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Abstract

Event recognition from still images is one of the most im-
portant problems for image understanding. However, com-
pared with object recognition and scene recognition, event
recognition has received much less research attention in
computer vision community. This paper addresses the prob-
lem of cultural event recognition in still images and focuses
on applying deep learning methods on this problem. In
particular, we utilize the successful architecture ofObject-
Scene Convolutional Neural Networks(OS-CNNs) to per-
form event recognition. OS-CNNs are composed of object
nets and scene nets, which transfer the learned representa-
tions from the pre-trained models on large-scale object and
scene recognition datasets, respectively. We propose four
types of scenarios to explore OS-CNNs for event recogni-
tion by treating them as either “end-to-end event predic-
tors” or “generic feature extractors”. Our experimental
results demonstrate that the global and local representa-
tions of OS-CNNs are complementary to each other. Finally,
based on our investigation of OS-CNNs, we come up with a
solution for the cultural event recognition track at the ICCV
ChaLearn Looking at People (LAP) challenge 2015. Our
team secures the third place at this challenge and our result
is very close to the best performance.

1. Introduction

Image understanding [12, 18, 20, 27] is becoming one of
the most important problems in computer vision and many
research efforts have been devoted to this topic. While ob-
ject recognition [4] and scene recognition [28] have been
extensively studied in the task of image classification, event
recognition [14, 23, 26] in still images received much less
research attention, which also plays an important role in
semantic image interpretation. As shown in Figure1, the
characterization of event is extremely complicated as the
event concept is highly related to many other high-level
visual cues, such as objects, scene categories, human gar-
ments, human poses, and other context. Therefore, event
recognition in still images poses more challenges for the

Figure 1. Examples of cultural event images from the ICCV
ChaLearn Looking at People (LAP) dataset. From these examples,
we can see that the characterization of event is complicatedand it
is related to many visual cues, such as objects, secne category, and
human garments.

current state-of-the-art image classification methods, and
needs to be further investigated in the computer vision re-
search.

Convolutional neural networks (CNNs) [13] have re-
cently enjoyed great successes in large-scale image classifi-
cation, in particular for object recognition [9, 18, 20] and
scene recognition [21, 28]. For event recognition, much
fewer deep learning methods have been designed for this
problem. Our previous work [23] proposed a new deep ar-
chitecture, calledObject-Scene Convolutional Neural Net-
work (OS-CNN), for cultural event recognition. OS-CNNs
are designed to extract useful information for event under-
standing from the perspectives of containing objects and
scene categories, respectively. OS-CNNs are composed of
two-stream CNNs, namely object nets and scene nets. Ob-
ject nets are pre-trained on the large-scale object recogni-
tion datasets (e.g. ImageNet [4]), and scene nets are based
on models learned from the large-scale scene recognition
datasets (e.g. Places205 [28]). Decomposing into object
nets and scene nets enables us to use the external large-scale
annotated images to initialize OS-CNNs, which may be fur-
ther fine tuned elaborately on the event recognition dataset.
Finally, event recognition is performed based on the late fu-
sion of softmax outputs of object nets and scene nets.

Following the research line of OS-CNNs, in this pa-
per, we try to further explore different aspects of OS-CNNs
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Figure 2. The architecture of Object-Scene Convolutional Neural Network (OS-CNN) for event recognition from [23]. OS-CNN is com-
posed to two-stream networks: object nets and scene nets, which are separately pre-trained on the ImageNet and Places205 dataset.

and better exploit OS-CNNs for better event recognition.
Specifically, we design four types of investigation scenarios
to study the performance of OS-CNNs. In the first scenario,
we directly use the softmax outputs of CNNs as recogni-
tion results. In the next three scenarios, we treat CNNs as
feature extractors, and use them to extract bothglobal and
local features of an image region. Global features are more
compact and aim to capture the holistic structure, while lo-
cal features focus on describing the image details and local
patterns. Our experimental results indicate these two kinds
of features are complementary to each other and robust for
event recognition. Based on our empirical explorations with
OS-CNNs, we come up with our solution for the cultural
event recognition track at the ICCV ChaLearn Looking at
People (LAP) challenge [6] and we secure the third place.

The rest of this paper is organized as follows. In Section
2, we will give a brief introduction to OS-CNNs, includ-
ing network architectures and implementation details. After
that, we will introduce our extensive explorations with OS-
CNNs for event recognition in Section3. We then report
our experimental results in Section4. Finally, we conclude
our method and present the future work in Section5.

2. OS-CNNs Revisited

In this section, we will first briefly introduce the architec-
ture ofObject-Scene Convolutional Neural Networks(OS-
CNNs), which was proposed in our previous work [23].
Then, we will present the implementation details of OS-
CNNs, including network structures, data augmentations,
and learning policy.

2.1. OS-CNNs

Event is a relatively complicated concept in computer
vision research and highly related with other two problems:
object recognition and scene recognition. The basic idea
behind OS-CNN is to utilize two separate components to

perform event recognition from the perspectives of occur-
ring objects and scene context. Specifically, OS-CNNs are
composed of object nets and scene nets, as shown in Figure
2 .

Object nets.Object net is designed to capture useful in-
formation of objects to help event recognition. Intuitively
the occurring objects are able to provide useful cues for
event understanding. For instance, in the cultural event of
Australia Day as shown in Figure1, Australian flag will be
a representative object. As the main goal of object net is
to deal with object cues, we build it based on recent ad-
vances on large-scale object recognition, and pre-train the
network on the public ImageNet models. Then, we fur-
ther fine tune the model parameters on the training dataset
of cultural event recognition by setting the output number
as 100 (cultural event recognition dataset containing 100
classes).

Scene nets.Scene net is expected to extract scene in-
formation of image to assist event understanding. In gen-
eral, the scene context will be helpful for recognizing the
event category in the image. For example, in the cultural
event of Sapporo Snow Festival as shown in Figure1, out-
door will be usually the scene category. Specifically, we
pre-train the scene nets by using the models learned on the
dataset Places205, which contains 205 scene classes and 2.5
millions images. Similar to object nets, we then fine tune
the network weights of scene nets on the event recognition
dataset, where we set network output number as100.

Based on the above analysis, recognizing cultural event
will benefit from the transferred representations learned for
object recognition and scene recognition. Thus, we will
fuse the network outputs of both object nets and scene nets
as the prediction of OS-CNNs.



Figure 3. Our better explorations with OS-CNNs for event recognition. We utilize OS-CNNs to extract both global representations (activa-
tions of fully connected layers) and local representations(activations of convolutional layers), which can be combined for event recognition
in still images.

2.2. Implementation details

In this subsection, we will describe the implementation
details of training OS-CNNs, including network structures,
data augmentations, and learning policy.

Network structures. Network structures are of great
importance for improving the performance of CNNs. In
the past several years, many successful network architec-
tures have been proposed for object recognition, such as
AlexNet [12], ClarifaiNet [27], OverFeat [17], GoogLeNet
[20], VGGNet [18], MSRANet [9], and Inception2 [10].
Some good practices can be drawn from the evolution of
network architectures: smaller convolutional kernel size,
smaller convolutional stride, more convolutional channel,
deeper network structure. In this paper, we choose the
VGGNet-19 as our main investigated structure due to its
good performance in object recognition, which is composed
of 16 convolutional layers and 3 fully connected layers. The
detailed description about VGGNet-19 is out of the scope of
this paper and can be found in [18].

Data augmentations.By data augmentation, we mean
perturbing an image by transformations that leave the un-
derlying class unchanged. Typical transformations include
corner cropping, scale jittering, and horizontal flipping.
Specifically, during the training phase of OS-CNNs, we ran-
domly crop image regions (224× 224) from 4 corners and
1 center of the whole image. Meanwhile these cropped
regions undergo horizontal flipping randomly. Further-
more, we use three different scales to resize training images,
where the smallest sizes of an image is set to256, 384, 512.

It should be noted that data augmentation is a method
applicable to both training images and testing images. Dur-
ing training phase, data augmentation will generate addi-
tional training examples and reduce the influence of over-
fitting. For testing phase, data augmentation will help to im-
prove the classification accuracy. The augmented samples
can be either regarded as independent images or combined
into a single representation by pooling or stacking opera-
tions. In the current implementation, during the test phase,
we use sum pooling to aggregate these representations of
augmented samples into a single representation.

Learning policy. Effective training methods are very

crucial for learning CNN models. As the training dataset of
cultural event recognition is relatively small compared with
ImageNet [4] and Places205 [28], we resort to pre-training
OS-CNNs by using these public available models trained on
ImageNet and Places205. Specifically, we pre-train object
nets with public VGGNet-19 model1, which achieved the
top performance at ILSVRC2014. For scene net, we use the
model released by [21] 2 to initialize the network weights,
which has obtained the best performance on the Places205
dataset so far.

The network weights are learned using the mini-batch
stochastic gradient descent with momentum (set to 0.9). At
each iteration, a mini-batch of 256 images is constructed by
random sampling. The dropout ratios for fully connected
layers are set as0.5. As we pre-train network weights with
ImageNet and Places205 models, we set a smaller learn-
ing rate for fine tuning OS-CNNs: learning rate starts with
10−3, decreases to10−4 after 5K iterations, decreases to
10−5 after 10K iterations and the training process ends at
12K iterations. To speed up the training process, we use
a Multi-GPU extension version [24] of Caffe toolbox [11],
which is publicly available online3.

3. Exploring OS-CNNs

We have introduced the architectures and implementa-
tion details about OS-CNNs in the previous section. In this
section, as shown in Figure3, we will focus on describing
the explorations of OS-CNN activations from different lay-
ers and try to improve the recognition performance.

3.1. Scenario 1: OS-CNN predictions

The simplest way to utilize OS-CNNs for cultural event
recognition is directly using the outputs (softmax layer)
of CNN networks as final prediction results. Specifically,
given an imageI, its recognition score is calculated as fol-
lows:

sos(I) = αoso(I) + αsss(I), (1)

1http://www.robots.ox.ac.uk/˜vgg/research/very_deep/
2https://github.com/wanglimin/Places205-VGGNet
3https://github.com/yjxiong/caffe

http://www.robots.ox.ac.uk/~vgg/research/very_deep/
https://github.com/wanglimin/Places205-VGGNet
https://github.com/yjxiong/caffe


whereso(I) and ss(I) are the prediction scores of object
nets and scene nets,αo andαs are the fusion weights of
object nets and scene nets. In the current implementation,
fusion weights are set to be equal for object nets and scene
nets.

3.2. Scenario 2: OS-CNN global representations
with pre-training

Another way to deploy OS-CNNs for cultural event
recognition is to treat them as generic feature extractors
and use them to extract the global representation of an im-
age region. We usually extract the activations offully con-
nected layers, which are very compact and discriminative.
In this case, we only use the pre-trained models without
fine-tuning. Specifically, given an image regionI, we ex-
tract this global representation based on OS-CNNs as fol-
lows:

φp
os(I) = [βoφ

p
o(I), βsφ

p
s(I)], (2)

whereφp
o(I) andφp

s(I) are the CNN activations from pre-
trained object nets and scene nets,βo andβs are the fusion
weights of object nets and scene nets. In current implemen-
tation, the fusion weights are set to be equal for object nets
and scene nets.

3.3. Scenario 3: OS-CNN global representations
with pre-training and fine-tuning

In previous scenario, OS-CNNs are only pre-trained on
large scale dataset of object recognition and scene recogni-
tion, and directly applied to the smaller event recognition
dataset. However, it was demonstrated that fine-tuning a
pre-trained CNNs on the target data can improve the per-
formance a lot [8]. We consider fine-tuning the OS-CNNs
on the event recognition dataset and the resulted image rep-
resentations become dataset-specific. After fine-tuning pro-
cess, we obtain the following global representation with the
fine-tuned OS-CNNs:

φf
os(I) = [βoφ

f
o (I), βsφ

f
s (I)], (3)

whereφf
o (I) andφf

s (I) are the CNN activations from the
fine-tuned object nets and scene nets,βo andβs are the fu-
sion weights of object nets and scene nets. In current imple-
mentation, the fusion weights are set to be equal for object
nets and scene nets.

3.4. Scenario 4: OS-CNN local representations +
Fisher vector

In previous two scenarios, we extract a global repre-
sentation of an image region with OS-CNNs. Although
this global representation is compact and discriminative,it
may lack the ability of describing local patterns and de-
tailed information. Inspired by the recent success on video-
based action recognition with deep convolutional descrip-
tors [22], we investigate the effectiveness ofconvolutional

layer activations. Convolutional layer features have been
also demonstrated to be effective in image-based tasks, such
as object recognition [7], scene recognition [5] and tex-
ture recognition [3]. In this scenario, OS-CNNs are first
pre-trained on large-scale ImageNet and Places205 datasets,
and then fine-tuned on the event recognition dataset, just as
in Scenario 3.

Specifically, given an image regionI, we first extract
the convolutional feature maps of OS-CNNs (activations of
convolutional layers)C(I) ∈ R

n×n×c, wheren is feature
map size andc is feature channel number. Each activation
value in the convolutional feature map corresponds to a lo-
cal receptive field in the original image, and therefore we
call these activations of convolutional layers as OS-CNN
local representations.

After extracting OS-CNN local representations, we uti-
lize two normalization methods, namelychannel normal-
izationandspatial normalizationproposed in [22], to pre-
process these convolutional feature maps into transformed
convolutional feature maps̃C(I) ∈ R

n×n×c. More details
regarding these two normalization methods are out scope of
this paper and can be found in [22]. The normalized CNN
activationC̃(I)(x, y, :) ∈ R

c at each postion(x, y) is called
as theTransformed Deep-convolutional Descriptor(TDD).
These two kinds of normalization methods have turned out
to be effective for improving the performance of CNN local
representations in [22]. Moreover, the combination of them
can obtain higher performance. Therefore, we will use both
normalization methods in our experimental explorations.

Finally, we employ Fisher vector [16] to encode these
TDDs into a global representation due to its good per-
formance in object recognition [2] and action recognition
[19, 25]. In particular, according to our previous compre-
hensive study on encoding methods [15], we first use PCA
to reduce the dimension of TDD to64. Then each TDD
is soft-quantized with a Gaussian Mixture Model (GMM)
with K components (K set to 256). The first and second
order differences between each TDDx ∈ R

64 and its Gaus-
sian centerµk are aggregated in the blockuk andvk, re-
spectively. The final Fisher vector representation is yielded
by concatenating these blocks together:

φfv(I) = [u1,v1, · · · ,uK ,vK ]. (4)

For OS-CNNs, the Fisher vector of local representation is
defined as follows:

φ
f
os−fv(I) = [βoφ

f
o−fv(I), βsφ

f
s−fv(I)], (5)

whereφf
o−fv(I) is the Fisher vector representation from ob-

ject nets,φf
s−fv(I) is the Fisher vector representation from

scene nets,βo andβs are their fusion weights and set to be
equal to each other in the current implementation.



Object nets Scene nets OS-CNNs
Scenario 1

softmax 73.1% 71.2% 75.6%
Scenario 2

fc7 67.2% 63.4% 69.1%
Scenario 3

fc6 80.6% 76.8% 81.7%
fc7 81.4% 78.1% 82.3%

Scenario 4
conv5-1 77.6% 76.6% 78.9%
conv5-2 78.6% 76.2% 79.6%
conv5-3 79.4% 76.1% 80.2%
conv5-4 78.4% 75.6% 79.7%
Fusion

conv5-3+fc7 82.5% 79.3% 83.2%

Table 1. Event recognition performance of OS-CNN global and
local representations on the validation data.

3.5. Linear classifiers

All the representationsφ(I) in previous three scenarios
are used to construct a linear classifiers(w, I) = wφ(I),
wherew is the weight of linear classifier. In our imple-
mentation, we choose LIBSVM [1] as the classifier to learn
the weightw, where the parameterC, balancing regularizer
and loss, is set as1. It is worth noting that all these rep-
resentations are first normalized before fed into SVM for
training. For OS-CNN global representations, we useℓ2-
normalization, and for OS-CNN local representations, we
use intra normalization and powerℓ2-normalization.

4. Experiments

In this section, we first describe the dataset of cultural
event recognition at the ICCV ChaLearn Looking at People
(LAP) challenge 2015. Then we present and analyze the
experimental results of our proposed different representa-
tions with OS-CNNs on the validation dataset of ChaLearn
LAP dataset. Finally, we describe our solution for the ICCV
ChaLearn LAP challenge 2015.

4.1. Datasets and evaluation protocol

Datasets.The ICCV ChaLearn LAP challenge 2015 [6]
contains a track of cultural event recognition and provides
an event recognition dataset. This dataset contains images
collected from two image search engines (Google Images
and Bing Images). There are totally 100 event classes (99
event classes and 1 background class) from different coun-
tries and some images are shown in Figure1. From these
samples, we see that cultural event recognition is really
complicated, where garments, human poses, objects and
scene context all constitute the possible cues to be exploited

Rank Team Score

1 VIPL-ICT-CAS 85.4%
2 FV 85.1%
3 MMLAB (ours) 84.7%
4 NU&C 82.4%
5 CVL ETHZ 79.8%
6 SSTK 77.0%
7 MIPAL SUN 76.3%
8 ESB 75.8%
9 Sungbin Choi 62.4%
10 UPC-STP 58.8%

Table 2. Comparison the performance of our submission with
those of other teams. Our team secures the third place in the ICCV
ChaLearn LAP challenge 2015.

for event understanding. This dataset is divided into three
parts: development data (14,332 images), validation data
(5,704 images), and evaluation data (8,669 images). As we
can not access the label of evaluation data, we mainly train
our models on the development data and report the results
on the validation data.

Evaluation protocol. The principal quantitative mea-
sure is based on precision recall curve. They use the area
under this curve as the computation of the average preci-
sion (AP), which is calculated by numerical integration. Fi-
nally, they average these per-class AP values across all event
classes and employ the mean average precision (mAP) as
the final ranking criteria. Hence, in our exploration experi-
ments, we report our results evaluated as AP value for each
class and mAP value for all classes.

4.2. Results and analysis

Settings. In this exploration experiment, we use the
VGGNet-19 as the OS-CNN network structure. We extract
activations from two fully connected layers (fc6, fc7) as
OS-CNN global representations, and activations from four
convolutional layers (conv5-1, conv5-2, conv5-3,
conv5-4) as OS-CNN local representations. It should be
noted that we choose the activations after rectified Linear
Units (ReLUs). We useℓ2-normalization to further pro-
cess OS-CNN global representations for better SVM train-
ing. For Fisher vector representation of OS-CNN local rep-
resentation, we employ intra-normalization and powerℓ2-
normalization, as suggested by [15].

Analysis. We first report the numerical results in Table
1. From these results, several conclusions can be drawn as
follows:

• We see that the object nets outperform scene nets on
the task of cultural event recognition, which may imply
that object cues play more important roles than scene
cues for cultural event understanding.
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Figure 4. Per-class AP value of combining OS-CNN global and local representations on the validation data of ICCV ChaLearn LAP dataset.

• We observe that OS-CNNs are effective for event
recognition as it extract both object and scene infor-
mation from the image. They achieve superior perfor-
mance to object nets and scene nets, no matter what
scenario is adopted.

• We can notice that combining fine tuned features with
linear SVM classifier (scenario 3) is able to obtain bet-
ter performance than direct using the softmax output
of CNNs (scenario 1). This result may be ascribed to
the fact that CNNs are easily over-fitted to the training
samples when the number of training images is rela-
tively small.

• Comparing fine-tuned features (scenario 3) with pre-
trained features (scenario 2), we may conclude that
fine tuning on the target dataset is very useful for im-
proving recognition performance, which agrees with
the findings of [8].

• Comparing the local representations (scenario 4) and
global representations (scenario 3) of CNNs, we
see that global representation achieve slightly higher
recognition accuracy.

• We further combine the global representation (fc7)
with local representation (conv5-3) of CNNs and
find that this combination is capable of boosting final
recognition performance. This performance improve-
ment indicates that different layers of CNNs capture
different level abstraction of original image. These

feature activations from different layers are comple-
mentary to each other.

We also plot the AP values for all event classes in Fig-
ure 4. From these AP values, we see that the events of
Monkey Buffet Festival and Battle of the

Oranges achieve the highest performance (100%). This
result may be ascribed to the fact that there are spe-
cific objects in these two event categories. At the same
time, we notice that some event classes obtain very low
AP values, such asHalloween Festival of the

Dead, Fiesta de la Candelaria, Apokries,
andViking Festival. The AP values of these cul-
tural event classes are below 50%. In general, there are no
specific objects and scene context in these difficult event
classes, and besides these classes are easily confused with
other classes from the perspective of visual appearance, as
observed from Figure5.

We visualize several recognition examples in Figure5.
In the row 1, we give eight examples that are success-
fully predicted by our method, from classes likeKeene
Pummpking,Boryeong Mud,AfrikaBurn and so on.
Meanwhile, we also provide some failure cases with high
confidence from our method in the rows 2,3,4. From
these wrong predicted examples, we see that these fail-
ure cases are rather reasonable and there exists great con-
fusion between some cultural event classes. For exam-
ple, the event classes ofDia de los Muertos and
Halloween Festival of the Dead share similar
human make-up and garments. The event classes ofUp

Helly Aa andViking Festtival share similar hu-



Figure 5. Examples of images that our method succeeds and fails in top-1 evaluation. We give 8 successfully predicted and24 wrong
predicted images in the row 1 and rows 2,3,4, respectively.

man dresses and containing objects. The event classes of
Harbin Icen and Snow Festival andSapporo
Snow Festival share similar scene context and color
appearance. The event classes ofChinese New Year

and Pingxi Lattern Festival share similar con-
taining objects. In summary, these examples in Figure
5 indicate that the concept of event is really complicated
and there only exist slight difference between some event
classes.

4.3. Challenge results

For final evaluation, we merge the development data
(14,332 images) and validation data (5,704 images) into a
single training dataset (20,036 images) and re-train our OS-
CNN models on this new dataset. Our final submission re-
sults to the ICCV ChaLearn LAP challenge are based on
our re-trained model.

According to the above experimental explorations, we
conclude that the OS-CNN global and local representations
are complementary to each other. Thus, we choose to com-
bine activations fromfc7 andconv5-3 layers, to keep a
balance between performance and efficiency. Meanwhile,
our previous study demonstrated that GoogLeNet is com-
plementary to VGGNet [23]. Hence, we also extract a
global representation by using the OS-CNNs of GoogLeNet
in our challenge solution. In summary, our challenge so-
lution is composed of three representations: (i) OS-CNN
VGGNet-19 local representations, (ii) OS-CNN VGGNet-
19 global representations, and (iii) OS-CNN GoogLeNet
global representations.

The challenge results are summarized in Table2. We see
that our method is among the top performers and our mAP is
very close to the best performance of this challenge (84.7%

vs. 85.4%). Regarding computational cost, our implemen-
tation is based on CUDA 7.0 and Matlab 2013a, and it takes
about 1s to process one image in our workstation equipped
with 8 cores CPU, 48G RAM, and Tesla K40 GPU.

5. Conclusions

In this paper, we have comprehensively studied different
aspects of OS-CNNs for better cultural event recognition.
Specifically, we investigate the effectiveness of CNN acti-
vations from different layers by designing four types sce-
narios of adapting OS-CNNs to the task of cultural event
recognition. From our empirical study, we demonstrate that
the CNN activations from convolutional layers and fully
connected layers are complementary to each other, and the
combination of them is able to boost recognition perfor-
mance. Finally, we come up with a solution by using OS-
CNNs at the ICCV ChaLearn LAP challenge and secure the
third place. In the future, we may consider how to incorpo-
rate more visual cues such as human poses, garments, ob-
ject and scene relationship in a systematic manner for event
recognition in still images.
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