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Abstract

Feature descriptors play a crucial role in a wide range
of geometry analysis and processing applications, includ-
ing shape correspondence, retrieval, and segmentation. In
this paper, we introduce Geodesic Convolutional Neural
Networks (GCNN), a generalization of the convolutional net-
works (CNN) paradigm to non-Euclidean manifolds. Our
construction is based on a local geodesic system of polar
coordinates to extract “patches”, which are then passed
through a cascade of filters and linear and non-linear oper-
ators. The coefficients of the filters and linear combination
weights are optimization variables that are learned to min-
imize a task-specific cost function. We use GCNN to learn
invariant shape features, allowing to achieve state-of-the-art
performance in problems such as shape description, retrieval,
and correspondence.

1. Introduction
Feature descriptors are ubiquitous tools in shape analysis.

Broadly speaking, a local feature descriptor assigns to each
point on the shape a vector in some multi-dimensional de-
scriptor space representing the local structure of the shape
around that point. A global descriptor describes the whole
shape. Local feature descriptors are used in higher-level
tasks such as establishing correspondence between shapes
[35], shape retrieval [8], or segmentation [43]. Global de-
scriptors are often produced by aggregating local descriptors
e.g. using the bag-of-features paradigm. Descriptor construc-
tion is largely application dependent, and one typically tries
to make the descriptor discriminative (capture the structures
that are important for a particular application, e.g. telling
apart two classes of shapes), robust (invariant to some class
of transformations or noise), compact (low dimensional),
and computationally-efficient.

Previous work Early works on shape descriptors such
as spin images [19], shape distributions [34], and integral
volume descriptors [32] were based on extrinsic structures
that are invariant under Euclidean transformations. The fol-
∗equal contribution

lowing generation of shape descriptors used intrinsic struc-
tures such as geodesic distances [15] that are preserved by
isometric deformations. The success of image descriptors
such as SIFT [31], HOG [13], MSER [33], and shape con-
text [2] has led to several generalizations thereof to non-
Euclidean domains (see e.g. [49, 14, 24], respectively). The
works [11, 28] on diffusion and spectral geometry have led
to the emergence of intrinsic spectral shape descriptors that
are dense and isometry-invariant by construction. Notable
examples in this family include heat kernel signatures (HKS)
[45] and wave kernel signatures (WKS) [1].

Arguing that in many cases it is hard to model invariance
but rather easy to create examples of similar and dissimilar
shapes, Litman and Bronstein [29] showed that HKS and
WKS can be considered as particular parametric families
of transfer functions applied to the Laplace-Beltrami oper-
ator eigenvalues and proposed to learn an optimal transfer
function. Their work follows the recent trends in the image
analysis domain, where hand-crafted descriptors are aban-
doned in favor of learning approaches. The past decade in
computer vision research has witnessed the re-emergence
of “deep learning” and in particular, convolutional neural
network (CNN) techniques [17, 27], allowing to learn task-
specific features from examples. CNNs achieve a break-
through in performance in a wide range of applications such
as image classification [26], segmentation [10], detection
and localization [38, 42] and annotation [16, 21].

Learning methods have only recently started penetrating
into the 3D shape analysis community in problems such as
shape correspondence [39, 37], similarity [20], description
[29, 47, 12], and retrieval [30]. CNNs have been applied
to 3D data in the very recent works [48, 44] using standard
(Euclidean) CNN architectures applied to volumetric 2D
views shape representations, making them unsuitable for
deformable shapes. Intrinsic versions of CNNs that would
allows dealing with shape deformations are difficult to for-
mulate due to the lack of shift invariance on Riemannian
manifolds; we are aware of two recent works in that direc-
tion [9, 5].

Contribution In this paper, we propose Geodesic CNN
(GCNN), an extension of the CNN paradigm to non-
Euclidean manifolds based on local geodesic system of coor-

1

ar
X

iv
:1

50
1.

06
29

7v
3 

 [
cs

.C
V

] 
 8

 J
un

 2
01

8



dinates that are analogous to ‘patches’ in images. Compared
to previous works on non-Euclidean CNNs [9, 5], our model
is generalizable (i.e., it can be trained on one set of shapes
and then applied to another one), local, and allows to capture
anisotropic structures. We show that HKS [45], WKS [1],
optimal spectral descriptors [29], and intrinsic shape context
[24] can be obtained as particular configurations of GCNN;
therefore, our approach is a generalization of previous pop-
ular descriptors. Our experimental results show that our
model can be applied to achieve state-of-the-art performance
in a wide range of problems, including the construction of
shape descriptors, retrieval, and correspondence.

2. Background
We model a 3D shape as a connected smooth compact

two-dimensional manifold (surface) X , possibly with a
boundary ∂X . Locally around each point x the manifold is
homeomorphic to a two-dimensional Euclidean space re-
ferred to as the tangent plane and denoted by TxX . A
Riemannian metric is an inner product 〈·, ·〉TxX : TxX ×
TxX → R on the tangent space depending smoothly on x.

Laplace-Beltrami operator (LBO) is a positive semidef-
inite operator ∆Xf = −div(∇f), generalizing the classical
Laplacian to non-Euclidean spaces. The LBO is intrinsic,
i.e., expressible entirely in terms of the Riemannian metric.
As a result, it is invariant to isometric (metric-preserving)
deformations of the manifold. On a compact manifold, the
LBO admits an eigendecomposition ∆Xφk = λkφk with
real eigenvalues 0 = λ1 ≤ λ2 ≤ . . . . The correspond-
ing eigenfunctions φ1, φ2, . . . form an orthonormal basis on
L2(X), which is a generalization of the Fourier basis to
non-Euclidean domains.

Heat diffusion on manifolds is governed by the diffusion
equation,(

∆X + ∂
∂t

)
u(x, t) = 0; u(x, 0) = u0(x), (1)

where u(x, t) denotes the amount of heat at point x at time
t, u0(x) is the initial heat distribution; if the manifold has a
boundary, appropriate boundary conditions must be added.
The solution of (1) is expressed in the spectral domain as

u(x, t) =

∫
X

u0(x′)
∑
k≥1

e−tλkφk(x)φk(x′)︸ ︷︷ ︸
ht(x,x′)

dx′, (2)

where ht(x, x′) is the heat kernel. Interpreting the LBO
eigenvalues as ‘frequencies’, the coefficients e−tλ play the
role of a transfer function corresponding to a low-pass filter
sampled at {λk}k≥1.

Discretization In the discrete setting, the surfaceX is sam-
pled at N points x1, . . . , xN . On these points, we construct
a triangular mesh (V,E, F ) with vertices V = {1, . . . , N},
in which each interior edge ij ∈ E is shared by exactly
two triangular faces ikj and jhi ∈ F , and boundary edges
belong to exactly one triangular face. The set of vertices
{j ∈ V : ij ∈ E} directly connected to i is called the 1-ring
of i. A real-valued function f : X → R on the surface is
sampled on the vertices of the mesh and can be identified
with an N -dimensional vector f = (f(x1), . . . , f(xN ))>.
The discrete version of the LBO is given as anN×N matrix
L = A−1W, where

wij =


(cotαij + cotβij)/2 ij ∈ E;

−
∑
k 6=i wik i = j;

0 else;

(3)

αij , βij denote the angles ∠ikj,∠jhi of the triangles shar-
ing the edge ij, and A = diag(a1, . . . , aN ) with ai =
1
3

∑
jk:ijk∈F Aijk being the local area element at vertex i

and Aijk denoting the area of triangle ijk [36].
The first K ≤ N eigenfunctions and eigenvalues of the

LBO are computed by performing the generalized eigen-
decomposition WΦ = AΦΛ, where Φ = (φ1, . . . ,φK)
is an N ×K matrix containing as columns the discretized
eigenfunctions and Λ = diag(λ1, . . . , λK) is the diagonal
matrix of the corresponding eigenvalues.

3. Spectral descriptors
Many popular spectral shape descriptors are constructed

taking the diagonal values of heat-like operators. A generic
descriptor of this kind has the form

f(x) =
∑
k≥1

τ (λk)φ2
k(x) ≈

K∑
k=1

τ (λk)φ2
k(x) (4)

where τ (λ) = (τ1(λ), . . . , τQ(λ))> is a bank of transfer
functions acting on LBO eigenvalues, andQ is the descriptor
dimensionality. Such descriptors are dense (computed at
every point x), intrinsic by construction, and typically can
be efficiently computed using a small number K of LBO
eigenfunctions and eigenvalues.

Heat kernel signature (HKS) [45] is a particular setting
of (4) using parametric low-pass filters of the form τt(λ) =
e−tλ, which allows to interpret them as diagonal values of
the heat kernel taken at some times t1, . . . , tQ. The physical
interpretation of the HKS is autodiffusivity, i.e., the amount
of heat remaining at point x after time t, which is equal (up
to constant) to the Gaussian curvature for small t. A notable
drawback of HKS stemming from the use of low-pass filters
is its poor spatial localization.



Wave kernel signature (HKS) [1] arises from the model
of a quantum particle on the manifold possessing some
initial energy distribution, and boils down to a particular
setting of (4) with band-pass filters of the form τν(λ) =

exp
(

log ν−log λ
2σ2

)
, where ν is the initial mean energy of the

particle. WKS have better localization, but at the same time
tend to produce noisier matches.

Optimal spectral descriptors (OSD) [29] use parametric
transfer functions expressed as

τq(λ) =

M∑
m=1

aqmβm(λ) (5)

in the B-spline basis β1(λ), . . . , βM (λ), where aqm (q =
1, . . . , Q,m = 1, . . . ,M ) are the parametrization coeffi-
cients. Plugging (5) into (4) one can express the qth compo-
nent of the spectral descriptor as

fq(x) =
∑
k≥1

τq(λk)φ2
k(x) =

M∑
m=1

aqm
∑
k≥1

βm(λk)φ2
k(x)︸ ︷︷ ︸

gm(x)

, (6)

where g(x) = (g1(x), . . . , gM (x))> is a vector-valued func-
tion referred to as geometry vector, dependent only on the
intrinsic geometry of the shape. Thus, (4) is parametrized by
the Q×M matrix A = (alm) and can be written in matrix
form as f(x) = Ag(x). The main idea of [29] is to learn
the optimal parameters A by minimizing a task-specific loss
which reduces to a Mahalanobis-type metric learning.

4. Convolutional neural networks on manifolds
4.1. Geodesic convolution

We introduce a notion of convolution on non-Euclidean
domains that follows the ‘correlation with template’ idea by
employing a local system of geodesic polar coordinates con-
structed at point x, shown in Figure 1, to extract patches on
the manifold. The radial coordinate is constructed as ρ-level
sets {x′ : dX(x, x′) = ρ} of the geodesic (shortest path)
distance function for ρ ∈ [0, ρ0]; we call ρ0 the radius of the
geodesic disc. 1 Empirically, we see that choosing a suffi-
ciently small ρ0 ≈ 1% of the geodesic diameter of the shape
produces valid topological discs. The angular coordinate is
constructed as a set of geodesics Γ(x, θ) emanating from x
in direction θ; such rays are perpendicular to the geodesic
distance level sets. Note that the choice of the origin of the
angular coordinate is arbitrary. For boundary points, the pro-
cedure is very similar, with the only difference that instead
of mapping into a disc we map into a half-disc.

1 If the radius ρ0 of the geodesic ball Bρ0 (x) = {x′ : dX(x, x′) ≤
ρ0} is sufficiently small w.r.t the local convexity radius of the manifold,
then the resulting ball is guaranteed to be a topological disc.

vθ vρ

Figure 1: Construction of local geodesic polar coordinates
on a manifold. Left: examples of local geodesic patches,
center and right: example of angular and radial weights vθ,
vρ, respectively (red denotes larger weights).

Let Ω(x) : Bρ0(x) → [0, ρ0] × [0, 2π) denote the bi-
jective map from the manifold into the local geodesic po-
lar coordinates (ρ, θ) around x, and let (D(x)f)(ρ, θ) =
(f ◦ Ω−1(x))(ρ, θ) be the patch operator interpolating f in
the local coordinates. We can regard D(x)f as a ‘patch’ on
the manifold and use it to define what we term the geodesic
convolution (GC),

(f ? a)(x) =
∑
θ,r

a(θ + ∆θ, r)(D(x)f)(r, θ), (7)

where a(θ, r) is a filter applied on the patch. Due to angular
coordinate ambiguity, the filter can be rotated by arbitrary
angle ∆θ.

Patch operator Kokkinos et al. [24] construct the patch
operator as

(D(x)f)(ρ, θ) =

∫
X

vρ,θ(x, x
′)f(x′)dx′, (8)

vρ,θ(x, x
′) =

vρ(x, x
′)vθ(x, x

′)∫
X
vρ(x, x′)vθ(x, x′)dx′

. (9)

The radial interpolation weight is a Gaussian vρ(x, x′) ∝
e−(dX(x,x′)−ρ)2/σ2

ρ of the geodesic distance from x, centered
around ρ (see Figure 1, right). The angular weight is a
Gaussian vθ(x, x′) ∝ e−d

2
X(Γ(x,θ),x′)/σ2

θ of the point-to-set
distance dX(Γ(x, θ), x′) = minx′′∈Γ(x,θ) dX(x′′, x′) to the
geodesic Γ(x, θ) (see Figure 1, center).

Discrete patch operator On triangular meshes, a discrete
local system of geodesic polar coordinates has Nθ angular
and Nρ radial bins. Starting with a vertex i, we first partition
the 1-ring of i byNθ rays into equi-angular bins, aligning the
first ray with one of the edges (Figure 2). Next, we propagate
the rays into adjacent triangles using an unfolding procedure
resembling one used in [23], producing poly-lines that form
the angular bins (see Figure 2). Radial bins are created as
level sets of the geodesic distance function computed using
fast marching [23].



x

12

3

4

5

6 7

8

Nθ

x

θΓ(x, θ)

Figure 2: Construction of local geodesic polar coordinates
on a triangular mesh. Shown clock-wise: division of 1-ring
of vertex xi into Nθ equi-angular bins; propagation of a ray
(bold line) by unfolding the respective triangles (marked in
green).

We represent the discrete patch operator as an NθNρN ×
N matrix applied to a function defined on the mesh vertices
and producing the patches at each vertex. The matrix is
very sparse since the values of the function at a few nearby
vertices only contribute to each local geodesic polar bin.

4.2. Geodesic Convolutional Neural Networks

Using the notion of geodesic convolution, we are now
ready to extend CNNs to manifolds. GCNN consists of
several layers that are applied subsequently, i.e. the output
of the previous layer is used as the input into the subsequent
one (see Figure 3). We distinguish between the following
types of layers:

Linear (LIN) layer typically follows the input layer and
precedes the output layer to adjust the input and output
dimensions by means of a linear combination,

f out
q (x) = ξ

(
P∑
p=1

wqpf
in
p (x)

)
; q = 1, . . . , Q, (10)

optionally followed by a non-linear function such as the
ReLU, ξ(t) = max{0, t}.

Geodesic convolution (GC) layer replaces the convolu-
tional layer used in classical Euclidean CNNs. Due to the
angular coordinate ambiguity, we compute the geodesic con-
volution result for all Nθ rotations of the filters,

fout
∆θ,q(x) =

P∑
p=1

(fp ? a∆θ,qp)(x), q = 1, . . . , Q, (11)

where a∆θ,qp(θ, r) = aqp(θ + ∆θ, r) are the coefficients
of the pth filter in the qth filter bank rotated by ∆θ =

0, 2π
Nθ
, . . . , 2π(Nθ−1)

Nθ
, and the convolution is understood in

the sense of (7).

Angular max-pooling (AMP) is a fixed layer used in con-
junction with the GC layer, that computes the maximum over
the filter rotations,

f out
p (x) = max

∆θ
f in

∆θ,p(x), p = 1, . . . , P = Q, (12)

where f in
∆θ,p is the output of the GC layer (11).

Fourier transform magnitude (FTM) layer is another
fixed layer that applies the patch operator to each input di-
mension, followed by Fourier transform w.r.t. the angular
coordinate and absolute value,

f out
p (ρ, ω) =

∣∣∣∣∣∑
θ

e−iωθ(D(x)f in
p (x))(ρ, θ)

∣∣∣∣∣ , (13)

p = 1, . . . , P = Q. The Fourier transform translates rota-
tional ambiguity into complex phase ambiguity, which is
removed by taking the absolute value [25, 24].

Covariance (COV) layer is used in applications such as
retrieval where one needs to aggregate the point-wise de-
scriptors and produce a global shape descriptor [46],

f out =

∫
X

(f in(x)− µ)(f in(x)− µ)>dx, (14)

where f in(x) = (f in
1 (x), . . . , f in

P (x))> is a P -dimensional
input vector, µ =

∫
X

f in(x)dx, and f out is a P × P matrix
column-stacked into a P 2-dimensional vector.

5. Comparison to previous approaches
Our approach is perhaps the most natural way of general-

izing CNNs to manifolds, where convolutions are performed
by sliding a window over the manifold, and local geodesic co-
ordinates are used in place of image ‘patches’. Such patches
allow capturing local anisotropic structures. Our method is
generalizable and unlike spectral approaches does not rely
on the approximate invariance of Laplacian eigenfunctions
across the shapes.

Spectral descriptors can be obtained as particular config-
urations of GCNN applied on geometry vectors input. HKS
[45] and WKS [1] descriptors are obtained by using a fixed
LIN layer configured to produce low- or band-pass filters,
respectively. OSD [29] is obtained by using a learnable
LIN layer. Intrinsic shape context [24] is obtained by us-
ing a fixed LIN layer configured to produce HKS or WKS
descriptors, followed by a fixed FTM layer.



... ... ...

Σ

Σ

ξ

ξ

Σ

Σ...

...

... ...

Σ

Σ...

...

... ...

...

m
ax

m
ax

Input M -dim LIN ReLU GC AMP Output Q-dim

f in
M = gM

f in
2 = g1

fout
Q

fout
1

P filters

N
θ

ro
ta

tio
ns

filter bank 1

filter bank Q

Figure 3: The simple GCNN1 architecture containing one convolutional layer applied to M = 150-dimensional geometry
vectors (input layer) of a human shape, to produce a Q = 16-dimensional feature descriptor (output layer).

Spectral nets [9] are a spectral formulation of CNNs using
the notion of generalized (non shift-invariant) convolution
that relies on the analogy between the classical Fourier trans-
form and the Laplace-Beltrami eigenbasis, and the fact that
the convolution operator is diagonalized by the Fourier trans-
form. The main drawback of this approach is that while it
allows to extend CNNs to a non-Euclidean domain (in partic-
ular, the authors considered a graph), it does not generalize
across different domains; the convolution coefficients are
expressed in a domain-dependent basis. Another drawback
of spectral nets is that they do not use locality.

Localized spectral nets [5] are an extension of [9] using
the Windowed Fourier transform (WFT) [40] on manifolds.
Due to localization, this method has better generalization
abilities, however, it might have problems in the case of
strongly non-isometric deformations due to the variability of
the Laplacian eigenfunctions. Furthermore, while WFT al-
lows capturing local structures, it is isotropic, i.e., insensitive
to orientations.

6. Applications
GCNN model can be thought of as a non-linear

hierarchical parametric function ψΘ(F), where F =
(f(x1), . . . , f(xN )) is a P×N matrix of input features (such
as HKS, WKS, geometry vectors, or anything else) at all
the points of the mesh, and Θ denotes the parameters of
all the layers. Depending on the application in hand, these
parameters are learned by minimizing some loss function.
We describe three examples of such task-specific losses.

Invariant descriptors Applying the GCNN point-wise on
some input feature vector f(x), the output ψΘ(f(x)) can be
regarded as a dense local descriptor at point x. Our goal is
to make the output of the network as similar as possible at

corresponding points (positives) across a collection of shapes,
and as dissimilar as possible at non-corresponding points
(negatives). For this purpose, we use a siamese network
configuration [6, 18, 41], composed of two identical copies
of the same GCNN model sharing the same parameterization
and fed by pairs of knowingly similar or dissimilar samples,
and minimize the siamese loss

`(Θ) = (1− γ)

|T+|∑
i=1

‖ψΘ(fi)−ψΘ(f+
i )‖2 (15)

+ γ

|T−|∑
i=1

(µ− ‖ψΘ(fi)−ψΘ(f−i )‖)2
+,

where γ ∈ [0, 1] is a parameter trading off between the pos-
itive and negative losses, µ is a margin, (t)+ = max{0, t},
and T± = {(fi, f±i )} denotes the sets of positive and nega-
tive pairs, respectively.

Shape correspondence Finding the correspondence in a
collection of shapes can be posed as a labelling problem,
where one tries to label each vertex of a given query shape
X with the index of a corresponding point on some reference
shape Y [37]. Let y1, . . . , yN ′ be the vertices of Y , and let
yji denote the vertex corresponding to xi for i = 1, . . . , N .
GCNN applied point-wise on X is used to produce an N ′-
dimensional vector encoding the probability distribution on
Y , which acts as a ‘soft correspondence’. The multinomial
regression loss

`(Θ) = −
|T |∑
i=1

eji logψΘ(fi) (16)

is minimized on a training set of known correspondence
T = {f(xi), ji} to achieve the optimal correspondence (here
ei is a unit vector with a one at index i).



Shape retrieval In the shape retrieval application, we are
interested in producing a global shape descriptor that dis-
criminates between shape classes (note that in a sense this
is the converse of invariant descriptors for correspondence,
which we wanted to be oblivious to different classes). In
order to aggregate the local features we use the COV layer
in GCNN and regard ψΘ(F) as a global shape descriptor.
Training is done by minimizing the siamese loss, where
positives and negatives are shapes from same and different
classes, respectively.

7. Results
We used the FAUST [4] dataset containing scanned hu-

man shapes in different poses and the TOSCA [7] dataset
containing synthetic models of humans in a variety of near-
isometric deformations. The meshes in TOSCA were re-
sampled to 10K vertices; FAUST shapes contained 6.8K
points. All shapes were scaled to unit geodesic diameter.
GCNN was implemented in Theano [3]. Geodesic patches
were generated using the code and settings of [24] with
ρ0 = 1% geodesic diameter. Training was performed us-
ing the Adadelta stochastic optimization algorithm [50] for a
maximum of 2.5K updates. Typical training times on FAUST
shapes were approximately 30 and 50 minutes for one- and
two-layer models (GCNN1 and GCNN2, respectively). The
application of a trained GCNN model to compute feature
descriptors was very efficient: 75K and 45K vertices/sec for
the GCNN1 and GCNN2 models, respectively. Training and
testing was done on disjoint sets. As the input to GCNN,
we used M = 150-dimensional geometry vectors computed
according to (5)–(6) using B-spline bases. Laplace-Beltrami
operators were discretized using the cotangent formula (3);
K = 300 eigenfunctions were computed using MATLAB
eigs function.

7.1. Intrinsic shape descriptors

We first used GCNN to produce dense intrinsic pose-
and subject-invariant descriptors for human shapes, follow-
ing nearly-verbatim the experimental setup of [29]. For
reference, we compared GCNN to HKS [45], WKS [1],
and OSD [29] using the code and settings provided by
the respective authors. All the descriptors were Q = 16-
dimensional as in [29]. We used two configurations: GCNN1
(150-dim input, LIN16+ReLU, GC16+AMP shown in Fig-
ure 3), and GCNN2 (same as GCNN1 with additional ReLU,
FTM, LIN16 layers); Training of GCNN was done using the
loss (15) with positive and negative sets of vertex pairs gen-
erated on the fly. On the FAUST dataset, we used subjects
1–7 for training, subject 8 for validation, and subject 9–10
for testing. On TOSCA, we test on all the deformations of
the Victoria shape.

Figure 4 depicts the Euclidean distance in the descriptor
space between the descriptor at a selected point and the rest

of the points on the same shape as well as its transformations.
GCNN descriptors manifest both good localization (better
than HKS) and are more discriminative (less spurious min-
ima than WKS and OSD), as well as robustness to different
kinds of noise, including isometric and non-isometric defor-
mations, geometric and topological noise, different sampling,
and missing parts.

Quantitative descriptor evaluation was done using three
criteria: cumulative match characteristic (CMC), receiver
operator characteristic (ROC), and the Princeton protocol
[22]. The CMC evaluates the probability of a correct corre-
spondence among the k nearest neighbors in the descriptor
space. The ROC measures the percentage of positives and
negatives pairs falling below various thresholds of their dis-
tance in the descriptor space (true positive and negative
rates, respectively). The Princeton protocol counting the
percentage of nearest-neighbor matches that are at most r-
geodesically distant from the groundtruth correspondence.
Figure 5 (first row) shows the performance of different de-
scriptors on the FAUST dataset. We observe that GCNN
descriptors significantly outperform other descriptors, and
that the more complex model (GCNN2) further boosts per-
formance. In order to test the generalization capability of
the learned descriptors, we applied OSD and GCNN learned
on the FAUST dataset to TOSCA shapes (Figure 5, second
row). We see that the learned model transfers well to a new
dataset.

7.2. Shape correspondence

To show the application of GCNN for computing intrinsic
correspondence, we reproduced the experiment of Rodolà et
al. [37] on the FAUST dataset, replacing their random forest
with a GCNN architecture GCNN3 containing three convo-
lutional layers (input: 150-dimensional geometry vectors,
LIN16+ReLU, GC32+AMP+ReLU, GC64+AMP+ReLU,
GC128+AMP+ReLU, LIN256, LIN6890). Zeroth FAUST
shape containing N ′ = 6890 vertices was used as reference;
for each point on the query shape, the output of GCNN repre-
senting the soft correspondence as an 6890-dimensional vec-
tor was converted into a point correspondence by taking the
maximum. Training was done by minimizing the loss (16);
training and test sets were as in the previous experiment.
Figure 6 shows the performance of our method evaluated
using the Princeton benchmark, and Figure 7 shows corre-
spondence examples where colors are transferred using raw
point-wise correspondence in input to the functional maps
algorithm. GCNN shows significantly better performance
than previous methods [22, 35, 37].

7.3. Shape retrieval

In our final experiment, we performed pose-invariant
shape retrieval on the FAUST dataset. This is a hard fine-
grained classification problem since some of the human
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Figure 4: Normalized Euclidean distance between the descriptor at a reference point on the shoulder (white sphere) and the
descriptors computed at the rest of the points for different transformations (shown left-to-right: near isometric deformations,
non-isometric deformations, topological noise, geometric noise, uniform/non-uniform subsampling, missing parts). Cold and
hot colors represent small and large distances, respectively; distances are saturated at the median value. Ideal descriptors would
produce a distance map with a sharp minimum at the corresponding point and no spurious local minima at other locations.

subjects look nearly identical. We used a GCNN archi-
tecture with one convolutional layer (input: 16-dimensional
HKS descriptors, LIN8, GC8+AMP, COV), producing a
64-dimensional output used as the global shape descriptor.
Training set consisted of five poses per subject (a total of 50
shapes); testing was performed on the 50 remaining shapes
in a leave-one-out fashion. Evaluation was done in terms
of precision (percentage of retrieved shapes matching the
query class) and recall (percentage of shapes from the query
class that is retrieved). Figure 8 shows the PR curve. For
comparison, we show the performance of other descriptors
(HKS, WKS, and OSD) aggregated into a global covariance
shape descriptor. GCNN outperforms significantly all other
methods.

8. Conclusions
We presented GCNN, a generalization of CNNs allowing

to learn hierarchical task-specific features on non-Euclidean
manifolds for applications such as shape correspondence

or retrieval. Our model is very generic and flexible, and
can be made arbitrarily complex by stacking multiple lay-
ers. Applying GCNN on other shape representations such
as point clouds could be achieved by modifying the local
geodesic charting procedure. Though in this paper we used
intrinsic spectral properties of the shape as the the input to
the network, GCNN can be applied on any function defined
on the manifold, and it would be particularly natural to use
it to construct descriptors of textured surfaces.
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