumes values
in the range [τmin, τMax]. During inference, each of these
time delays is tested, and the time delay providing the high-
est probability is selected.

5. Parameter Estimation
During training, we learn the parameters φz for the emis-

sion probability distribution corresponding to each of the
state value z, and the parameters for πz and for p(zn|zn−1).
We define the parameters for p(zn|zn−1) as Az .

The learning of the parameters for the model in Fig. 3, in
which H , K and Z are dependent given the observations,
may be achieved considering the Cartesian product HMM
where the state space is represented as all the possible com-



binations ofH ,K and Z. However, this has high time com-
plexity. Instead, we utilize an approximate learning proce-
dure that considers the model in Fig. 2, and we adopt an
expectation-maximization (EM) based approach. At each
iteration, we infer the temporal alignment of the training
sequences as described in Sec. 4 with the given parameter
set. Then we treat H and K as given and estimate the pa-
rameters of our model on the set of aligned agents’ streams
via EM. The procedure is repeated until convergence.

In the EM, during the E-step the expected value for the
log-likelihood is computed given the current parameter es-
timate; during the M-step, the parameters are re-estimated
by maximizing the expected log-likelihood. Therefore, we
re-estimate the parameters πz , Az and {φz}z . The key dif-
ference in the parameter estimation with respect to a tra-
ditional HMM is in the multinomial distribution parame-
ters. For each state value z, the corresponding parameters
φz are computed by normalizing the expected value of the
co-occurrences of pairs of words (i, j) in the two aligned
streams given the time delay h, k and z as follows:

φz(i, j) ∝
∑
v

∑
τv

p(τv |X̃v , Ỹ v) ·
∑
n

(#(i, j)n,v · p(zn = z|X̃v , Ỹ v))

where the superscript v is an index over the samples in the
training set, n is an index over the observations in the v-
th sequence, and #(i, j) is the count for the pair of words
(i, j). This modification comes from the assumption that
τ is conditioned only on the aligned bag of visual words
and implies that p(τv, Z|X̃, Ỹ ) factorizes. The probability
p(τv|X̃v, Ỹ v) is assumed to be proportional to the likeli-
hood of the alignment provided by the inference procedure.

The learning procedure is summarized in Algorithm 3.
For each pair of agents’ streams and for each initial time
delay τ , we infer the temporal alignment and compute the
pair of aligned agents’ streams X̃v and Ỹ v . We then weight
the joint representation of the streams with the probability
p(τv|X̃v, Ỹ v). The effect of this procedure is that of gener-
ating a training set (Xtrain, Ytrain) of possible aligned se-
quences weighted based on the likelihood of the alignment
itself. Finally, we note that in [2], the time-shift is assumed
to be constant over time. The inference of this time-shift is
performed by testing all the possible time-shifts and select-
ing the one with the highest probability. In our formulation,
the time delay is not constant over time; during inference,
the initial time delay is computed in a similar way to [2].
However, during learning, we define a distribution over the
initial time delay to make the method robust to the initial
choice of parameters.

6. Experimental Results
Experiments were conducted using videos from the ses-

sions in the MMDB dataset1 [23]. Each session follows
1The dataset is publicly available at http://www.cbi.gatech.edu/mmdb/

Algorithm 3: Learning parameters of the model
Input : Xv, Y v , training set of V videos;

ZM , number of states;
τmin and τmax, interval for τ

Output: φz, πz, Az , parameters of the model
Initialize φz , πz and Az randomly;
converged← false, iter← 0, LogLp ← − inf;
while iter<MaxIter & !converged do

// Align training set:
Xtrain ← ∅; Ytrain ← ∅; for i← 1 to V do

for τ ← τmin to τmax do
Shift Xv or Y v based on τ ;
(H,K,Z, Sτ )←
Align(Xv, Y v, φ, πz, Az);
Compute X̃v

τ and Ỹ vτ by (H, K);
for τ ← τmin to τmax do

Sτ = exp(Sτ )
||S|| ;

Weight observations in (X̃v
τ , Ỹ

v
τ ) by Sτ ;

Xtrain ← Xtrain ∪ X̃v
τ ;

Ytrain ← Ytrain ∪ Ỹ vτ ;

// E-step over [Xtrain, Ytrain]:
Compute exp. log-likel. by fwd-bwd propagation;
// M-step:
Compute φz, πz, Az by maxim. the exp. log-likel.;
converged← checkConv(LogL, LogLp);
iter← iter + 1; LogLp ← LogL;

the same semi-structured protocol where an adult (the ex-
aminer) and a child are involved in a series of four games:
Ball, Book, Hat, and Tickle. In the Ball game, the exam-
iner initiates a game rolling the ball back-and-forth with the
child and then pauses the game to gauge the child’s reaction
to the break in interaction. In the Book game, the exam-
iner brings out a picture book and encourages the child to
flip through the pages. In the Hat game, the examiner puts
the book on her head and watches for the child’s reaction.
Finally, in the Tickle game, the examiner leans in to gently
tickle the child several times before pausing the game to see
whether the child attempts to re-initiate the interaction.

For each session, the adult interacting with the child as-
signed a summary rating of the child’s level of engagement
in each game on a three-point scale ranging from 0 (indi-
cating the interaction with the child required little effort for
the adult and/or the child was ready and eager to engage)
to 2 (the interaction with the child required extensive effort
and/or the child was highly fussy or refused to interact).

In our experiments, we test the hypothesis that model-
ing the agents’ reciprocity may help to predict the engage-
ment level of the child during the interaction. We also eval-
uate our model’s ability to classify different types of games,
and we test if taking into account the behavioral reciprocity
when modeling the interaction improves activity recogni-



Figure 4. Sample images of the games in a session of the MMDB
from the overhead Kinect camera.
tion. Finally, we show qualitative results of our method for
the temporal alignment of the agents’ behavioral streams.

We use the video captured via an overhead Kinect cam-
era, and use the depth image to detect the agents’ bodies.
We manually segment the video sequences into clips, so that
each clip represents one of the Ball, Book, Hat or Tickle
games. Sample images of a video in the data set are shown
in Fig. 4. We test our approach on a dataset of 66 sequences.
We randomly select 6 sequences to train a codebook. Each
session has been manually segmented into 4 clips (one for
each task). 30 sequences where the child was scored as en-
gaged in all the tasks are used to train our models. The
remaining 30 sequences are used for testing. However, in
one test session the child refused to play the Hat and Tickle
games, in another the child didn’t play the Tickle game.
Thus, in total, we have tested on a dataset of 117 clips.
Fig. 5 shows an histogram of the engagement scores for the
test sequences.

6.1. Implementation details
Agents’ Behavioral Representation: As in previous

works [21, 8], we adopt spatio-temporal interest points
(STIP) [12] for extracting visual features. With respect to
other sparse feature representations (SIFT [14], SURF [3]),
STIP offers the advantage of considering interest points
with a temporal duration. We adopt standard techniques to
encode STIP features as visual words. A codebook of visual
words on the detected STIP points (represented as HOG [5]
and HOF [5]) is learnt by K-means; then, hard coding has
been used to associate each STIP feature to a visual word.

Each agent’s body is found by background suppression
and tracking. The above representation is invariant to the
position of the agents as the position of the detected STIP
points is not encoded when computing the histograms.

For each agent and for each frame we compute a his-
togram of the visual words. In our implementation, we used
a codebook of 50 visual words. To account for frames where
no STIP has been detected, we augment the codebook with
a further word representing no motion.

Inference: We set u and v to 1; therefore, J(h, k) in
Eq. 1 is composed of only three possible steps. We have
limited the interval of time in which (h, k) can vary to 61
frames. Therefore, the matrix M in Eq. 2 is diagonally
banded. This makes the implementation faster as it does not
require matching all the possible bags in the agents’ streams
but only the ones in a temporal neighborhood.

In our experiments, we found benefits in normalizing the

Figure 5. Binary en-
gagement scores in the
test set for each game.
The vertical axis re-
ports the number of se-
quences.

likelihood in Eq. 2 by the size of the bags of visual words.
This corresponds to measuring a geometric average of the
emission probability and accounts for bags of features of
different sizes across time.

The initial time delay (expressed as number of frames)
was allowed to vary in the interval [−25, 0] with step 5.

Training: We use the Bayesian Information Criterion
(BIC) to select an appropriate number of states for the mod-
els ranging from 6 to 10. Based on BIC, we set the number
of states to 9, 8, 8 and 9 respectively for the Ball, Book, Hat
and Tickle game models.

Baseline Method: To evaluate the effect of accounting
for the varying time-shifts, we test against an HMM that
jointly models the states of the two streams (implemented
as a Cartesian HMM) but without varying time delay. This
baseline is equivalent to the CHMM in [18]. To permit
fair comparison, this baseline employs the same observa-
tion model used in the VTS-HMM. Employing the BIC, the
number of HMM states in the baseline is set to 10, 7, 10 and
6 respectively for the Ball, Book, Hat and Tickle game.

6.2. Results
Engagement Estimation Reciprocity is important dur-

ing interactions with children involved in collaborative
tasks [19]. Gestures such as pointing or nodding may in-
dicate the presence of social behaviors, and can permit in-
ference of whether children are paying attention to their
partner, and whether they are responding or initiating so-
cial interactions. A child who displays social reciprocity is
motivated to engage in social interactions with others and
participates in long chains of back-and-forth interactions.

As discussed in [13], children with autism display sig-
nificant impairments in social reciprocity and it is more dif-
ficult for them to engage in responsive interactions. There-
fore, it is of interest to assign ratings to the level of engage-
ment to help the diagnosis and treatment of developmental
and behavioral disorders [23].

It seems natural to hypothesize that modeling the reci-
procity may help in predicting the engagement score of the
agents during a dyadic interaction. Due to the limited num-
ber of samples in our dataset whose engagement score is 2,
we considered the class “not easy to engage” that comprises
samples with an engagement score of either 2 or 1. Thus, we
cast the engagement prediction problem as a binary classi-
fication problem, where a predicted score of 0 means “easy



Ball Book Hat Tickle Avr.
STIPS, no Align 50 53.33 41.38 53.57 49.57
STIPS + Align 60 56.67 51.72 53.57 55.49

HMM 56.67 70 58.62 53.57 59.71
VTS-HMM 73.33 76.67 55.1 64.29 67.36

Table 1. Engagement Prediction Accuracy in Leave-1-Out Cross-
Validation
to engage”, while 1 means “not easy to engage”.

We conduct experiments to test if the temporal alignment
can improve engagement prediction. We process the test set
with our VTS-HMM to infer the temporal alignment of each
pair of agents’ streams. We then extract features to repre-
sent the sequences, and infer the engagement score by a lin-
ear SVM. We evaluate the average classifier accuracy using
Leave-One-Out cross-validation. We test two cases: feature
representations of the temporally aligned agents’ streams
versus feature representations of the not aligned streams.

In the first experiment, we represent each pair of agents’
streams by the joint histogram of STIP words. To reduce the
dimensionality of the histograms, we apply PCA and select
a number of components covering 95% of the variance (on
average 23 components). The engagement prediction accu-
racies for each game with and without temporal alignment
are shown in the first and second rows of Table 1. Overall,
the temporal alignment improves the engagement prediction
with an increase of the average accuracy of about 10%.

The STIP-based feature representation does not provide
any information about the dynamics of the interaction, nor
about specific behaviors that may be observed. As the VTS-
HMM models an interaction as a mixture of reciprocal be-
haviors, we test the hypothesis that the distribution of hid-
den states inferred by our model for a given game is cor-
related with the engagement score. In this experiment, we
represent a pair of agents’ streams by the histogram of hid-
den states inferred by the VTS-HMM. For comparison pur-
poses, we consider also the histogram of hidden states in-
ferred using our baseline method.

The third and forth rows in Table 1 report the results
of this experiment. We observe a significant improvement
in prediction accuracies for each game. These results sug-
gest that the interaction modes and dynamics learned by our
model can reflect the level of engagement of the child. Our
method outperforms the baseline for all the activities but
the Hat Game. We believe this may be due to the fact that
the score for this game is assigned also based on the child’s
facial expressions. As we are using the overhead camera,
we cannot capture this kind of information and this could
explain the drop in the accuracy.

Overall, the increase in the average accuracy of our
model with respect to the baseline method is of about 13%.
With respect to the STIP-based representation without any
temporal alignment, we achieve an increase in the average
accuracy of about 36%.

True vs Pred. Ball Book Hat Tickle
Ball 83.33 3.33 13.33 0
Book 13.33 53.33 33.33 0
Hat 17.24 0 82.76 0

Tickle 10.71 3.57 0 85.71

Table 2. Recognition with VTS-HMM. Avr. Accuracy: 76.28%.
True vs Pred. Ball Book Hat Tickle

Ball 90 0 3.33 6.67
Book 36.67 40 10 13.33
Hat 34.48 3.45 55.17 6.90

Tickle 10.71 0 0 89.29

Table 3. Recognition with HMM. Avr. Accuracy: 68.61%.

Activity Recognition In the next experiment, we used
our model to classify video sequences representing the four
types of games in the MMDB: Ball, Book, Hat and Tickle.
Our goal is to demonstrate that, by taking into account the
reciprocity of the agents’ behaviors, our model is able to
describe the interaction better. To classify each test video,
we used the log-likelihood of the alignment normalized by
the length of the sequence.

Tables 2 and 3 report the confusion matrices for our
method and the baseline. As the tables show, there is a clear
advantage in considering the temporal alignment when clas-
sifying these complex activities. The baseline method pro-
vides an average accuracy of 68.61%. Our method provides
an average accuracy of 76.28%. Therefore, modeling the
variable time-shifts in the reciprocal behaviors leads to an
increase of the average classification accuracy of about 10%
with respect to the baseline method.

Temporal Alignment: Qualitative Results Figures 1
and 6 show qualitatively some representative temporal
alignments obtained by our method. In all the figures, the
first line represents samples from the video during the Ball
and Tickle games respectively. The second and third lines
show manually cropped images of the two agents.

During the Ball game (Fig. 1), the child follows the ball
with her eyes (moving her head) and prepares to receive the
ball (middle frame in the third line). Our method automat-
ically couples the frames when the adult is going to throw
the ball with the frames when the child is preparing to re-
ceive the ball. The estimated time delay for this specific
example is of -18 frames.

In the Tickle game (Fig. 6), the child is following the
hands of the adult (by adjusting her eye gaze and moving
her head) and she is moving her body in expectation of the
adult’s tickle. While the adult’s hands approach the child,
the time delay decreases from -25 to -8.

7. Conclusions and Future Work
In this paper, we present the VTS-HMM. Our formula-

tion models the underlying process that generates pairs of
correlated (but not necessarily similar) streams affected by
varying time delays. The model is learned on a set of pairs



Figure 6. Alignment for the Tickle Game; the estimated delay
varies from -25 to -8.
of unaligned streams (rather than a single pair of streams).
Learning requires simultaneous estimation of the varying
shifts and of the parameters of the model.

We applied our model to dyadic interactions with the
goal of finding temporal associations among low-level vi-
sual events describing the agents’ behaviors. In our ex-
periments, we observed that the temporal alignment of the
agents’ behaviors improves the prediction of the engage-
ment score of the participants in the interaction, as well the
classification accuracy for activity recognition.

In future work, we will model and infer the durations
of the coupled behaviors in order to automatically segment
them. We will also extend our method to incorporate other
sources of data and information, such as speech, eye gaze
and facial gestures, to better understand the coordination
and reciprocity of the agents’ behaviors.

We also expect that the VTS-HMM should have broader
applicability to problems where modeling the alignment
of correlated streams, which are affected by varying de-
lays, can help to improve classification or regression ac-
curacy. Potential applications include visual-speech mod-
eling, video alignment, modeling of correlated appearances
and activities within camera networks, event/gesture mod-
eling and retrieval, etc.
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