arXiv:1510.03979v1 [cs.CV] 14 Oct 2015

Better Exploiting OS-CNNs for Better Event Recognition in Images

Limin Wang Zhe Wang Sheng Guo Yu Qiao
Shenzhen Key Lab of CVPR, Shenzhen Institutes of Advanceldni@ogy, CAS, China

{07wanglimin, buptwangzhe2012, guoshengl00l}Q@gmail.com, yu.giao@siat.ac.cn

Abstract

Event recognition from stillimages is one of the most im-
portant problems for image understanding. However, com-
pared with object recognition and scene recognition, event
recognition has received much less research attention in
computer vision community. This paper addresses the prob
lem of cultural event recognition in still images and focise
on applying deep learning methods on this problem. In
particular, we utilize the successful architecture@bject- Figure 1. Examples of cultural event images from the ICCV
Scene Convolutional Neural Network®S-CNNs) to per- ChalLearn Looking at People (LAP) dataset. From these exasmnpl

form event recognition. OS-CNNs are composed of Objethe can see that the characterization of event is complicatddt

nets and scene nets, which transfer the learned representa'—S related to many visual cues, such as objects, secne cptegd
. ; . human garments.
tions from the pre-trained models on large-scale object and

scene recognition datasets, respectively. We propose four

types of scenarios to explore OS-CNNs for event recogni-
tion by treating them as either “end-to-end event predic-
tors” or “generic feature extractors”. Our experimental
results demonstrate that the global and local representa-
tions of OS-CNNs are complementary to each other. Finally,
based on our investigation of OS-CNNs, we come up with a
solution for the cultural event recognition track at the IZC
ChalLearn Looking at People (LAP) challenge 2015. Our
team secures the third place at this challenge and our result
is very close to the best performance.
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current state-of-the-art image classification methodsl, an
needs to be further investigated in the computer vision re-
search.

Convolutional neural networks (CNNs)LJ] have re-
cently enjoyed great successes in large-scale imagefelassi
cation, in particular for object recognitiod,[18, 20] and
scene recognitionZ[l, 28]. For event recognition, much
fewer deep learning methods have been designed for this
problem. Our previous work’[3] proposed a new deep ar-
chitecture, calle®bject-Scene Convolutional Neural Net-
work (OS-CNN), for cultural event recognition. OS-CNNs
are designed to extract useful information for event under-
standing from the perspectives of containing objects and
Image understanding } ]is becomingone of ~ scene categories, respectively. OS-CNNs are composed of

Ui ) i

the most important problems in computer vision and many two-stream CNNs, namely object nets and scene nets. Ob-
research efforts have been devoted to this topic. While ob-ject nets are pre-trained on the large-scale object reeogni
ject recognition {] and scene recognitior?§] have been  tion datasets (e.g. ImageNef), and scene nets are based
extensively studied in the task of image classificationneve on models learned from the large-scale scene recognition
recognition 14, 23, 26] in still images received much less datasets (e.g. Places2057]). Decomposing into object
research attention, which also plays an important role in nets and scene nets enables us to use the external large-scal
semantic image interpretation. As shown in Figlirehe annotated images to initialize OS-CNNSs, which may be fur-
characterization of event is extremely complicated as thether fine tuned elaborately on the event recognition dataset
event concept is highly related to many other high-level Finally, eventrecognition is performed based on the late fu
visual cues, such as objects, scene categories, human gagion of softmax outputs of object nets and scene nets.
ments, human poses, and other context. Therefore, event Following the research line of OS-CNNs, in this pa-
recognition in still images poses more challenges for the per, we try to further explore different aspects of OS-CNNs

1. Introduction
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Figure 2. The architecture of Object-Scene Convolutionalifdl Network (OS-CNN) for event recognition from3. OS-CNN is com-
posed to two-stream networks: object nets and scene netsh este separately pre-trained on the ImageNet and PlaSek28set.

and better exploit OS-CNNs for better event recognition. perform event recognition from the perspectives of occur-
Specifically, we design four types of investigation scemgri  ring objects and scene context. Specifically, OS-CNNs are
to study the performance of OS-CNNSs. In the first scenario, composed of object nets and scene nets, as shown in Figure
we directly use the softmax outputs of CNNs as recogni- 2.

tion results. In the next three scenarios, we treat CNNs as

feature extractors, and use them to extract lgbdal and Object nets. Object net is designed to capture useful in-
local features of an image region. Global features are morefgrmation of objects to help event recognition. Intuitiyel
compact and aim to capture the holistic structure, while lo- {he occurring objects are able to provide useful cues for
cal features focus on describing the image details and localeyent understanding. For instance, in the cultural event of
patterns. Our experimental results indicate these twoskind aystralia Day as shown in Figute Australian flag will be
of features are complementary to each other and robust fory representative object. As the main goal of object net is
eventrecognition. Based on our empirical explorationawit g deal with object cues, we build it based on recent ad-
OS-CNNs, we come up with our solution for the cultural yances on large-scale object recognition, and pre-tran th
event recognition track at the ICCV Chalearn Looking at petwork on the public ImageNet models. Then, we fur-
People (LAP) challenge’] and we secure the third place.  ther fine tune the model parameters on the training dataset
The rest of this paper is organized as follows. In Section of cultural event recognition by setting the output number

2, we will give a brief introduction to OS-CNNs, includ- 25100 (cultural event recognition dataset containing 100
ing network architectures and implementation detailseAft  ¢jasses).

that, we will introduce our extensive explorations with OS-
CNNs for event recognition in Sectidh We then report
our experimental results in Sectidn Finally, we conclude
our method and present the future work in Secion

Scene nets.Scene net is expected to extract scene in-
formation of image to assist event understanding. In gen-
eral, the scene context will be helpful for recognizing the
2. 0S-CNNs Revisited event category in the image: For example_, in.the cultural

event of Sapporo Snow Festival as shown in Figyreut-

In this section, we will first briefly introduce the architec- door will be usually the scene category. Specifically, we
ture of Object-Scene Convolutional Neural Netwo(kxS- pre-train the scene nets by using the models learned on the
CNNs), which was proposed in our previous woikd]| dataset Places205, which contains 205 scene classes and 2.5
Then, we will present the implementation details of OS- millions images. Similar to object nets, we then fine tune
CNNs, including network structures, data augmentations,the network weights of scene nets on the event recognition
and learning policy. dataset, where we set network output numbeitas

2.1. OS-CNNs . -
Based on the above analysis, recognizing cultural event
Event is a relatively complicated concept in computer will benefit from the transferred representations learmed f
vision research and highly related with other two problems: object recognition and scene recognition. Thus, we will
object recognition and scene recognition. The basic ideafuse the network outputs of both object nets and scene nets
behind OS-CNN is to utilize two separate components to as the prediction of OS-CNNSs.
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Figure 3. Our better explorations with OS-CNNs for evenbggrtion. We utilize OS-CNNSs to extract both global repréaéons (activa-
tions of fully connected layers) and local representat{activations of convolutional layers), which can be conelifior event recognition
in still images.

2.2. Implementation details crucial for learning CNN models. As the training dataset of
_ _ . : _ . cultural event recognition is relatively small comparethwi
In this subsection, we will describe the implementation ImageNet f] and Places2057F], we resort to pre-training
details of training OS-CNNss, including network structures - o5 c\Ns by using these public available models trained on
data augmentations, and learning policy. ImageNet and Places205. Specifically, we pre-train object
. Network struptures._ Network structures are of great pets with public VGGNet-19 modé| which achieved the
importance for improving the performance of CNNs. In o5 performance at ILSVRC2014. For scene net, we use the
the past several years, many successful network architec,gdel released by?[1] 2 to initialize the network weights,

tures have been proposed for object recognition, such asynich has obtained the best performance on the Places205
AlexNet [17], ClarifaiNet [27], OverFeat [ 7], GoogLeNet  §ataset so far.

[20], VGGNet [1E], MSRANet [9], and Inception2 0.

] | The network weights are learned using the mini-batch
Some good practices can be drawn from the evolution of

s _ X "' V! stochastic gradient descent with momentum (set to 0.9). At
network archnec_tures. s_maller convolutlonal kernel size o5ch iteration, a mini-batch of 256 images is constructed by
smaller convolutional stride, more convolutional channel random sampling. The dropout ratios for fully connected

deeper network structure. In this paper, we choose the|ayers are set a85. As we pre-train network weights with
VGGNet-19 as our main investigated structure due to its ImageNet and Places205 models, we set a smaller learn-

good performance in object recognition, which is composed g rate for fine tuning OS-CNNs: learning rate starts with
of 16 convolutional layers and 3 fully connected layers. The (-3 §ecreases ta0—* after 5K iterations. decreases to

detailed description about VGGNet-19 is out of the scope of | )—5 after 10K iterations and the training process ends at

this paper and can be found ind. 12K iterations. To speed up the training process, we use

Data augmentations. By data augmentation, we mean a Multi-GPU extension versior?[] of Caffe toolbox [L 1],
perturbing an image by transformations that leave the un-which is publicly available onliné.

derlying class unchanged. Typical transformations inelud
corner cropping, scale jittering, and horizontal flipping. ; _
Specifically, during the training phase of OS-CNNs, we ran- 3. Exploring OS-CNNs
domly crop image region24 x 224) from 4 corners and We have introduced the architectures and implementa-
1 center of the whole image. Meanwhile these croppedtion details about OS-CNNs in the previous section. In this
regions undergo horizontal flipping randomly. Further- section, as shown in Figu® we will focus on describing
more, we use three different scales to resize training is\age the explorations of OS-CNN activations from different lay-
where the smallest sizeof an image is set t956, 384, 512. ers and try to improve the recognition performance.

It should be noted that data augmentation is a method
applicable to both training images and testing images. Dur-3.1. Scenario 1: OS-CNN predictions
ing training phase, data augmentation will generate addi-
tional training examples and reduce the influence of over-
fitting. For testing phase, data augmentation will help to im of CNN networks as final prediction results. Specifically,

prove th? classification accuracy. The augmented SamF"e iven an imagd, its recognition score is calculated as fol-
can be either regarded as independent images or combine WS:

into a single representation by pooling or stacking opera-
tions. In the current implementation, during the test phase Sos(I) = @oso(I) + asss(1), (1)
we use sum pooling to aggregate these representations of
ted samples into a sinale representation ttp://www.robots.ox.ac.uk/~vgg/research/very_deep/
auQmen_ p ] g o P ' 2https://github.com/wanglimin/Places205-VGGNet
Learning policy. Effective training methods are very 3https://github.com/yjxiong/caffe

The simplest way to utilize OS-CNNs for cultural event
recognition is directly using the outputs (softmax layer)
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wheres,(I) and s, (I) are the prediction scores of object layer activations. Convolutional layer features have been
nets and scene nets, anday are the fusion weights of  also demonstrated to be effective in image-based tasKs, suc
object nets and scene nets. In the current implementationas object recognition7], scene recognition5] and tex-
fusion weights are set to be equal for object nets and scendure recognition §]. In this scenario, OS-CNNs are first
nets. pre-trained on large-scale ImageNet and Places205 dataset
and then fine-tuned on the event recognition dataset, just as
in Scenario 3.

Specifically, given an image regidh we first extract

Another way to deploy OS-CNNs for cultural event the convolutional feature maps of OS-CNNs (activations of
recognition is to treat them as generic feature extractorsconvolutional layersy’'(I) € R™**"*¢ wheren is feature
and use them to extract the global representation of an im-map size and is feature channel number. Each activation
age region. We usually extract the activation$udly con- value in the convolutional feature map corresponds to a lo-
nected layers which are very compact and discriminative. cal receptive field in the original image, and therefore we
In this case, we only use the pre-trained models without call these activations of convolutional layers as OS-CNN

3.2. Scenario 2: OS-CNN global representations
with pre-training

fine-tuning. Specifically, given an image regidbnwe ex- local representations.

tract this global representation based on OS-CNNs as fol-  After extracting OS-CNN local representations, we uti-

lows: lize two normalization methods, namethannel normal-
bs(@) = [Bodh (1), Bsgh(T)], (2)  izationandspatial normalizatiorproposed in §7], to pre-

whereg? (I) and¢?(I) are the CNN activations from pre- Process these convolutional feature maps into transformed
o S . = .
trained object nets and scene ngtsand, are the fusion ~ convolutional feature mapS(I) € R™*"*¢. More details
weights of object nets and scene nets. In currentimplemen-égarding these two normalization methods are out scope of

tation, the fusion weights are set to be equal for object netsthis paper and can be found iAZ]. The normalized CNN
and scene nets. activationC (I)(z, y,:) € R° at each postiofi, y) is called

as theTransformed Deep-convolutional Descript@DD).
3.3. Scenario 3: OS-CNN global representations  These two kinds of normalization methods have turned out
with pre-training and fine-tuning to be effective for improving the performance of CNN local

In previous scenario, OS-CNNs are only pre-trained on represeqtatipns ir’]. Moreover, the combinatioq of them
large scale dataset of object recognition and scene recognic@n obtain higher performance. Therefore, we will use both
tion, and directly applied to the smaller event recognition normalization methods in our experimental explorations.
dataset. However, it was demonstrated that fine-tuning a__Finally, we employ Fisher vectorif] to encode these
pre-trained CNNs on the target data can improve the per-1DDs into a global representation due to its good per-
formance a lot{]. We consider fine-tuning the OS-CNNs formance in object recognitior’] and action recognition
on the event recognition dataset and the resulted image rept' % 25]. In particular, according to our previous compre-
resentations become dataset-specific. After fine-tuniag pr hensive study on encoding methods]| we first use PCA
cess, we obtain the following global representation with th  to reduce the dimension of TDD . Then each TDD

fine-tuned OS-CNNs: is soft-quantized with a Gaussian Mixture Model (GMM)
; ; ; with K componentsK set to 256). The first and second
Gos (1) = [Bog, (1), BsdL (D] 3) order differences between each TRD:= R% and its Gaus-

whereg/ (I) and ¢/ (I) are the CNN activations from the ~Sian Centeyu are aggregated in the bloak; andvy, re-
fine-tuned object nets and scene ngtsand 3, are the fu- spectively. The final Fisher vector representation is yeld
sion weights of object nets and scene nets. In current imple-by concatenating these blocks together:

mentation, the fusion weights are set to be equal for object
nets and scene nets. ¢ro() = [wr,v1, - uk, vil. (4)

3.4. Scenario 4: OS-CNN local representations + For OS-CNNs, the Fisher vector of local representation is
Fisher vector defined as follows:

In previous two scenarios, we extract a global repre-
sentation of an image region with OS-CNNs. Although
this global representation is compact and discriminative, ] ) )
may lack the ability of describing local patterns and de- Where(bgffu(l) is the Fisher vector representation from ob-
tailed information. Inspired by the recent success on video ject nets,qbf_fv(l) is the Fisher vector representation from
based action recognition with deep convolutional descrip- scene nets3, and g3, are their fusion weights and set to be
tors [27], we investigate the effectivenessadnvolutional equal to each other in the currentimplementation.

ol () =80, (D), But!_;, (D), (5)



Objectnets Scene nets OS-CNNs | Rank | Team | Score |
Scenario 1 1 VIPL-ICT-CAS | 85.4%
softmax 73.1% 71.2% 75.6% 2 EV 85.1%
Scenario 2 3 MMLAB (ours) | 84.7%
fc7 67.2% 63.4% 69.1% 4 NU&C 82.4%
Scenario 3 5 CVL_ETHZ 79.8%
fc6 80.6% 76.8% 81.7% 6 SSTK 77.0%
fc7 81.4% 78.1% 82.3% 7 MIPAL _SUN 76.3%
Scenario 4 8 ESB 75.8%
convs-1 77.6% 76.6% 78.9% 9 Sungbin Choi | 62.4%
convs-2 78.6% 76.2% 79.6% 10 UPC-STP 58.8%
conv5-3 79.4% 76.1% 80.2%
convs-4 78 4% 75 6% 79.7% Table 2. Comparison the performance of our submission with
Eusion those of other teams. Our team secures the third place iCO¥ |
ConvE-3+icT 85500 =93% 835 ChalLearn LAP challenge 2015.

Table 1. Event recognition performance of OS-CNN global and for event understanding. This dataset is divided into three
local representations on the validation data. parts: development data (14,332 images), validation data
(5,704 images), and evaluation data (8,669 images). As we
can not access the label of evaluation data, we mainly train
our models on the development data and report the results
All the representationg(I) in previous three scenarios on the validation data.
are used to construct a linear classifiéw,I) = wo(I), Evaluation protocol. The principal quantitative mea-
wherew is the weight of linear classifier. In our imple- sure is based on precision recall curve. They use the area
mentation, we choose LIBSVM] as the classifier to learn  under this curve as the computation of the average preci-
the weightw, where the parametéf, balancing regularizer  sion (AP), which is calculated by numerical integration. Fi
and loss, is set ab. It is worth noting that all these rep-  nally, they average these per-class AP values across all eve
resentations are first normalized before fed into SVM for classes and employ the mean average precision (MAP) as
training. For OS-CNN global representations, we ése the final ranking criteria. Hence, in our exploration experi
normalization, and for OS-CNN local representations, we ments, we report our results evaluated as AP value for each
use intra normalization and powés-normalization. class and mAP value for all classes.

3.5. Linear classifiers

4. Experiments 4.2. Results and analysis

Settings. In this exploration experiment, we use the
VGGNet-19 as the OS-CNN network structure. We extract
activations from two fully connected layersde, £c7) as

In this section, we first describe the dataset of cultural
event recognition at the ICCV ChalLearn Looking at People
(LAP) challenge 2015. Then we present and analyze the . S
experimental results of our proposed different representa OS'CII\lN. glolbzlil representations, and activations from four
tions with OS-CNNs on the validation dataset of ChalLearn convolutional layers donv5-1, conv5-2, conv5-3,

LAP dataset. Finally, we describe our solution for the ICCY SCRV5~4) as OS-CNN local representations. It should be
ChalLearn LAP challenge 2015. noted that we choose the activations after rectified Linear

Units (ReLUs). We usé,-normalization to further pro-
4.1. Datasets and evaluation protocol cess OS-QNN global representati.ons for better SVM train-
ing. For Fisher vector representation of OS-CNN local rep-
Datasets.The ICCV ChalLearn LAP challenge 2013 [  resentation, we employ intra-normalization and pover
contains a track of cultural event recognition and provides normalization, as suggested by
an event recognition dataset. This dataset contains images analysis. We first report the numerical results in Table

collected from two image search engines (Google Images; From these results, several conclusions can be drawn as
and Bing Images). There are totally 100 event classes (9%g|iows:

event classes and 1 background class) from different coun-

tries and some images are shown in Figlre=rom these e We see that the object nets outperform scene nets on
samples, we see that cultural event recognition is really the task of cultural event recognition, which may imply
complicated, where garments, human poses, objects and that object cues play more important roles than scene
scene context all constitute the possible cues to be eggloit cues for cultural event understanding.
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Figure 4. Per-class AP value of combining OS-CNN global acdllrepresentations on the validation data of ICCV Chab.eAP dataset.

e We observe that OS-CNNs are effective for event

feature activations from different layers are comple-
recognition as it extract both object and scene infor- mentary to each other.

mation from the image. They achieve superior perfor- o
mance to object nets and scene nets, no matter what We also plot the AP values for all event classes in Fig-
scenario is adopted. ure 4. From these AP values, we see that the events of

Monkey Buffet Festival and Battle of the

We can notice that combining fine tuned features with Oranges achieve the highest performance (100%). This
linear SVM classifier (scenario 3) is able to obtain bet- "esult may be ascribed to the fact that there are spe-
ter performance than direct using the softmax output cific objects in these two event categories. At the same
of CNNs (scenario 1). This result may be ascribed to time, we notice that some event classes obtain very low
the fact that CNNs are easily over-fitted to the training AP values, such asialloween Festival of the

samples when the number of training images is rela- Pead, Fiesta de la Candelaria, Apokries,
tively small. andviking Festival. The AP values of these cul-

tural event classes are below 50%. In general, there are no
Comparing fine-tuned features (scenario 3) with pre- specific objects and scene context in these difficult event
trained features (scenario 2), we may conclude thatclasses, and besides these classes are easily confused with
fine tuning on the target dataset is very useful for im- other classes from the perspective of visual appearance, as

proving recognition performance, which agrees with observed from Figure.
the findings of §]. We visualize several recognition examples in Figbre

In the row 1, we give eight examples that are success-
Comparing the local representations (scenario 4) andfully predicted by our method, from classes likeene
global representations (scenario 3) of CNNs, we Pummpking,Boryeong Mud, AfrikaBurnandsoon.

see that global representation achieve slightly higher Meanwhile, we also provide some failure cases with high
recognition accuracy. confidence from our method in the rows 2,3,4. From

these wrong predicted examples, we see that these fail-
We further combine the global representatidt () ure cases are rather reasonable and there exists great con-
with local representationconv5-3) of CNNs and fusion between some cultural event classes. For exam-
find that this combination is capable of boosting final ple, the event classes @fia de los Muertos and
recognition performance. This performance improve- Halloween Festival of the Dead share similar
ment indicates that different layers of CNNs capture human make-up and garments. The event classagof
different level abstraction of original image. These Helly Aa andViking Festtival share similar hu-
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Figure 5. Examples of images that our method succeeds adsdrfabp-1 evaluation. We give 8 successfully predicted 24dvrong
predicted images in the row 1 and rows 2,3,4, respectively.

man dresses and containing objects. The event classes ofs. 85.4%). Regarding computational cost, our implemen-
Harbin Icen and Snow Festival andSapporo tation is based on CUDA 7.0 and Matlab 2013a, and it takes
Snow Festival share similar scene context and color about 1s to process one image in our workstation equipped
appearance. The event classesbfinese New Year with 8 cores CPU, 48G RAM, and Tesla K40 GPU.

and Pingxi Lattern Festival share similar con-

taining objects. In summary, these examples in Figure 5. Conclusions

5 indicate that the concept of event is really complicated
and there only exist slight difference between some event
classes.

In this paper, we have comprehensively studied different
aspects of OS-CNNs for better cultural event recognition.
Specifically, we investigate the effectiveness of CNN acti-
4.3. Challenge results vations from different layers by designing four types sce-
narios of adapting OS-CNNSs to the task of cultural event
recognition. From our empirical study, we demonstrate that
the CNN activations from convolutional layers and fully
connected layers are complementary to each other, and the
combination of them is able to boost recognition perfor-

For final evaluation, we merge the development data
(14,332 images) and validation data (5,704 images) into a
single training dataset (20,036 images) and re-train our OS
CNN models on this new dataset. Our final submission re-
sults to the ICCV Chalearn LAP challenge are based on . Finally, we come up with a solution by using OS-

our"o\re-trag_nedtmct)gel. b . tal lorati CNNs at the ICCV ChaLearn LAP challenge and secure the
ceording to Ihe above experimental explorations, We y.; place. In the future, we may consider how to incorpo-

conclude that the OS-CNN global and local representatlonsrate more visual cues such as human poses, garments, ob-
are complementary to each other. Thus, we choose to com-

. N ject and scene relationship in a systematic manner for event

bine activations frontc7 andconv5-3 layers, to keep a L
L . recognition in still images.
balance between performance and efficiency. Meanwhile,
our previous study demonstrated that GooglLeNet is com-
plementary to VGGNet43. Hence, we also extract a
global representation by using the OS-CNNs of GoogLeNet  This work is supported by a donation of two Tesla
in our challenge solution. In summary, our challenge so- K40 GPUs from NVIDIA Corporation. Meanwhile this
lution is composed of three representations: (i) OS-CNN work is partially supported by National Natural Science
VGGNet-19 local representations, (i) OS-CNN VGGNet- Foundation of China (91320101, 61472410), Shenzhen
19 global representations, and (iii) OS-CNN GooglLeNet Basic Research Program (JCYJ20120903092050890,
global representations. JCYJ20120617114614438, JCYJ20130402113127496),
The challenge results are summarized in TabM/e see 100 Talents Program of CAS, and Guangdong Innovative

that our method is among the top performers and our mAP isResearch Team Program (N0.201001D0104648280).
very close to the best performance of this challenge (84.7%
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