
To Appear in the IEEE International Conference on Computer Vision Workshops (ICCVW) 2017

Efficient Convolutional Network Learning using
Parametric Log based Dual-Tree Wavelet ScatterNet

Amarjot Singh, Nick Kingsbury
Signal Processing Group, Department of Engineering, University of Cambridge, U.K.

as2436@cam.ac.uk, ngk10@cam.ac.uk

Abstract

We propose a DTCWT ScatterNet Convolutional Neural
Network (DTSCNN) formed by replacing the first few lay-
ers of a CNN network with a parametric log based DTCWT
ScatterNet. The ScatterNet extracts edge based invariant
representations that are used by the later layers of the CNN
to learn high-level features. This improves the training of
the network as the later layers can learn more complex
patterns from the start of learning because the edge rep-
resentations are already present. The efficient learning of
the DTSCNN network is demonstrated on CIFAR-10 and
Caltech-101 datasets. The generic nature of the ScatterNet
front-end is shown by an equivalent performance to pre-
trained CNN front-ends. A comparison with the state-of-
the-art on CIFAR-10 and Caltech-101 datasets is also pre-
sented.

1. Introduction

Deep Convolutional Neural Networks (DCNNs) have
made great advances at numerous classification [14] and
regression [28] tasks in computer vision and speech appli-
cations over the past few years. However, these models
produce state-of-the-art results only for large datasets and
tend to overfit [17] on many other applications such as the
analysis of hyperspectral images [22], stock market predic-
tion [11], medical data analysis [21] etc due to the small
training datasets.

Two primary approaches have been utilized to train
DCNNs effectively for applications with small training
datasets: (i) Data augmentation and synthetic data gener-
ation, and (ii) Transfer Learning. Training CNNs on syn-
thetic datasets may not learn potentially useful patterns of
real data as often the feature distribution of synthetic data
generated shifts away from the real data [33]. On the other

hand, transfer Learning aims to extract the knowledge from
one or more source tasks and applies the knowledge to a tar-
get task. The weights of the CNN are initialized with those
from a network trained for related tasks before fine-tuning
them using the target dataset [23]. These Networks have
resulted in excellent embeddings, which generalize well to
new categories [24].

This paper proposes the DTCWT ScatterNet Convolu-
tional Neural Network (DTSCNN) formed by replacing the
first convolutional, relu and pooling layers of the CNN with
a two-layer parametric log based DTCWT ScatterNet [27].
This extracts relatively symmetric translation invariant rep-
resentations from a multi-resolution image using the dual-
tree complex wavelet transform (DTCWT) [12] and a para-
metric log transformation layer. These extracted features,
that incorporate edge information similar to the first layers
of the networks trained on ImageNet [31], [10], are used by
the middle and later CNN layers to learn high-level features.
This helps the proposed DTSCNN architecture to converge
faster as it has fewer filter weights to learn compared to its
corresponding CNN architecture (Section 2). In addition,
the CNN layers can learn more complex patterns from the
start of learning as it is not necessary to wait for the first
layer to learn edges as they are already extracted by the
ScatterNet.

The performance of the DTSCNN architecture is evalu-
ated on (i) Classification error and, (ii) Computational ef-
ficiency and the rate of learning with over 50 experiments
performed with 14 CNN architectures. The efficient learn-
ing of the DSTCNN architectures is demonstrated by their
ability to train faster and with lower classification error on
small as well as large training datasets, generated from the
CIFAR-10 dataset. The DTCWT ScatterNet front-end is
also shown to give similar performance to the first convo-
lutional pre-trained layers of CNNs which capture prob-
lem specific filter representations, on Caltech-101 as well
as CIFAR-10 datasets. A comparison with the state-of-the-

ar
X

iv
:1

70
8.

09
25

9v
1

 [
cs

.L
G

]
 3

0
A

ug
 2

01
7

Figure 1: The proposed DTSCNN architecture, termed as AS-1, formed by replacing the first convolutional, ReLu, and pool-
ing layer of A-1 (Table. 1) CNN architecture with the two-layer parametric log based DTCWT ScatterNet. The ScatterNet
extracts relatively symmetric translation invariant representations from a multi-resolution image that are processed by the
CNN architecture to learn complex representations. However, the illustration shows the feature extraction only for a single
image due to space constraints. The invariant information (U [λm=1]) obtained for each R, G and B channel of an image is
combined into a single invariant feature by taking an L2 norm of them. Log transformation is applied with parameter k1 =
1.1 for scale j = 1. The representations at all the layers (m = 0(3), m = 1(12) and m = 2(36)) are concatenated to produce
51*2 (two resolutions) = 102 image representations that are given as input to the mid and back layers of the CNN.

art is also presented on both datasets.
The paper is divided into the following sections. Sec-

tion 2 presents the parametric log based DTCWT Scatter-
Net Convolutional Neural Network (DTSCNN). Section 3
presents the experimental results while Section 4 draws con-
clusions.

2. Proposed DTSCNN Network
This section details the proposed DTCWT ScatterNet

Convolutional Neural Network (DTSCNN) composed by
combining the two-layer parametric log based DTCWT
ScatterNet with the later layers (middle and back-end) of
the CNN to perform object classification. The ScatterNet
(front-end) is first briefly explained followed by the details
regarding the (back-end) CNN architecture.

The parametric log based DTCWT ScatterNet [27] is an
improved version (both on classification error and computa-
tional efficiency) of the multi-layer Scattering Networks [4,
19, 26, 18, 5] that extracts relatively symmetric translation
invariant representations from a multi-resolution image us-

ing the dual-tree complex wavelet transform (DTCWT) [12]
and parametric log transformation layer. This network ex-
tracts feature maps that are denser over scale from multi-
resolution images at 1.5 times and twice the size of the in-
put image. Below we present the formulation of the para-
metric DTCWT ScatterNet for a single input image which
may then be applied to each of the multi-resolution images.

The invariant features are obtained at the first layer by
filtering the input signal x with dual-tree complex wavelets
ψj,r at different scales (j) and six pre-defined orientations
(r) fixed to 15◦, 45◦, 75◦, 105◦, 135◦ and 165◦. To build a
more translation invariant representation, a point-wise L2

non-linearity (complex modulus) is applied to the real and
imaginary part of the filtered signal:

U [λm=1] = |x ? ψλ1
| =

√
|x ? ψaλ1

|2 + |x ? ψbλ1
|2 (1)

The parametric log transformation layer is then applied to
all the oriented representations extracted at the first scale
j = 1 with a parameter kj=1, to reduce the effect of outliers

Table 1: Experiments are performed with CNN architectures (derived from LeNet [15]) designed for CIFAR-10 dataset that
contain convolutional (CV) layers (L1 to L5) with b number of filters of size a × a, denoted as L-F: a, b. The max pooling
is performed for a layer within a region of size c × c, denoted as PL-R: [c, c]. The network also contains fully connected
layers (FCN) that feed the final CNN outputs to a softmax loss function. The architectures are: (i) A-1: 2CV-1FCN (ii) A-2:
3CV-2FCN (iii) A-3: 4CV-3FCN (iv) A-4: 5CV-3FCN.

Architecture Layers
L1-F PL1-R L2-F PL2-R L3-F PL3-R L4-F L5-F FCN1 FCN2 FCN3
a,b [c,c] a,b [c,c] a,b [c,c] a,b a,b a,b a,b a,b

A-1 5,32 [3,3] 5,64 [6,6] – – – – 1,10 – –
A-2 5,32 [3,3] 5,32 [6,6] 5,64 [4,4] – – 1,32 1,10 –
A-3 5,32 [3,3] 5,32 [3,3] 5,64 [3,3] 4,64 – 1,32 1,16 1,10
A-4 5,32 [3,3] 5,32 [3,3] 5,64 – 4,64 4,64 1,32 1,16 1,10

Table 2: Parameter values used by the architectures mentioned in Table. 1 for training are: Learning rate = 0.001, Number of
Epochs = 300, Weight Decay = 0.0005 and Momentum = 0.9. The batch size is changed according to the number of training
samples as mentioned below.

Training Data Sample Size 300 500 1000 2000 5000 10000 25000 50000
Batch Size 5 5 10 20 50 100 100 100

by introducing relative symmetry of pdf, as shown below:

U1[j] = log(U [j] + kj), U [j] = |x ? ψj |, (2)

Next, a local average is computed on the envelope
|U1[λm=1]| that aggregates the coefficients to build the de-
sired translation-invariant representation:

S[λm=1] = |U1[λm=1]| ? φ2J (3)

The high frequency components lost due to smoothing are
retrieved by cascaded wavelet filtering performed at the sec-
ond layer. The retrieved components are again not transla-
tion invariant so invariance is achieved by first applying the
L2 non-linearity of eq(2) to obtain the regular envelope:

U2[λm=1, λm=2] = |U1[λm=1] ? ψλm=2
| (4)

and then a local-smoothing operator is applied to the reg-
ular envelope (U2[λm=1, λm=2]) to obtain the desired sec-
ond layer (m = 2) coefficients with improved invariance:

S[λm=1, λm=2] = U2[λm=1, λm=2] ? φ2J (5)

The scattering coefficients for each layer are:

S =

 x ? φ2J
U1[λm=1] ? φ2J

U2[λm=1, λm=2] ? φ2J

j=2

(6)

Next, the proposed DTSCNN architectures (AS1 to
AS4) are realized by replacing the first convolutional layer
of the A-1 to A-4 CNN architectures with the ScatterNet

(described above), as shown in Fig. 1. The four CNN
architectures (A-1 to A-4, shown in Table. 1) are derived
from the LeNet [15] architecture because they are relatively
easy to train due to its small memory footprint. In addi-
tion to the derived architectures, the DTSCNN is also real-
ized by using ScatterNet as the front-end of three standard
deep architectures namely; Network in Network (NIN) [16]
(A-5), VGG [25] (A-6), and wide ResNet [30] (WResNet)
(A-7). The DTSCNN architectures (AS-5, AS-6, AS-7) for
the standard architectures (NIN (A-5), VGG (A-6), WRes-
Net (A-7)) are again obtained by removing the first con-
volutional layer of each network and replacing it with the
ScatterNet. The architectures are trained in an end-to-end
manner by Stochastic Gradient Descent with softmax loss
until convergence.

3. Experimental Results
The performance of the DTSCNN architecture is demon-

strated on CIFAR-10 and Caltech-101 datasets with over
50 experiments performed with 14 CNN architectures of
increasing depth on (i) Classification error and, (ii) Com-
putational efficiency and the rate of learning. The generic
nature of the features extracted by the DTCWT ScatterNet
is shown by an equivalent performance to the pre-trained
CNN front-ends. The details of the datasets and the results
are presented below.

3.1. Datasets

The CIFAR-10 [13] dataset contains a total of 50000
training and 10000 test images of size 32×32. The efficient
learning of the proposed DTSCNN network is measured on

Table 3: Classification error (%) on the CIFAR-10 dataset for the original CNN architectures and their corresponding
DTSCNN architectures.

Architectures Classification Error
Derived from LeNet [15] Training Data Sample Size

300 500 1000 2000 5000 10000 25000 50000
A-1: 2Conv-1FCon 77.8 73.2 70.3 66.7 61.3 54.9 45.3 38.1
AS-1: DTS-1Conv-1FCon 69.4 65.8 60.1 58.9 52.7 54.7 40.4 38.7
A-2: 3Conv-2FCon 66.8 62.0 57.5 52.8 46.1 40.1 32.7 27.3
AS-2: DTS-2Conv-2FCon 63.7 55.1 49.5 43.7 39.1 40.0 33.8 28.3
A-3: 4Conv-3FCon 62.2 57.4 51.0 46.8 40.1 35.1 29.2 24.2
AS-3:DTS-3Conv-3FCon 56.8 54.9 50.9 45.3 39.7 34.9 28.7 24.1
A-4: 5Conv-3FCon 58.4 54.4 47.4 41.8 35.0 32.2 25.7 22.1
AS-4: DTS-4Conv-3FCon 59.8 54.0 47.3 41.3 38.4 31.8 25.2 22.0
Standard Deep Architectures Training Data Sample Size
A-5: NIN [16] 89.2 84.4 45.5 34.9 27.1 18.8 13.3 8.1
AS-5: DTS-NIN 83.2 80.1 41.0 32.2 25.3 18.4 13.4 8.2
A-6: VGG [25] 89.9 89.7 89.1 59.6 36.6 28 16.9 7.5
AS-6: DTS-VGG 83.5 82.8 81.6 56.7 34.9 27.2 16.9 7.6
A-7: WResNet [30] 87.2 53.2 43.2 31.1 18.8 13.6 10.1 3.6
AS-7: DTS-WResNet 81.2 49.8 41.2 30.1 18.6 13.5 9.9 3.6

8 training datasets of sizes: 300, 500, 1000, 2000, 5000,
10000, 25000 and 50000 images generated randomly by se-
lecting the required number of images from the full 50000
training dataset. It is made sure that an equal number of
images per object class are sampled from the full training
dataset. For example, a training dataset sample size of 300
will include 30 images per class. The full test set of 10000
images is used for all the experiments.

Caltech-101 [9] dataset contains 9K images each of size
224×224 labeled into 101 object categories and a back-
ground class. The classification error on this dataset is
measured on 3 randomly generated splits of training and
test data, so that each split contains 30 training images per
class, and up to 50 test images per class. In each split, 20%
of training images were used as a validation set for hyper-
parameter selection. Transfer learning is used to initialize
the filter weights for the networks that are used to classify
this dataset because the number of training samples are not
sufficient to train the networks from a random start.

3.2. Evaluation and Comparison on Classification
Error

The classification error is recorded for the proposed
DTSCNN architectures and compared with the derived (A-1
to A-4) as well as the standard (A-5 to A-7) CNN architec-
tures, for different training sample sizes, as shown in Table.
1. The parameters used to train the CNN architectures are
shown in Table. 2. The classification error corresponds to
the average error computed for 5 repetitions.

It can be observed from Table. 3 that the difference in

classification error for the derived CNN architectures (A-1
to A-4) is at around 9% for the small training datasets with
≤ 1000 training images. This difference in error reduces
with the increase in the size of the training dataset and with
increase in the depth of the architectures as shown in Table.
3. In fact, the deeper CNN architectures such 5CV-3FCN
(A-4) outperformed their corresponding DTSCNN architec-
tures by a small margin.

A similar trend in classification error is also observed
for the standard more deeper CNN architectures (A-5 to A-
7). The difference in classification error is large between
the DTSCNN (AS-5 to AS-7) and the original (A-5 to A-
7), architectures for small training datasets while both class
of architectures produce a similar classification error for
datasets with large training size. In fact, the wide ResNet
(WResNet) (A-7) and its corresponding DTSCNN architec-
ture (AS-7) result in the same classification error of 3.6%.

3.3. Analysis on Computational Efficiency and
Learning

This section compares the efficient and faster learning
of the proposed DTSCNN architectures against the CNN
architectures (A-1 to A-4) derived from LeNet [15] as well
as the standard (A-5 to A-7) deep learning architectures for
a range of small and large training dataset sizes.

The DTSCNN architectures have a higher rate of learn-
ing or faster converge than the original CNN architectures
because the numbers of filter weights required to be learned
are smaller but also because the ScatterNet extracts edge
representations that allow the later CNN layers to learn

(a) Training dataset sample size: 300 (b) Training dataset sample size: 1000

(c) Training dataset sample size: 10000 (d) Training dataset sample size: 50000

(e) Computational time for convergence for 5000 training size (f) Computational time for convergence for 50000 training size

Figure 2: Graphs show the faster convergence and rate of learning of the DTSCNN derived architectures (AS-1 to AS-
4) compared to the CNN (A-1 to A-4) architectures for a range of small and large training data sizes. An architecture is
considered to have converged at a specific epoch when the error value for the subsequent epochs changes within 2% of
the error value at that specific epoch. The convergence is marked on the epoch axis using an orange dotted line for the
DTSCNN architecture and a purple dotted line for the CNN architectures. The orange line has a lower epochs value as
compared to the purple line indicating the faster convergence. Computational time for convergence for the original CNN and
the corresponding DSTCNN networks measured to within 2% of the final converged error value is also shown for a small
(5000) and large (50000) training dataset.

high-level features from the first epoch onwards. The faster
convergence is shown for both the derived (A-1 to A-4) and
standard deep architectures (A-5 to A-7) as shown in Fig.

2 and Fig. 3, respectively. An architecture is considered
to have converged at a specific epoch when the error value
for the subsequent epochs changes within 2% of the error

(a) Network in Network (NIN) (b) Visual Geometry Group (VGG) Network

(c) Wide Residual Network (WResNet) (d) Computational time for convergence.

Figure 3: Graphs show the faster convergence and rate of learning of the DTSCNN standard deep architectures (AS-5 to
AS-7) compared to the CNN (A-5 to A-7) architectures for a small (5000) and large (50000) training dataset. An architecture
is considered to have converged at a specific epoch when the error value for the subsequent epochs changes within 2% of the
error value at that specific epoch. The convergence is marked on the epoch axis using an orange dotted line for the DTSCNN
architecture and a purple dotted line for the CNN architectures. The orange line has a lower epochs value as compared to the
purple line indicating the faster convergence. Computational time for convergence (hours) for NIN (A-5) and VGG (A-6)
standard deep architectures and corresponding DTSCNN architectures for a small (5000) and a large (50000) training dataset
is also presented.

value at that specific epoch. The convergence is marked on
the epoch axis using an orange dotted line for the DTSCNN
architecture and a purple dotted line for the CNN architec-
tures. As observed from Fig. 2 and Fig. 3, the orange line
has a lower epoch value as compared to the purple line in-
dicating the faster convergence.

The time required for training the original and their cor-
responding DSTCNN architectures is presented for a small
(5000) and large training dataset (50000) for both the de-
rived (A-1 to A-4) and standard deep architectures (A-5 to
A-6), as shown in Fig. 2 and Fig. 3, respectively. The time
for convergence is again measured to within 2% of the fi-
nal converged error value. As observed from both figures,
the training time is higher for the original networks than
the DTSCNN networks because of the reasons mentioned
above.

The networks are trained using the MatConvNet [29]
package on a server with a NVIDIA GeForce 7800 GTX
card.

3.4. Comparison with Pre-trained CNN First Lay-
ers

The classification performance of the DTCWT Scatter-
Net front-end is compared with the first pre-trained convo-
lutional layer for the Network in Network (NIN) [16] and

the Visual Geometry Group convolutional (VGG) [25] ar-
chitectures, on Caltech-101 and CIFAR-10 datasets. The
filter weights for both the NIN and the VGG networks are
initialized with the weights obtained from their models pre-
trained on ImageNet (found here [1]). The first layers for
both the architectures are fixed to be the ScatterNet and the
pre-trained convolutional layer, while the filter weights only
in later layers are fine-tuned using the training images of
CIFAR-10 and Caltech-101. The ScatterNet front-end gives
similar performance to the pre-trained first convolutional
layer on classification error for both datasets as shown in
Table. 4. For this experiment, dropout, batch normalization
and data augmentation with crops and horizontal flips were
utilized [2]. The use of the NIN network is preferred as it
gives similar performance to the VGG network while being
4 times faster.

3.5. Comparison with the state-of-the-art

This section compares the architectures that produced
the best classification performance with the state-of-the-art
on CIFAR-10 and Caltech-101. The DTS-WResNet (AS-
7) and DTS-VGG (AS-6) resulted in the best classification
performance on CIFAR-10 and Caltech-101 with 3.6% and
8.08% classification error, respectively.

The DTS-WResNet (AS-7) architecture is compared

Table 4: Table shows the comparison on classification er-
ror (%) between the DTCWT ScatterNet (DTS) front-end
and the first convolutional layer pre-trained on ImageNet
for NIN [16] and VGG [25] architectures for Caltech-
101 and CIFAR-10 datasets.T-NIN: Transfer-NIN, T-VGG:
Transfer-VGG

Dataset State-of-the-art Architectures
T-NIN DTS-NIN T-VGG DTS-VGG

Caltech-101 12.3 12.26 8.78 9.23
CIFAR-10 8.25 8.34 8.31 9.02

with the state-of-the-art CNN architectures on CIFAR-10.
DTS-WResNet outperformed these architectures as shown
in Table 5.

Table 5: Table shows the comparison on classification er-
ror (%) between the DTCWT ScatterNet ResNet (DTS-
WResNet) Architecture with the state of the art architec-
tures on the CIFAR-10 dataset. DW: DTS-WResNet, NIN:
Network in Network [16], VGG [25], DSN: Deeply Super-
vised Networks [7], MON: Max-Out Networks [8], E-CNN:
Exemplar CNN [6]

Dataset State-of-the-art Architectures
DW VGG E-CNN NIN DSN MON

Cifar-10 3.6 7.5 8.0 8.1 8.2 9.3

Next, the DTS-VGG (AS-6) architecture is compared
against the state-of-the-art CNN architectures for the
Caltech-101 dataset. On this dataset, the DTS-VGG out-
performed some of the architectures while produced a
marginally lower classification performance for others (Ta-
ble 6).

Table 6: Table shows the comparison on classification er-
ror (%) between the DTCWT ScatterNet VGG (DTS-VGG)
Architecture with the state of the art architectures on the
Caltech-101 dataset. DTS-VGG: DV, SPP: Spatial Pyramid
Pooling [3], VGG [25], E-CNN: Exemplar CNN [6], EP:
Epitomic Networks [20], ZF: Zieler and Fergus [32]

Dataset State-of-the-art Architectures
DV SPP VGG E-CNN EP ZF

Caltech-101 8.78 6.6 7.3 8.5 12.2 13.5

4. Conclusion
The proposed DTSCNN architectures, when trained

from scratch, outperforms the corresponding original CNN
architectures on small datasets by a useful margin. For
larger training datasets, the proposed networks give simi-
lar error compared to the original architectures. Faster rate

of convergence is observed in both cases for shallow as well
as deep architectures.

The DTCWT scattering front-end is mathematically de-
signed to deal with all edge orientations equally and with
2 or more scales, as required. The generic nature of the
DTCWT scattering front-end is shown by its similar classi-
fication performance to the front-end of learned networks,
on two different datasets. The generic features are likely
to give it wide applicability to both small and large image
datasets as it gives lower (small dataset) or similar classifi-
cation error (large dataset), with faster rates of convergence.

Future work includes extending the DTCWT Scattering
Network front-end for other learning frameworks, with a
view to improving learning rates further.

References
[1] https://github.com/bvlc/caffe/wiki/model-zoo.

[2] http://torch.ch/blog/2015/07/30/cifar.html. 2015.

[3] H. at al. Spatial pyramid pooling in deep convolutional
networks for visual recognition. ArXiv:1406.4729v2,
2014.

[4] J. Bruna and S. Mallat. Invariant scattering convolu-
tion networks. IEEE Transaction on Pattern Analysis
and Machine Intelligence, 35:1872 –1886, 2013.

[5] F. Cotter and N. Kingsbury. Visualizing and improving
scattering networks. Axiv, 2017.

[6] A. D. et al. Discriminative unsupervised feature
learning with exemplar convolutional neural networks.
ArXiv:1406.6909, 2014.

[7] C. L. et al. Deeply-supervised nets. ArXiv:1409.5185,
2014.

[8] I. G. et al. Maxout networks. ICML, 2013.

[9] L. Fei-Fei, R. Fergus, and P. Perona. Learning genera-
tive visual models from few training examples: an in-
cremental bayesian approach tested on 101 object cat-
egories. IEEE. CVPR Workshop on Generative-Model
Based Vision, 2004.

[10] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich
feature hierarchies for accurate object detection and
se- mantic segmentation. arXiv:1311.2524, 2013.

[11] S. Jain, S. Gupta, and A. Singh. A novel method to
improve model fitting for stock market prediction. In-
ternational Journal of Research in Business and Tech-
nology, 3(1), 2013.

[12] N. Kingsbury. Complex wavelets for shift invariant
analysis and filtering of signals. Applied and compu-
tational harmonic analysis, 10:234–253, 2001.

[13] A. Krizhevsky and G. Hinton. Learning multiple lay-
ers of features from tiny images. 2009.

[14] A. Krizhevsky, I. Sutskever, and G. Hinton. Im-
agenet classification with deep convolutional neural
networks. NIPS, 2012.

[15] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324,
1998.

[16] M. Lin, Q. Chen, and S. Yan. Network in network.
arXiv:1312.4400, 2013.

[17] R. Mao, H. Zhu, L. Zhang, and A. Chen. A new
method to assist small data set neural network learn-
ing. Proceeding of the sixth International Conference
on Intelligent Systems Design and Applications, pages
17–22, 2006.

[18] S. Nadella, A. Singh, and S. Omkar. Aerial scene un-
derstanding using deep wavelet scattering network and
conditional random field. European Conference on
Computer Vision (ECCV) workshops, 9913:205–214,
2016.

[19] E. Oyallon and S. Mallat. Deep roto-translation scat-
tering for object classification. IEEE Conference
on Computer Vision and Pattern Recognition, pages
2865–2873, 2015.

[20] G. Papandreou. Deep epitomic convolutional neural
networks. ArXiv:1406.6909, 2014.

[21] A. Pasini. Artificial neural networks for small dataset
analysis. Journal of Thoracic Disease, 7(11):2278–
2324, 2015.

[22] J. Plaza, A. Plaza, R. Perez, and P. Martinez. On the
use of small training sets for neural network-based
characterization of mixed pixels in remotely sensed
hyperspectral images. Pattern Recognition, 42:3032–
3045, 2009.

[23] R. Raina, A. Battle, H. Lee, B. Packer, and A. Y.
Ng. Self-taught learning: Transfer learning from unla-
beled data. 24th International Conference on Machine
Learning, pages 759–766, 2007.

[24] A. Razavian, H. Azizpour, J. Sullivan, and S. Carls-
son. Cnn features off-the-shelf: an astounding base-
line for recognition. IEEE conference on Computer
Vision and Pattern Recognition, pages 512–519, 2014.

[25] K. Simonyan and A. Zisserman. Very deep convo-
lutional networks for large-scale image recognition.
International conference on learning representation,
2015.

[26] A. Singh and N. Kingsbury. Multi-resolution dual-
tree wavelet scattering network for signal classifica-
tion. 11th International Conference on Mathematics
in Signal Processing, 2016.

[27] A. Singh and N. Kingsbury. Dual-tree wavelet scat-
tering network with parametric log transformation for
object classification. In IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP), pages 2622–2626, 2017.

[28] A. Toshev and C. Szegedy. Deeppose: Human
pose estimation via deep neural networks. CoRR,
abs/1312.4659, 2013.

[29] A. Vedaldi and K. Lenc. Matconvnet. University of
Oxford, 2015.

[30] S. Zagoruyko and N. Komodakis. Wide residual net-
works. ArXiv:1605.07146, 2016.

[31] M. Zeiler and R. Fergus. Visualizing and understand-
ing convolutional neural networks. arXiv:1311.2901,
2013.

[32] M. D. Zeiler and R. Fergus. Visualizing and under-
standing convolutional networks. ECCV, 2014.

[33] X. Zhang, Y. Fu, S. Jiang, L. Sigal, and G. Agam.
Learning from synthetic data using a stacked multi-
channel autoencoder. Axiv:1509.05463, 2015.

