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Abstract
In this paper, a novel probabilistic Bayesian tracking
scheme is proposed and applied to bimodal measurements
consisting of tracking results from the depth sensor and
audio recordings collected using binaural microphones.
We use random finite sets to cope with varying number
of tracking targets. A measurement-driven birth process
is integrated to quickly localize any emerging person. A
new bimodal fusion method that prioritizes the most con-
fident modality is employed. The approach was tested on
real room recordings and experimental results show that
the proposed combination of audio and depth outperforms
individual modalities, particularly when there are multi-
ple people talking simultaneously and when occlusions
are frequent.

1 Introduction
Person tracking has been extensively studied in the
field of computer vision, with various applications rang-
ing from surveillance, video retrieval, remote meetings
to computer-human interactive activities such as video
games. Person tracking can be applied to different modal-
ities, e.g. RGB images [3, 10, 7], acoustic recordings
[23, 13, 14, 5], depth sensors [12, 21, 16],GPS and ther-
mal sensors. There is a consensus that different modalities
are complementary to each other, which has motivated
an increasing interest in cross-modal tracking in the last
decade. Most of these works are done in the audio-visual
domain [24, 8, 9]. Combination of other modalities has
recently started to become more popular. For instance,
[15, 22] tracks person from both laser range and camera
data; the work in [17] fuses RGB, depth and thermal fea-
tures. Yet, there are some essential limitations associated

with the existing mono- or cross-modal person tracking
methods. The mono-modal tracking is not robust enough,
while the cross-modal methods often require a high hard-
ware load.

To address the above limitations, we implemented a bi-
modal person tracking algorithm that combines depth and
audio cues. A time-of-flight depth sensor, i.e. Kinect for
Windows v2.0 [16], as well as a pair of binaural micro-
phones, i.e. Cortex Manikin MK2 binaural head and torso
simulator, are used for person tracking, which are respec-
tively denoted as Kinect2 and Cortex MK2, as shown on
the top right and top left of Fig. 1. Individually, both
modalities have issues. Audio measurements from Cortex
MK2 suffer from heavy background noise and the non-
stationary nature of speech. Moreover, they are ambigu-
ous between front and rear sound sources. On the other
hand, depth cues from Kinect2 are affected by occlusions.
Exploiting the complementary between these two modali-
ties, more robust tracking are obtained from our proposed
method. Based on random finite set (RFS) theory, we pro-
posed a full-probabilistic model for multi-person tracking.
Particle filters are implemented based on Bayesian filter-
ing [4, 2].

We have several contributions in our proposed method.
Firstly, the fusion of depth and audio measurements is not
a widely explored territory, and our work has done the ini-
tial attempt in this field. Secondly, the proposed method
balances the bimodal difference in their structures and ro-
bustness, which evaluates the validity of both streams and
prioritizes the most confident modality. Thirdly, a mea-
surement driven birth model is used to quickly localize
any emerging person.

The remainder of the paper is organized as follows.
Section 2 briefly introduces the RFS particle filters in per-
son tracking. Section 3 presents the overall frame work
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of our proposed algorithm, and describes in detail the fu-
sion of depth and audio streams. Experimental results are
shown and analyzed in Section 4. Finally, conclusions
and insights for future research directions are raised in
Section 5.

2 RFS-based particle filters
For single target tracking, the hidden state at time frame
k, e.g. the position and velocity of the target, is often rep-
resented via a vector xk. To generalize this problem to
the multi-object tracking problem, the hidden state is a
finite-set-valued variable Xk = {xk,1, · · · ,xk,Nk

} that
contains Nk targets, with each xk,i being the state vector
associated with the i-th target. When Nk = 0, Xk = ∅
denotes no target being detected.
Xk can be estimated from a sequence of measure-

ments [Z1, Z2, · · · , Zk] collected/extracted from the sen-
sors, where Zk = {zk,1, · · · , zk,Mk

} is also a finite-set-
valued variable. Note that Mk does not necessarily equal
Nk, and xk,i is not necessarily associated with zk,i. Some
measurements are clutters (false alarms) and some targets
may fail to generate any measurement.

Bayesian filtering [4, 2] is often applied in target track-
ing, which propagates the posterior density over time with
a recursive prediction and update process. It exploits the
temporal involvement as well as the relationship between
the underlying positions and the measurements, i.e. the
state-space approach. However, this problem might be in-
tractable if the state-space model does not satisfy certain
restrictions. Sequential Monte Carlo (SMC) [4] meth-
ods can be devoted to its approximations, resulting the
so-called particle filters or bootstrap filters [1]. In multi-
target tracking, random finite set (RFS) approach can be
used, which takes into account the association uncertainty
as well as spurious measurements. More details on RFS-
based particle filters are available in [14].

3 Proposed method
Particle filters are applied to a sequence of measurements
for target tracking. These measurements are often fea-
tures extracted from the sensors, which are related to
the underlying target state. In this paper, we exploit the

complementary relationship between the audio and depth
streams, which are collected by Cortex MK2 and Kinect2
respectively. A novel bimodal person tracking scheme is
proposed, whose main flow is shown in Figure 1.

Synchronisation 

Audio      features 

Kinect SDK skeleton  tracker 

RFS particle filter 
Tracking 
results 

Figure 1: Flow of the proposed audio-depth person track-
ing method. Synchronized audio and depth measurements
are collected from Cortex MK2 and Kinect2 respectively.
A RFS particle filter is then employed to these synchro-
nized measurements for person tracking.

We aim to find the relative angle of any person to Cor-
tex MK2 in the horizontal plane, which can be considered
as a 1D position or azimuth, as shown in Figure 2. The az-
imuth direction is not as informative as 3D position, but
it is of great importance to attention switching in machine
audition (e.g. for source separation) or computer vision
(e.g. to handle occlusions). Azimuth estimation can be
challenging and in this report we demonstrate the advan-
tages of bimodal tracking over mono-modalities.

Following, we will introduce in detail what these mea-
surements are and how they are fused together.

3.1 Audio-based likelihood function
The time delay of arrival (TDOA) cues are used as au-
dio measurements in our method. The phase transform
(PHAT)-GCC [11] method is applied to Cortex MK2 bin-
aural recordings. Suppose Lk(ω) and Rk(ω) are the short
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Figure 2: The input angle (azimuth) of a target source in
the horizontal plane. A sound source arrives at the two
ears via different paths, resulting an inter-aural time dif-
ference. The input angle increases from 0◦ from the nose
anti-clockwisely.

time Fourier transforms (STFT) of the two audio seg-
ments at time k. The PHAT-GCC function can be applied
as:

C(τ) =

∫ ∞
−∞

Lk(ω)R
∗
k(ω)

|Lk(ω)R∗k(ω)|
ejωτ dω, (1)

where the superscript ∗ denotes the conjugate operator
and | · | is a modulus operator. By finding peak positions
in PHAT-GCC,Ma

k TDOAsZa
k = {τk,1, · · · , τk,Ma

k
} can

be obtained as the audio measurements1.
Different positions (azimuths) yield different TDOAs.

We need to model the relationship between the audio mea-
surement with the azimuth, i.e. the audio likelihood func-
tion, which is complex due to reflections and diffraction
of the head. From off-line training, we notice there ex-
ists a nonlinear relationship between the resultant TDOA
τ with the azimuth α, as shown in Figure 3. Firstly, the
curve is symmetric through the axis of 90◦ or −90◦. This
is quite understandable as TDOAs have some ambiguity
between front and back. Secondly, TDOA from the front
can be linearly fitted with the input azimuth (from −90◦
to 90◦) using the polynomial fitting:

τ = f(α) = p1α+ p3α
3 , (2)

and p1 = 2.405 × 10−6 and p3 = 1.807 × 10−2 are
obtained in the off-line training process.

1The superscript a indicates audio. Similarly, the superscript d stands
for depth, and ad denotes audio-depth.
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Figure 3: Illustration of the relationship between the re-
sultant TDOA τ with the azimuth α. This was trained
from off-line recordings at 16 kHz and 48 kHz. The third-
order polynomial curve fitting is applied to model the au-
dio likelihood function. We lifted the curve at 48 kHz,
and lowered the fitted curve via a shift of 0.1 either way.

For an azimuth from the back, a mapping function
map(·) can be applied to get its mirror reflection:

map(α) =

{
α, if |α| ≤ 90◦,
sign(α)(180◦ − |α|) otherwise.

(3)
Considering zero-mean additive Gaussian noise with

variance δa,2, we can model the audio likelihood as:

g(τ |α) = N (τ − f(map(α))|0, δa,2), (4)

where N (·) denotes the Gaussian distribution. This noise
term also relaxes the non-perfect fitting in Equation (2).

3.2 Depth-based likelihood function
As mentioned before, to get depth measurements, we used
the Kinect for Windows v2.0 time of flight sensor, dubbed
as Kinect2 in this paper. This sensor emits near infra-red
pulses and a fast infrared camera is used to estimate depth
based on phase difference. The SDK provided by Mi-
crosoft [16] includes a method that detects up to six peo-
ple and estimates their pose based on a skeleton model
with 25 joints. It uses a body part detector based on ran-
dom decision forests [21]. Each point in a point cloud
is classified using simple depth comparison features and
a random decision forest (RDF). This RDF is trained in
with millions of samples of humans, combining real and
synthetic samples, at a wide range of poses, with ground
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truth labels annotated for each body part (hand, arm, el-
bow, forearm, etc.). This generates a point cloud were
each point is labeled as a body part or as background,
when their features do not match a body part. The re-
sult is spatially filtered and a post-processing method fits
up to six skeletons to the resulting labeled point cloud.

The center right sub-plot in Figure 1 shows detected
skeletons in a sample point cloud. Since our goal is to ob-
jectify speakers, we are interested in the location of their
mouth, which is close to the center of their head. We thus
use the position of the heads detected by Kinect2 SDK the
3D position of the sound sources.

A number of methods have been proposed to detect and
track people in depth images [25, 18], particularly those
generated using sensors based on structured light projec-
tion, such as the first version of Kinect. Although the
full pipeline implemented in Kinect2 SDK has not been
published, we have performed a set of preliminary ex-
periments comparing this method with other state of the
art implementations available for 3D head tracking from
depth measurements, such as the method of Fanelli et
al. [6] and RGB methods, such as that of [20]. Our quali-
tative observations indicate that the method implemented
in Kinect2 SDK robustly achieves state of the art accuracy
in head position estimation. Since it has been designed
to work on living rooms, the range of distances where it
operates is optimal for our application, whereas other im-
plementations available off-the-shelf have been optimized
to be used on web-cam scenarios, with a much smaller
working distance range.

Despite its robustness, this method has some draw-
backs. Since it is based on a tracking as detection frame-
work, it does not incorporate a mechanism to handle oc-
clusions based on inference from tracking results. Occlu-
sions cause this implementation to lose measurements or
to generate noise outliers and to swap the identity of peo-
ple being tracked, as shown in Figure 4. It can also fail
due to limitations of the sensor itself, such as its work-
ing range. If a person is closer than 1.2 meters or further
than 3.5 meters, the detector fails. It also fails in cluttered
scenes or when people are close to each other.

Further to detecting people, the Kinect2 skeleton de-
tector also locates the dummy automatically as a static
person sitting at the center of the room. By having the
prior knowledge that the dummy is the audio recording
device and that it remains static, we can easily detect it by
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Figure 4: Kinect2 tracking results for a person (Actor B)
following an L-shaped trajectory in the room of Figure 5.
The target path that this person followed is highlighted
in blue lines. The cyan stars show detected positions,
which wiggles because the head actually swings from side
to side as this person walked. There is a cluster of mis-
detected positions, i.e. this subject’s head was detected
around the dummy head position when he was occluded
by the dummy. Shortly after that, there was a period of
consecutive frames where the target is not detected be-
cause of this occlusion.

analyzing a sequence of recordings in a pre-processing
step. This enables us to label the dummy and distin-
guish it from moving people. It also enables us to project
the 3D position of detected humans to the polar coor-
dinate system centered at the dummy head. Since the
head position is estimated in 3D from Kinect2’s view-
point, there is no front/back ambiguity w.r.t. the dummy
head and the mapping of Equation 3 is not necessary for
depth-based cues. The obtained azimuth angle measure-
ments are used as depth-based observations, denoted as
Zd
k = {θk,1, · · · , θ

k,Md
k

}, i.e., in the remainder of this

paper, we assume that the pipeline that maps from depth
images to azimuth angles relative to the dummy head is
part of the measurement process.

As mentioned earlier, the head tracker is usually re-
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liable, but occlusions introduce severe noise or missing
depth-based measurements, which we approximate using
the zero-mean additive Gaussian noise with variance, de-
fined as δd,2. Therefore, the likelihood of the associated
Kinect detection given an input angle follows

g(θ|α) = N (θ − α|0, δd,2) . (5)

3.3 Audio-depth fusion

As introduced in Section 2, RFS particle filters are applied
to the audio and depth measurements. Their state space
model contains two essential parts: the dynamic model
and the measurement model.

3.3.1 Dynamic model

The dynamic model describes the temporal evolution of
target states. For multi-targets, each state vector xk ∈
Xk at frame k can either survive with probability Ps or
die with probability 1 − Ps at the next frame. Let xk
contain the input angle α and the angular velocity α̇; the
Largeiven model can be utilized to model the relationship
between a survived target xk+1 and its previous state:

xk+1 =

[
1 T
0 e−βT

]
xk +

[
0

ν
√
1− e−2βTN (·|0, 1)

]
,

(6)
where T is the time duration between two consecutive
frames; β and ν parametrize the motion model.

Moreover, a new target may be born in the searching
field with probability Pb. To quickly localize any appear-
ing target, we propose a measurements-driven target birth
model as follows.

The current measurements Zk can be mapped to a
group of azimuths. We assume the birth model as a mix-
ture of Gaussian kernels, whose mean and standard devi-
ation are these mapped azimuths and 0.1 m. The velocity
of newborn targets is zero. Following that distribution,
newborn targets are enforced to those potential positions
yielding the current measurements. The proposed method
can therefore quickly localize any emerging target. Simi-
lar idea of adaptive target birth intensity is used in [19].

3.3.2 Measurement model

The measurement or observation model describes the re-
lationship between the target state and the measurement.
From sections 3.1 and 3.2, we know the relationship be-
tween a single observed mono-modal feature and its as-
sociated single-target state. However, for cross-modal
multi-person tracking, we need g(Zk|Xk), where both the
bimodal feature Zk and the multiple-target state Xk are
set-valued variables. From empirical study, we notice the
azimuth estimates based on depth data alone has far fewer
outlier as compared to the audio stream. As a result, a
depth-dominant fusion scheme is proposed.

We assume there are up-to-two people in the searching
field. As a result, the hidden target state Xk can either be
∅, {xk,1} or {xk,1,xk,2}.

When there is no detected target, i.e. Xk = ∅,

g(Zk|∅) = (
P a
c

2τmax
)|Z

a
k |0(

Pd
c

360
)|Z

d
k |0 , (7)

where P a
c and Pd

c are the expected number of false alarms
at each frame, and | · |0 counts the number.

When there is one detected target, i.e. Xk = {xk,1},

g(Zk|{xk,1}) = p(Zk|∅)((1−Pd)+Pdgad(xk,1)), (8)

where gad(xk,1) = max(ga(xk,1), gd(xk,1)) with
ga(xk,1) = max

z∈Za
k

g(z|xk,1)2τmax

Pa
c

using Equation (4),

and gd(xk,1) similarly using Equation (5). Pd is the
chance a target being detected.

When there are two detected targets,

g(Zk|{xk,1,xk,2}) = p(Zk|∅)((1− Pd)2

+Pd(1− Pd)gad(xk,1)

+Pd(1− Pd)gad(xk,2)

+P 2
d g

ad(xk,1)gad(xk,2)).

(9)

Computational complexity of the above full-probabilistic
model becomes much bigger with an increasing number
of targets. As a result, we constrain our algorithm to up-
to-two person. To prioritize the depth stream, we make
P a
c larger than Pd

c . We also evaluate the validity of the
audio stream in each frame via a straightforward energy
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thresholding. If the audio frame is invalid, i.e., speech en-
ergy is very low, we then degenerate the proposed model
to depth-only mode. This is implemented by keeping only
the depth term in Equations (7-9).

4 Experiments

4.1 Recording setup

Our testbed is a TV/film studio set built following pro-
fessional media production standards, with furniture and
features of a relatively large hallway whose dimensions
are very similar to those of a typical living room: 244 ×
396 × 242 cm. As with typical TV/film production sets,
its ceiling and one of the walls are missing, though this
set was assembled inside a larger room. The reverbera-
tion time of this room is about 430 ms. In the record-
ings for our experiments, the binaural microphone (Cor-
tex MK2) stood in the center of the room with ear height
of 165 cm. The depth sensor was placed around the cen-
ter at the height of 170 cm, 329 cm away from the depth
sensor, as shown in Figure 5. The sampling rate for audio
is Fsa = 44.1 kHz. The depth-based head tracker has a
sampling rate of Fsd = 27.43 Hz. We used hand clap-
ping at the beginning and end of each recording session to
synchronize these two streams. The hand claps can be de-
tected from the audio stream via energy thresholding, and
arm pose detection using skeletal tracker from the depth
stream.

Three sequences were recorded in total about 7.5 min-
utes, involving two actors: Actor A is a male, with
height of 1.82 m and Actor B is a female, 1.58 m. In
the first sequence, Actor A started at Position 1 (la-
beled with a yellow circle in Figure 5), facing the cen-
ter, walking slowly along the gray circular trajectory anti-
clock-wisely, reading randomly-selected sentences from
the TIMIT database. He walked back clock-wisely along
the gray circle when reaching Position 24. Actress B
repeated this process with a higher speed, and this was
recorded in the second sequence. In the third sequence,
Actor A started at Position A, walking along the path
A → B → C → B → A, facing forward. At the same
time Actress B started at Position C, walking along the
path C → D → A → D → C, facing forward. There-
fore, both actors followed L-shaped paths (symmetric to

each other, relative to the room), moving independently
from each other, each walking at his/her preferred pace
while reading the material mentioned earlier.

4.2 Implementation details
To obtain audio measurements, 8192-point (approxi-
mately 186 ms) Hamming windowed STFT with 0.75
overlap is applied. The time length between two neigh-
boring frames is therefore T = 139 ms. The candi-
date τ is linearly sampled in the range of -1 ms to 1 ms
(τmax = 1 ms) with the resolution of 1/Fsa. At each
time frame, at most two TDOAs are extracted as audio
measurements.

Figure 6 shows the extracted audio measurements from
Sequences 1 and 3. Sequence 1 has only one speaker fac-
ing the binaural microphone, while Sequence 3 has two
speakers and they do not face the microphone most of the
time, In addition, Sequence 3 contains heavy background
noise.

To implement RFS-particle filters, the following pa-
rameters are used. The target survive chance Ps = 0.99,
and a target birth Pb = 0.02. Parameters in the Largeiven
model are set as β = 10, ν = 10. Chance a target being
detected is Pd = 0.75, and the false alarm expectations
are P a

c = 0.5 and Pd
c = 0.1. The mono-modal likelihood

functions in Equations 4 and 5 have the standard variance
of δa = 1/16 ms and δd = 5◦.

4.3 Results and analysis
4.3.1 Single person, audio-only features

Firstly, we tested the proposed algorithm on the first two
sequences, using only audio features. In Sequences 1 and
2, only less than 10 seconds occlusions is observed. In
addition, when there is no occlusion, very accurate depth-
based tracking results are obtained except for only a few
frames of outlier. As a result, we manually corrected these
outlier and labeled the misdetected frames from the depth
images when occlusions happened to obtain the ground-
truth, which was down-sampled to the be synchronized
with the audio measurements on a frame basis.

Note that, the TDOA audio cues cannot distinguish a
signal from front or back. For instance, the signal from
45◦ and 135◦ yields the same TDOA features. To address
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Figure 5: Setup for data recordings. The 24 highlighted dots in a circle labels the positions used to model the relation-
ship between different input angles and the exhibited audio features.

this ambiguity, an audio range assumption of [−90◦, 90◦]
was imposed. In other words, we assumed the signal
comes in front of the dummy head. The tracking results
for Sequence 1 is shown in Figure. 7.

We then quantitatively evaluated the proposed method
for single speakers using only audio cues. In Sequence
1, the ground truth have 1282 frames in total, and the pro-
posed method results show 1273 frames have one speaker,
and 9 frames have no speaker, caused by long silent pe-
riods. The standard deviation for the error is 7.8◦. In
Sequence 2, the ground truth have 1282 frames in total,
and the proposed method results show 599 frames have
one speaker, and 26 frames have no speaker. Of the 599
frames, 109 frames has the error more than 30◦, in the
beginning and the end of the recording session, when the
person is not silent, and an interfering speaker outside the
recording field is talking. The standard deviation for the
error of the remaining 480 frames is 10.6◦.

4.3.2 Single person, audio and depth features

Secondly, we tested the proposed algorithm on the first
two sequences, using both audio and depth features. The

tracking results for Sequence 1 is shown in Figure 8, from
which very good tracking results were observed. The de-
tected trajectory is almost overlapped with the ground-
truth.

We then did some quantitative evaluations. In Se-
quence 1, in all of the 1282 frames, one person was suc-
cessfully detected, with the deviation of 2.4◦. In Se-
quence 2, in all but 2 frames one person was detected,
with the deviation of 3.8◦. Compared with the results
using audio-only features, the combination of audio and
depth greatly reduced the error.

4.3.3 Two people, audio and depth features

Finally, we tested our algorithm on the two people sce-
nario. Using audio-only features, the proposed method
did not converge since the audio measurements are too
noisy. Using depth-only features, the outliers were re-
moved. However, the occluded person was not tracked.
Using both audio and depth features, we successfully
tracked both speakers, as shown for Sequence 3 in Fig-
ure 9. However, note that the identity of the speakers got
swapped occasionally. This problem can be solved by ap-
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Figure 6: PHAT-GCC results and detected TDOAs from
Sequence 1 and Sequence 3. The red-starred points de-
note the first peak-related TDOA while the blue circles
represent the second one. The peak in Sequence 1 is very
smooth, which clearly exhibits the speaker’s trajectory.
However, despite some peaks related to the real positions
in Sequence 3, much more false alarms are obtained.
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Figure 7: The proposed method applied to Sequence 1 us-
ing only the audio features. Since the audio features have
the front and back confusion, we imposed the input angle
range of [−90, 90]. The blue dots represent the ground-
truth input angle. We symmetrically mapped the angles
at the back of the dummy head, i.e. [−180,−90) and
(90, 180], to the front. The mapped ground-truth is the
gray curve. The tracking results are represented via the
red circles. Comparison between the tracked results and
the mapped ground-truth demonstrates the practicability
of the proposed method, and the previously-set parame-
ters are well defined.

plying a simple filter in space-time, e.g. by calculating
the distance between detected person in two consecutive
frames. Our depth-audio results on Sequence 2 were also
consistent with the walking trajectory described earlier,
demonstrating success with the fusion of depth and audio
cues.

5 Conclusions

We presented a method for multimodal tracking using au-
dio and depth features. TDOA features are extracted from
binaural recording (Cortex MK2); 3D positions from the
depth sensor (Kinect2) are mapped into 1D azimuth rela-
tive to Cortex MK2 as the depth features. The measure-
ments from both modalities were fused in a particle fil-
tering framework that enables birth and death of multiple
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Figure 8: Application of the proposed method to Se-
quence 1 using both the audio and depth features. The
dots represent the ground-truth input angle. The track-
ing results are represented via the circles. We noticed the
tracking results almost overlapped with the ground-truth.
We have zoomed in a short segment highlighted in the
rectangle.

tracks using Random Finite Sets (RFS). These two modal-
ities are obviously very different and have very different
levels of confidence. We showed how to take that into
account and how they can complement each other. Our
results show that this combination clearly outperforms in-
dividual modalities, particularly when there are multiple
people talking simultaneously and when there is a signif-
icant amount of occlusion.

As future work, we plan to perform experiments on
more datasets, aiming to highlight the method’s poten-
tial to handle birth and death of targets. We also intend
to compare our results against other tracking and fusion
methods. The RFS tracking framework is a principled
way to simultaneously track a varying number of targets,
but its complexity grows as the number of targets increase.
We suggest that depth-based tracking results, including
the detected targets identities, should help us to design a
modified version of RFS, with lower complexity w.r.t. the
number of targets. We also plan to use the most confident
modality to provide strong priors on the birth and death of
tracking targets.
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Figure 9: Application of the proposed method to Se-
quence 3 using both the audio and depth features. The
blue dots represent Actor B, and the red dots represent
Actress A.
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