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Abstract

Illumination estimation is a well-studied topic in com-

puter vision. Early work reported performance on bench-

mark datasets using simple statistical aggregates such as

mean or median error. Recently, it has become accepted to

report a wider range of statistics, e.g. top 25%, mean, and

bottom 25% performance. While these additional statis-

tics are more informative, their relationship across differ-

ent methods is unclear. In this paper, we analyse the re-

sults of a number of methods to see if there exist ‘hard’ im-

ages that are challenging for multiple methods. Our find-

ings indicate that there are certain images that are difficult

for fast statistical-based methods, but that can be handled

with more complex learning-based approaches at a signifi-

cant cost in time-complexity. This has led us to design a hy-

brid method that first classifies an image as ‘hard’ or ‘easy’

and then uses the slower method when needed, thus provid-

ing a balance between time-complexity and performance.

In addition, we have identified dataset images that almost

no method is able to process. We argue, however, that

these images have problems with how the ground truth is

established and recommend their removal from future per-

formance evaluation.

1. Introduction

Images captured by a digital camera are often corrupted

by a color cast caused by the scene illumination. This color

cast can make the image look unpleasant and hinder subse-

quent processing for computer vision tasks. Illuminant es-

timation algorithms attempt to estimate the scene illumina-

tion from the input image and apply a correction to remove

the color cast.

Illuminant estimation algorithms can be roughly clas-

sified into two types: statistical-based methods and

learning-based techniques (see [19] for a detailed sur-

vey). Statistical-based methods (representative examples

include [25, 4, 27, 13, 20, 7]) directly estimate the illumina-

tion from statistics computed from the input image. These

methods are fast and work irrespective of the type of camera

hard image hard image easy image

Figure 1: Examples of images from the Gehler-Shi

dataset [15, 26] considered hard and easy based on our anal-

ysis of the performance of 12 different methods on the entire

dataset.

used. Their performance, however, is generally not as good

as learning-based methods. Learning-based methods (rep-

resentative examples include [14, 12, 16, 15, 18, 5, 11, 23])

exploit the availability of training images that have labelled

ground truth illumination. These methods use image fea-

tures to train regressors to predict the illumination based

on the input image and associated training-data. Learning-

based methods generally give superior results over statisti-

cal methods, but at the cost of higher running-times and the

need to be trained per camera. The selection of an illumi-

nation estimation method is generally guided by the need

for performance vs. time-complexity, e.g. most onboard

camera white-balance algorithms still use statistical-based

methods.

There are several benchmark datasets [2, 9, 26] that are

used to evaluate the performance of illumination estimation

algorithms. These datasets generally have a large number of

images. As a result, only aggregate performance values are

given over the whole dataset. Early work on illuminant esti-

mation often used the mean error as a common statistic [1].

However, later it was shown [21] that the mean error does

not provide an accurate statistical summary of the under-

lying error distribution and the median error was proposed

instead. In a perceptual evaluation [17, 19] of illuminant es-

timation algorithms the trimean error was introduced which

gives the additional values of the error distribution (e.g. the

top and bottom 25%).
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The routine reporting of these additional statistics

provides more insight to a method’s performance across

an entire dataset. Interestingly, however, none of the prior

works have examined if there is any commonality in these

statistics across the images in the dataset. For example, it

is unclear if the bottom 25% results have shared images

across different methods. This would be interesting finding

as it would indicate the existence of images that multiple

methods consistency perform poorly on. We term these

images as ‘hard images’. This lack of analysis serves as the

impetus for our work.

Contribution In this paper, we describe an analysis on

12 leading illumination estimation algorithms belonging to

both statistical- and learning-based methods. In particular,

we enumerate over all combinations of five methods out

of 12 to find the set of images where at least the majority

(three or more) methods fail. We consider these images to

be ‘hard’ for this subset of methods. Our findings indicate

that there are, indeed, sets of hard images for different sub-

sets (e.g. see Figure 1). More importantly, these subsets can

be grouped depending if their methods belong to statistical-

based or learning-based. To this end, we found that there

are a number of ‘hard’ images for the fast statistical-based

methods that can be handled by more complex learning-

based approaches (Section 2). This led us to develop a hy-

brid estimation approach that classifies the image as hard or

easy depending on the results of the statistical-based meth-

ods (Section 3). In the case an image is categorised as hard,

it is likely that the results of the simple camera on-board

white balancing algorithms are incorrect. Such hard images

can be saved as RAW on the camera for later off-line pro-

cessing by slower, but more accurate, learning-based meth-

ods, such as the exemplar-based method [23, 24]. This leads

to better overall illumination estimation performance while

reducing the overall time-complexity. Our analysis also has

found that certain images in a well established benchmark

dataset are hard for all methods. On closer examination we

found that these images have issues that makes establishing

the ground truth difficult and advocate for their removal for

future evaluation (Section 4).

2. Analysing Results on a Common Dataset

The Gehler-Shi dataset [15, 26] has become the standard

image dataset for illumination estimation performance eval-

uation. While newer datasets exist (e.g. the NUS 9 cam-

era dataset [7]), the Gehler-Shi dataset remains the most

commonly tested dataset in the color constancy literature.

Gijsenij et al. [19] performed a thorough evaluation of 15

methods on the Gehler-Shi dataset. Their work provided re-

sults for each of these 15 methods for each image in dataset.

We use this comprehensive results for our analysis in this

paper.

From Gijsenij et al. [19], we select 12 algorithms that

have received the greatest attention in the published liter-

ature. We divide them into two groups. Statistical-based

methods including: S1 = shades of grey [13], S2 = grey

world [4], S3 = 1st order grey edge [27], S4 = 2nd or-

der grey edge and S5 = white-patch [25]. Learning-based

methods including: L1 = exemplar-based [23], L2 = color

constancy using natural image statistics [16], L3 = edge-

based gamut, L4 = pixel-based gamut, L5 = intersection-

based gamut [14, 18], L6 = Bayesian method [15] and L7 =

spatial correlation [5].

As previously mentioned, Gijsenij et al. [19] provides

the complete results (estimated illumination) by each 12

method for each image in the Gehler-Shi dataset. This

dataset contains a total of 568 images involving two cam-

eras, a Canon 1D (86 images) and a Canon 5D (482 im-

ages). Because the learning-based methods are trained per-

camera, we focus on the Canon 5D given that it has the most

images. This gives us a total of 482 images with 12 results,

corresponding to the associated methods S1-5 and L1-7.

Our analysis is intended to find images that are collec-

tively hard for multiple methods. In this case, ‘hard’ images

are those where multiple methods are unable to estimate the

illumination within some error threshold. In this paper, we

use nine degrees error as this threshold, meaning that the

estimated illumination has at least nine degrees (or more)

angular difference from the ground truth illumination. Nine

degrees is used as it represents a threshold that categorises

typical error of the bottom 25% for most methods as re-

ported by Gijsenij et al. [19]. Thus, we are comparing the

images that are reported to give the worse performances for

the 12 methods.

When we examine which images in the dataset that have

at least nine degrees of error for all 12 methods, we found

there are only a few images (this finding is discussed in

more detail in Section 4). This means that there is signif-

icant variation in the images that different methods perform

poorly on. To provide a more manageable grouping, we

consider all combinations of 5 methods from the 12 total

(i.e. 12 choose 5). In particular, we enumerate all five

combinations of the 12 methods which gives total of 792

combinations. Among these combinations, we are inter-

ested in those for which at least three out of five methods

introduce errors higher than our threshold. This is illus-

trated in Figure 2 which shows one out of the 792 combi-

nations. The columns in Figure 2 represent a unique image

in the dataset. The rows represent the five different meth-

ods tested. A white-box means a method has failed for this

particular image (i.e. produces a high error). A black-box

means the method is successful. Three or more empty boxes

for a particular column represents an image where the ma-

jority of methods has failed. This is considered a ‘hard’

image for this particular combination of methods. For the
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Figure 2: A combination of five illuminant estimation algorithms. This combination results in 24 hard images out of 482

images of Canon5D from Gehler-Shi dataset [15, 26].

Combinations with most ‘hard’ images Combinations with least ‘hard’ images

Methods failed

images

Time (m) Methods failed

images

Time (m)

S2 S3 S5 L3 L7 84 1.5 L1 L2 L4 L6 L7 31 12.6

S2 S3 S5 L3 L6 80 9.8 S4 L1 L2 L5 L7 27 3.7

S2 S3 S5 L3 L4 78 1.8 S1 S4 L1 L2 L6 24 11.2

S2 S3 S4 S5 L3 73 1 S2 L1 L2 L6 L7 22 11.7

S1 S2 S3 S4 S5 69 0.36 S2 S4 L1 L2 L7 19 2.87

S1 S2 S4 S5 L4 64 1.2 S2 S4 L1 L6 L7 18 11.1

Table 1: The five combinations out of 12 illuminant estimation algorithms in terms of number of images they fail for. We

have highlighted the fastest (on the left) and slowest (on the right) combinations. Running times given are per image.

example shown, the combination are methods (S1, S4, L1,

L2, L6), and this set results in 24 hard images.

This procedure is performed for all combinations of 5

methods out of the 12. For each combination, we record

the number of hard images per combination and sort the list

of combinations based on the number of hard images. Ta-

ble 1 includes the combinations with most and least ‘hard’

images. Almost all combinations with most ‘hard’ images

include three or more simple statistical-based algorithms.

The combinations with least ‘hard’ images are mostly dom-

inated by learning-based methods.

Each method examined has a time complexity associ-

ated with it. The work by Gijsenij et al. [19] did not report

this time-complexity, however, more recent work has exam-

ined most of the same methods and reported the running-

time [7]. The only exception is that of the exemplar-based

method (L1). For this method, we estimate its time to

take approximately twice that of the gamut-based methods

based on the running-time reported by the author [22]. The

fastest and slowest combinations are highlighted in Table 1.

The statistical-based methods in general have a much faster

running-time than the learning-based methods. For exam-
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Figure 3: The hard images from the Gehler-Shi dataset [15, 26] for the five statistical-based methods. L1-L7 rows are the

performance of the learning-based methods.

ple, the highest number of hard images is 84 that is achieved

using the combination in the first row of section ‘combi-

nations with most hard images’ in Table 1. This set of

methods requires roughly 1.5 minute per image to run all

5 methods. The overall run-time is mainly attributed to the

two learning-based techniques: (L3) edge-based gamut [20]

and (L7) spatio spectral [5].

The fifth largest number of failure images (out of 792

combinations) is for the set of the five statistical methods

(S1-S5). This is highlighted on the left in Table 1. This

only requires approximately 0.36 minutes per image and is

the fastest of all the combinations. This is a very interesting

finding. It shows that the statistical-based methods tend to

collectively fail on the same images in the dataset. This

means that we have a chance to examine these images to

see if we can build a classifier that can predict if an image is

‘hard’ or ’easy’ for this set of methods. The question now is

can we find a method that performs well on the hard images

for the statistical-based approaches.

Given the combination of five statistical-based methods

and their associated hard images, we examine the perfor-

mance of the learning-based methods. Figure 3 shows the

results. The diagram shows all 69 of the hard images (where

at least three or more of the learning-based methods fail).

The rows below show the results of the L1-L7 learning-

based methods. It is interesting to note that there are some

images considered hard for the statistical-based method that

all learning-based method are successful on. Overall, how-

ever, the L1 (exemplar-based [23]) method does particularly

well for the hard images, able to produce a better result on

all except a few of the images.

Based on the analysis in this section, we have developed

a hybrid method that first applies the statistical based ap-

proaches. As discussed in the next section, from this we

can classify if the image is hard or easy. For images that are

classified as hard, we propose that they are saved as RAW

(on the camera) for later to be processed off-line by learning

based methods such as the exemplar-based (L1).

3. Hybrid Method for Targeting Hard Images

In this section, we describe our framework to classify

images as hard or easy and then process them accordingly.

As discussed in Section 2, an image is labelled as hard if

at least three out of five simple statistical-based algorithms

have an error beyond nine degrees. We label an image as

easy if all five methods succeed, i.e have an error below the

threshold. We set the threshold for easy images as eight

degrees which is slightly lower than the hard images thresh-

old. We use these labelled images as training data to build

a classifier.

3.1. Features and Classifier

We have experimented with several image features to be

used in designing a classifier to label a new input image as

either hard or easy. One feature commonly used in learning-

based color constancy methods is the rg chromaticity values

([r, g] = [R,G]/(R + G + B)). These are typically used

to compute a histogram over the r and g values as features.

We found, however, that the distribution of the rg values

had little correlation to image being labelled hard or easy.

We also examined the chromaticity values with respect to

the rg chromaticity curve of the ground-truth illuminants

(i.e. the locus of ground-truth illuminants in chromaticity

space). Again, we found that these had little correlation to

whether an image was labelled as hard or easy.

The lack of success with chromaticity values led us to

examine features defined in the full 3D RGB space. In par-

ticular, we looked at the mean (centroid) location of the

five estimated illuminants provided by the statistical meth-

ods (S1-S5). Figure 4 (top) shows the distribution of these

centroid of the estimated illuminants for a set of hard (red)

and easy (blue) images from Gehler-Shi dataset. We can see
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Feature Overall accuracy Hard image accuracy Easy image accuracy

1. Centroid 93.6% 85% 96.6%

2. Median from centroid 86.7% 68.3% 94.3%

3. Standard deviation (std) 82% 42.3% 95.9%

4. Centroid + std 89.7% 68.1% 95.9%

5. Median + std 85.4% 59.2% 94.7%

Table 2: Performance of the SVM classifier with different features.
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Figure 4: The top two diagrams show the centroids of five

estimated illuminants for hard and easy images. The bottom

two diagrams are the selected illuminants out of five estima-

tions with median angle from the centroid. The features for

easy images form a cluster in both cases.

that these form two distinct clusters of points. We also cal-

culated the angle between each of five estimated illuminants

and the centroid of the estimates. Among five estimates we

selected the one with the median angle from the centroid.

The points in the last two plots of Figure 4 (bottom) belong

to the selected estimated illuminants. While there is a dis-

cernable pattern in the data, it is not as distinguishable as

that with the the clusters of centroid.

Based on the observation in Figure 4, we experimented

with classifiers using five different features: 1) The cen-

troid of the five estimated illuminants; 2) the estimated il-

luminant selected out of the five estimates with the median

angle from the centroid; 3) feature 1 and the standard devi-

ation of the five estimated illuminants; 4) feature 2 and the

standard deviation of the five estimated illuminants; and 5)

the standard deviation of the five estimated illuminants. The

features were used to train a support vector machine (SVM)

[10] classifier based on the implementation of Chang and

Lin [6].

Table 2 shows the overall accuracy of the SVM classi-

fier with all the features as well as how accurate the model

classifies hard and easy images. We found that the simple

centroid feature produced the best results over all the five

features and use it in our overall framework.

3.2. Overall Procedure

The overall framework of our hybrid strategy can be seen

in Figure 5. For a given input image, its illumination is es-

timated by the five statistical-based methods (S1-S5). The

centroid (mean) of the five estimates is calculated and used

with the SVM to predict if the image is hard or easy. If the

image is classified as hard, we use a learning-based method

such as the exemplar-based method [23] to process the im-

age to obtain the final illumination estimate.

If the image is classified as easy, we have five estimates

to choose from. A straight-forward option would be to use

the average of these estimations. This is reported in our ex-

periments in the next section. However, another option is

to use this information to get a better prediction of the illu-

minant. In particular, the recent ‘corrected moments’ work

by Finlayson [11] showed that a correction matrix can be

pre-computed using the ground-truth illuminants from the

training-data to correct the estimates of the existing simple

derivative-based statistical methods. In this case, we can

use the result of the two derivative-based methods S3 and

S4 (1st grey edge and 2nd grey edge) to build the correc-

tion matrix. We found this approach gives notably better

results over using the average of the S1-S5 scores. This is

also reported in the experiments in the following section.

3.3. Experiments

We have tested our hybrid strategy on the Gehler-

shi [15, 26] dataset using different features mentioned in

Section 3.1. To generate a set of labelled data we categorise

hard and easy image based on their thresholds (here we set

eight degrees for easy images and nine degrees for hard im-

ages as explained in Section 2). Out of 482 images of Canon

5D from Gehler-shi [15, 26] dataset, this results in 233 la-

belled images. The sets of training and test images are made
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Figure 5: The proposed framework which focuses on illuminant estimation for hard images. The classifier categorises

images into hard and easy. The easy images can be treated using fast statistical-based techniques. Images classified as hard

are processed using a slower, but more accurate learning-based method.

by 3-fold cross validation, i.e. each fold has 155 training

and 78 test images. The SVM classifier based on the ‘cen-

troid’ feature is built on the training set and the accuracy of

it is examined on the test images. The model’s performance

on this set of 78 test images showed an accuracy of 93.6%

with 85% for classifying hard images and 96.6% for clas-

sifying easy images. Table 3 shows the result of the model

applied on a set of unlabelled images.

The performance of the five statistical methods (S1-S5)

for all images are shown in the first row of the Table 3. The

L1 column shows the error of exemplar-based method for

all images. The exemplar-based has an overall good per-

formance for all images but is significantly slower than the

S1-S5 methods combined.

In our hybrid algorithm, we use our SVM to classify the

input images. In the first column of the proposed section of

Table 3 the average of statistical-based methods is used as

our estimate. By excluding hard images we have avoided

the high error of S1-S5 that is obtained when applied to all

images. It is interesting to note that median of the average of

S1-S5 is less than the median of the individual methods. As

previously mentioned, we also use the corrected-moment il-

luminant estimation method [11] to further improve the re-

sults. This method uses a cross validation procedure to build

a correction matrix that takes the results from the S3 and S4

estimates and refine the result based on the ground-truth il-

luminants of training data. Table 3 shows the (corrected)

algorithm performance. This allows us to get an additional

gain on the performance of the statistical based methods.

Note that the approach in [11] still has trouble on the hard

images and the use of the exemplar-based method is signif-

icantly better and therefore necessary for the hard images.

Our results show that this strategy of using fast

statistical-based methods can give us good performance on

the easy images, while identifying the difficult images and

passing them to a slower, but more accurate learning-based

approach. While the overall running-time is slow due to the

use of the learning-based method, our approach can reduce

this by almost half while giving similar performance. More-

over, the results for easy images can be obtained in a matter

of seconds.

4. False Hard Image Removal

As mentioned in Section 2 we found nine images that

almost all methods failed on from the Gehler- Shi [15, 26]

dataset. We were keen to see if there were some charac-

teristics to the hard images that no method could resolve,

however, on careful inspection of these images we realise

it was due to the position of the color chart in the scene.

Figure 6 shows an example.

In all of these images, the color checker board that is

used to provide the ground truth illumination is placed un-

der a different illumination than the rest of the scene. This

means the scene is lit by two different illuminations, but in

the cases of these nine images, the dominant illumination
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S1 S2 S3 S4 S5 L1 Proposed

average corrected

All 4.37◦ 7.04◦ 4.81◦ 4.73◦ 6.46◦ 2.4◦

Easy 3.5◦ 6.9◦ 4.26◦ 4.7◦ 4.7◦ 2.1◦ 3.42◦ 2.4◦

Hard 6◦ 7.04◦ 6.1◦ 4.8◦ 12.9◦ 2.91◦ 2.91◦ 2.91◦

Time (per image) 3.4s 1.8s 6.8s 8s 1.85s 1.96m 21.9s + (1.96m per hard image)

Time (total) 18.5m 9.8m 36.9m 43.5m 10m 10.7h 4.5h

Table 3: The median errors of the proposed hybrid framework treating hard and easy images differently. In comparison we

show the errors of fast statistical algorithms (S1 to S5), as well as time complexity of exemplar-based method [23] (L1).

Figure 6: Examples of images that all methods incor-

rectly estimate the illumination on from the Gehler-Shi

dataset [15, 26].

arguable does not fall on the color checker board. These

images do not represent fair test cases and should be re-

moved as they introduce negative results for evaluation and

are erroneously used by learning-based methods for train-

ing. We have provided an updated version of the Gehler-

Shi [15, 26] which excludes these nine images and their

measured ground truth illuminations1.

5. Concluding Remarks

This paper has analysed the performance of multiple

color constancy methods to examine if methods fail on the

same images. As far as we are aware, this is the first work

to examine the relations of the hard images across different

color constancy methods.

Our analysis revealed that there are common ‘hard’ im-

ages for subsets of methods. One of these subsets with

a large number of hard images is composed of all fast

statistical-based color constancy methods. We also ob-

served that there exist some learning-based methods that

give excellent performance on this set of hard images, but

at a significant cost in running-time. Based on these ob-

servations, we proposed a hybrid method that classifies an

image as hard or easy and then processes it accordingly.

This allows easy images to be processed quickly. Easy im-

ages white-balancing could even be performed onboard the

camera itself. For the images classified as hard, learning-

1http://colour.cmp.uea.ac.uk/datasets/

GehlerFalse.html

based methods such as the exemplar-based method [23] are

applied to give good results. We note that learning-based

methods will continue to improve in terms of performance

and speed. Recent work by Bianco et al. [3] and Cheng

et al. [8] provided similar estimation performance to the

exemplar-based method (L1) used in our work, but at a

significantly faster running-times. These methods can be

easily incorporated into our overall framework’s running

time, however, we note that learning-based methods will

still need to be performed off-line and therefore require the

determination of which images are ‘hard’ and require such

off-line processing.

Our analysis has also identified nine images in the widely

used Gehler-Shi [15, 26] dataset that were problematic for

all 12 methods we examined. We have found that these

images have problems with how the ground-truth is estab-

lished and we recommend their removal from the dataset for

the future studies.

For future work we are keen to extend our idea to addi-

tional color constancy datasets. Currently, we were only

able to apply this approach to the Gehler-Shi dataset as

it has sufficient number of images. More recent datasets

(e.g. NUS 9-camera) has more overall images, but less

images per camera (only around 200 images per camera).

We did attempt to apply this approach to the older Grey-

ball dataset [9] but found the dataset is inappropriate given

that it is low-resolution video footage (320×240) and is not

properly linearised. We also found that this dataset had a

large number of hard images due to improper position of

the Grey-ball used for the ground truth. This points to the

need of additional datasets in the color constancy commu-

nity and is an area we are focusing on for future work.
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