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Abstract

In this work, we investigate several methods and strate-
gies to learn deep embeddings for face recognition, us-
ing joint sample- and set-based optimization. We explain
our framework that expands traditional learning with set-
based supervision together with the strategies used to main-
tain set characteristics. We, then, briefly review the re-
lated set-based loss functions, and subsequently propose a
novel Max-Margin Loss which maximizes maximum pos-
sible inter-class margin with assistance of Support Vector
Machines (SVMs). It implicitly pushes all the samples to-
wards correct side of the margin with a vector perpendicu-
lar to the hyperplane and a strength exponentially growing
towards to negative side of the hyperplane. We show that the
introduced loss outperform the previous sample-based and
set-based ones in terms verification of faces on two com-
monly used benchmarks.

1. Introduction

Recently, deep convolutional neural networks (CNNs)
have been an important tool that achieves state-of-the-art
performances in many computer vision tasks [13]. Its goal
is to build a model to address a target problem with a se-
quence of convolutional layers that are developing from
low-level features to more abstract representations. Deep
networks can also learn robust representations that are suit-
able for other task [2, 21, 18, 22, 4]. Deep Distance Met-
ric Learning (DML) approaches explore ways to construct
such representations that maintain better similarity/distance
measurement for, e.g., verification, retrieval or clustering
tasks. While supervision of traditional objective functions
(e.g. Softmax Loss) yield successful results, comparative
loss functions (i.e. Triplet Loss) are shown to be more suit-
able for semi-supervised deep DML tasks[17].

Beside sample-based supervision which processes each
sample individually, one can benefit from the captured in-

formation by considering a set of images as a unified entity.
An image set is a collection of instances of the same ob-
ject/person from varying viewpoints, illuminations, poses
and exhibits different characteristics. A set contains richer
information of the target than a single image and is poten-
tially more useful for problems like object or scene clas-
sification, face recognition and action analysis. As the au-
thors of [31] illustrated, set-based supervision can learn dis-
criminative features rather than just separable features like
sample-based approaches would learn.

This paper makes the following contributions:

• We propose a novel loss function called Max-Margin
Loss that benefits from set-based information by draw-
ing inter-set (inter-class) margins. It improves the sep-
arability of learned features by maximizing the maxi-
mum possible inter-class margin that is calculated by a
support vector machine and address the shortcomings
of the existing set-based methods.

• We review existing set-based DML approaches and
evaluate them and their combinations together with
Max-Margin Loss and Softmax Loss.

• We build a framework where such functions can oper-
ate properly jointly with sample-based ones and inves-
tigate the strategies to maintain set information during
training in the framework.

The rest of the paper is organized as follows: In Sec-
tion 2, we provide an overview of the related work about
sample-,set-based deep metric learning for face recognition.
Section 3 describes existing and new set-based loss func-
tions and other strategies. In Section 4, we provide some
more information on the set-up and techniques used in the
experiments. We then present and discuss some experimen-
tal results. Finally, we draw conclusion and elaborate on
future works in Section 5.
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Figure 1: Overview of joint sample-based set-based learning. Random face images sampled from the training images in
traditional fashion to train a CNN. Offline Update: In every n iterations, set of face images are sampled that consist significant
amount of images from each identities and fed into the network while training is paused. Resulting feature vectors are used
to calculate set parameters whose way is specific to set-based loss used. Online Update: While the training is going, set
parameters are updated with a small weight by the parameters calculated with current random batches.

2. Related Work

While the traditional embedding approaches include
Neighbourhood Component Analysis [5], Large Margin
Nearest Neighbour [30] and Nearest Class Mean [15], state-
of-the-art performances are usually achieved by deep DML
networks. Contrastive Loss [6] is one such approach where
the features are learned with supervision of a loss computed
with (positive or negative) pairs of samples. Triplet Loss
[30] optimizes the relative difference between a positive and
a negative pair. Both functions share the goal to minimize
the distances between the samples from the same class and
to maximize the distances between the samples from differ-
ent classes. Several extensions were proposed such as lifted
structured embedding [16] where an advanced hard sam-
ple mining introduced within mini-batches for efficiency,
and quadruplet embedding [8] that employs local similar-
ity awareness.

There have been many methods developed for set-
based recognition such as CCA [11] , Manifold-Manifold
Distance [28], Sparse Approximated Nearest Points [7],
Simultaneous Feature and Dictionary Learning [14],
Discriminant-Analysis on Riemannian Manifold of Gaus-
sian Distribution [29]. Yet, recent set-based deep DML
studies show excellent performance, such as Rippel et al.
[19] proposed magnet loss that achieve local discrimination

by penalizing class distribution overlap and Feng et al. [3]
combined set presentations (mean, variance, min, max, vlad
features) with hashing in a single network for end-to-end
learning of binary code of sets. Wen et al. [31] did the first
attempt to combine sample-based loss functions (e.g. soft-
max, contrastive, triplets) with a set-based term called cen-
ter loss which minimizes the distance of each sample with
its corresponding class center.

Those studies come with their strategies to compute set
parameters (e.g. clusters, centroids, margins) on-the-go as
well. Rippel et al. [19] pause training periodically to cluster
samples on the new feature space, Wen et al. [31] calculates
class centroids with vanilla update with momentum in ev-
ery iteration. After every iteration of the ongoing learning,
feature space is being bended and therefore above approx-
imations should be biased. While the first uses the same
cluster indices until next refreshment, in the latter momen-
tum update would lead to aggregation of parameter vectors
of different feature spaces. Although they are still good ap-
proximations, using both ideas together should yield less
biased approximations as we do in our experiments.

Most of above sample- or set-based deep DML studies
revolve around learning features by pulling positive sam-
ples and pushing negative samples. In fact, more discrimi-
native features can be learned by increasing the inter-class
distances without forcing to pull all the samples to the same



point (i.e. centroid). Although Wen et al. [31] claims to
learn discriminative features rather than just separable ones,
Center loss keep pulling and pushing samples no matter
how distinct they are. Although Magnet Loss take care
of such intra-class variation tolerance with its multi-cluster
models, its sophisticated sampling procedure make it diffi-
cult to combine it with sample-based objectives. The pro-
posed Max-Margin Loss, on the other hand, cover these
problems by calculating inter-class separating hyperplanes
and pushing all the samples to the correct side of the margin
accordance with their proximity to the margin. This pro-
cedure eventually increase maximum possible margin be-
tween sets without distorting the intra-class distribution.

Tang [26] attempted to learn with margin-based opti-
mization by minimizing squared hinge loss for classifica-
tion. Yet, ignoring the weight term(w) in the differentiation
appears to be penalizing only slack variables rather than in-
creasing the maximum achievable margin by SVM. Further,
the study is not clear about integration of SVM with SGD
in the loss layer. [1] is another related SVM based study
where SVMs are used during the testing time for template
adaptation rather than supervising the network to learn bet-
ter embedding as in our case.

3. Proposed Set-based Learning Framework
In this section, we present our framework to combine

sample-based and set-based learning using our novel set-
based Max-Margin Loss and two other set-based loss func-
tions similar to the existing works. Let us begin with gen-
eralized version of the joint loss formula given by [31] as
following:

L =
∑
i

λiLi(Sample−based) +
∑
j

λjLj(Set−based) (1)

Sample-based loss functions such as Softmax (LS =

−
∑m

i=1 log
e
WT
yi

+byi∑n
j=1 e

WT
yi

+byi
) or Triplet are well defined and

studied in the literature[20, 17, 23]. They often guide a net-
work fed by random batch of input data and without a need
of any other information while training.

Beside sample-based supervision, one can benefit from
the information extracted by considering set of sam-
ples as a whole. Unlike sample-based ones, set-based
terms require additional set parameters (e.g. linear margin
parameters(ω, b), centroids(µ)) which represent statistics or
characteristics of sets. Aggregation of many sample-based
and set-based loss terms has a potential of leading to better
representation as each may optimize different aspects of the
problem.

Below we study strategies to extract set statistics and
characteristic for set-based learning. Then we introduce a
new set-term and review several set-based loss terms simi-
lar to the previous studies.

(a) Initial state and the
pulling/pushing caused by
green hyperplane

(b) Zoomed version of (a) with all
forces

(c) After one update from (a) (d) Convergence

Figure 2: Initially, Max-Margin Loss requires a good em-
bedding as in (a) to calculate separating hyperplanes. The
loss applies to all samples by green plane is indicated with
arrows. (c) shows the state after one update for only green
plane and (d) at convergence.

3.1. Set Parameters

Fig. 1 summarizes joint set- and sample-based learning
and shows how set batches and set parameters are operated.
As in traditional deep networks, a number random samples
(a batch) is fed into the network to compute sample-based
loss (i.e. Softmax). Then, set-based loss is also computed
based on pre-computed set parameters and the weighted
sum of their derivatives are backpropagated through the net-
work.

Set parameters are updated periodically in two ways (on-
line and offline) to maintain set-based terms. The best ap-
proximation to set parameters can be calculated by sam-
pling a significant number of samples1 from each iden-
tity. Those samples are fed into the network while the
network parameters are fixed and set parameters are deter-
mined from their features. We call this operation ‘offline
update’ which is computationally costly and therefore done
in every n iterations.

As training continues, resulting feature space is also

1We found that 50 images are representative enough



changing, thus the set parameters need to be kept on track.
‘Online update’ intends to correct this bias in every iter-
ation by averaging current set parameters with computed
set-parameters given the current random batch at the hand.
Since number of samples from each class is small, the
weight of online-parameters is also small while averag-
ing. While online update keep adapting set parameters to
the changing feature space during optimization, offline up-
date periodically correct the biased set parameters caused
by mixing parameters of different feature spaces.

3.2. Set-based Loss Functions

3.2.1 Max-Margin Loss

We propose a novel set-based term, Max-Margin Loss, that
maximizes the maximum possible margin between classes.
This objective function implicitly pushes all the samples to-
wards correct side of the margin with a vector perpendic-
ular to the hyperplane and a strength exponentially grow-
ing towards to negative side of the hyperplane. Even the
samples in the correct side of the margin are kept being
pushed to increase the maximum margin between the two
sets without distorting the intra-class distribution. Fig. 2
illustrates a synthetic feature space over the iterations su-
pervised by Max-Margin Loss. Given a mini-batch of ran-
dom n samples uniformly sampled from m classes, and let
the embeddings and the corresponding class labels denoted
by (xi, yi), the loss and its gradient are computed by the
following formulas:

LM = λM

n∑
i=1

m∑
j=1

1

2γ(yi = j)
e
−
δ(yi = j)(wT

j xi + bj)

||wj ||2

(2)

∂LM

∂xi
=

λM
2nγ(yi = j)

m∑
j=1

−wjδ(yi=j)

||wj ||2
e
−
δ(yi=j)(w

T
j xi+bj)

||wj ||2

(3)

separating hyperplane for j class is defined as wT
j x+b = 0.

δ(.) and γ(.) equal to 1 if the condition(.) is satisfied and
equal to −1 and m− 1 respectively if otherwise.

Set parameters of Max-Margin Loss (ωj , bj) are deter-
mined by online and offline updates explained in the previ-
ous Section (3.1). For offline update, we pause the training
in every n(= 500) iterations and after set-sampling, features
are extracted from the current state of the network. We then
run a support vector machine with linear kernel for each
class to obtain best separating hyperplanes in one-against-
all manner and save the resulting parameters. Online update
is done by running SVM for classes that are represented in
the current (random) batch and averaging them with the cur-
rent parameters with a small weight (α = 0.01).

(a) Softmax Loss Alone (LS ) (b)Softmax and Center L. (LS+LC)

(c) Softmax and Pushing Loss
(LS + LP )

(d) Softmax and Max-Margin Loss
(LS + LM )

Figure 3: 2D embeddings of images of three learned with
different loss functions

3.2.2 Center Loss

Center Loss is proposed by Wen et al. [31], minimizes intra-
class variety by penalizing distance from samples to their
class centroids. This is in fact, a simplified version of the
numerator term of Magnet Loss[19] with one cluster.

Beside the original definition of the Center loss which in-
cludes momentum vanilla update for centroids, we refresh
centroids of classes periodically during the training. And
unlike the original study [31], we introduce Center loss af-
ter pretraining the network a while with Softmax alone as
having center loss from the beginning would bias deep-net
as features and centroids are not yet meaningful.

Center Loss can be defined as below:

LC =
λC
2

n∑
i=1

||xi − cyi ||22 (4)

where λC is balancing term and centroids are computed as:

cj =

∑n
i=1 δ(yi = j)xi∑n
i=1 δ(yi = j)

(5)

where δ(condition) equals to 1 if the condition is satisfied
and 0 otherwise.



3.2.3 Pushing Loss

Pushing Loss penalizes very close negative class centroids
where penalty decrease exponentially with increasing dis-
tance as distant centroids should have much less influence.
Here, centroid update and refreshment procedures are kept
same as center loss. The formulation of pushing loss is as
following:

LP =
λP
m

n∑
i=1

∑
j 6=yi

e−||xi−cj ||2 (6)

This is also similar to the denominator term of Magnet
loss[19]. Although magnet loss contains multiple clusters
for attribute concentration, we believe its effect would be
minimal for recognition/verification tasks, since deep net-
work should be capable non-linear mapping of multiple
clusters into one centroid very easily.

3.3. Toy Experiments

We modify our network by setting the dimension of the
embedding layer to 2 and train it by supervision of above
loss functions using samples of only three people. We plot
the embeddings of the samples of individuals with different
colors as shown in Figure 3 and observe the contribution of
each function.

Although Fig.3(a) shows that softmax alone learn a good
representation, it is improved with the contribution of set-
based functions. Center Loss and Pushing Loss seems to be
functioning similar and Max-Margin Loss looks like pro-
viding slightly better separation in terms of identities.

4. Experiments
In our experiments, we aim to understand contribution of

different set parameter update strategies and compare Max-
Margin Loss and other set-based approaches in the same
settings.

4.1. Implementation Details

Training settings: We use NNS1 network from [20] for
training which is a reduced version of Google’s inception
architecture [24]. We increase the dimension of the em-
bedding layer from 128 to 512 and adjust Softmax layer
for 2,558 identities. The network is fed with 96 × 96
pixel images which are augmented randomly with cropping
(between %70 − %100), location, aspect ratio (between
7/8 − 8/7), flipping (0.5 chance), blurring (0.5 chance),
brightness, contrast and saturation in every iteration. Input
images are linearly scaled to have zero mean and unit norm.
SGD is optimized by Adam solver [12] with batch size of
1024 on Nvidia Titan X GPU and we use MatConvNet li-
brary [27] with a number of modification. We set weight
decay to 0.0005 and use batch normalization to avoid over-
fitting. Training is started with a learning rate of 0.001 and

Figure 4: Fine-tuning balancing term λ

divided by 10 at the 15th and 25th epochs and stopped at
30th epoch.

Training Data: We use non-aligned and curated version
of VGG Face dataset [17] which consist of around 1M
face images of 2,558 individuals who are not included in
Youtube Faces (YTF) [32] and Labeled Faces in the Wild
(LFW) [10] benchmark datasets. Unfortunately, the dataset
is publicised by means web links, thus some samples are
missing due to broken links. We end up training with re-
duced version of VGG dataset that consists 0.83M training
samples from 2,558 identities.

Testing: We evaluated performance of Max-Margin Loss
and other functions on commonly used YTF and LFW
datasets. For both, we follow the defined protocol for the
restricted settings with external training. After training, we
kept the models fixed and tested on those datasets without
further training unlike [17]. Images are aligned as provided
in YTF and for LFW, deep funneling [9] is used for align-
ment. We use embedding layer output of each image as
representation and average features of frames from the same
videos (only for YTF). Similarity between pairs of images
or videos is computed by cosine distance of mean feature
vectors.

4.2. Balancing Term Tuning

Despite motivations using set-based terms, sample-based
terms are necessary to stabilize supervision as set character-
istics may not be always fully presented in the feature space.
Therefore, we train our networks to obtain good features for
the first 15 epochs with only supervision of Softmax.

After keeping the pretrained model fixed, we combine
set-based loss functions with a balancing term (λ) which is
fine-tuned on a small subset2. According to the Figure 4, we
fix λ parameters to λM = 0.03, λP = 0.03, λC = 0.0001
in the rest of the experiments.

2One fifth of YTF data set



(a) Accuracies on YTF (b) AUC on YTF (c) 100%- EER on YTF

(d) Accuracies on LFW (e) AUC on LFW (f) 100%- EER on LFW

Figure 5: Comparison of the three set-based loss function with online, offline update strategies for set parameters.

λC Update AUC Acc. 100%- EER
0.003 Online 98.98 95.45 94.80

0.0001 Online 99.00 95.41 94.80
0.003 Both 98.91 95.43 94.80

0.0001 Both 99.06 95.77 95.10

Table 1: Performance of Center Loss (LS + LC) on LFW
dataset under different settings. The settings used in the
original Center Loss paper [31] (first line) is gradually im-
proved in our experiments.

4.3. Effectiveness of Online-Offline Updates

In order to justify the small changes we made with Cen-
ter Loss, we have done some controlled experiments to ob-
serve effect of using offline update and new finetuned λC
parameter. As can be seen in Table 1 Each seems to be con-
tributing slightly ending up with around %0.3 improvement
on LFW dataset.

Figure 5 show comparison of Max-Margin Loss with
other loss functions with different update rules. Although
we see close performances, Max-Margin Loss show slightly

better performance over other set-based terms. Effect of dif-
ferent update strategies show that offline update alone show
consistently better performances which is not expected. The
reason could be online set parameter update is done with too
big α parameter. We conclude that further investigation of
α parameter is needed

4.4. Benchmark Performances

Verification performance results of the proposed Max-
Margin Loss is compared with the other state-of-the-art
methods in Table 2 and other set-based functions in Figure
5 for LFW and YTF datasets. Among set-based terms, we
obtain the best performance with Max-Margin Loss where
we improve %0.35 − 0.6 over Softmax. The improvement
seems to be small as we add set terms after pre-training with
only softmax for 15 epochs which we have the 10 and 100
times lower learning rate. Yet, we are not interested achiev-
ing state-of-the-art performance as long as we can compare
different set-terms in a meaningful experimental settings.

While comparing with other methods, one should also
notice the differences in number of training images, iden-
tities, input size and network specifications. Most of those
studies have such advantages and not directly comparable



Method
#Training

Images #Ids
Input
Size

Network
(#Params.)

FT on
YTF or LFW

Accuracy
on YTF (%)

Accuracy
on LFW (%)

DeepFace [25] 4.4M 4,030 152×152 AlexNet(120M) No 91.4 97.35
VGG Face [17] 2.62M 2,622 224×224 VGG(138M) Yes 97.3 98.95
VGG Face [17] 2.62M 2,622 224×224 VGG(138M) No 91.6 -
LS + LM 0.83M 2,558 96×96 NNS1(26M) No 92.44 96.03

Table 2: Verification performance comparison of different loss functions and methods on YTF dataset. Note that our method
uses fairly less training samples with lower input size on a shallower network. Further we do not fine-tune our network on
the target datasets like [17]

with our results. For example, VGG Face[17] yields a sig-
nificant improvement in the results when they further train
(FT) their network on the test set (YTF and LFW) with cross
validation. Our baseline Softmax Loss achieve similar ac-
curacy with VGG Face[17] without FT, although VGG Face
is trained with around 3 times larger training set, 5 times
bigger input size and 5 times deeper network. While our
baseline score is around such state-of-the-art study, we can
argue that including such set-based terms would improve
their results as well as our framework is compatible with
their designs.

5. Conclusion

This paper studies joint sample-based and set-based em-
bedding learning for face recognition. We review different
set terms in the literature and propose nove Max-Margin
Loss. We also explain strategies to maintain set-based learn-
ing during training.

Our results show the contribution of different terms and
validity of the proposed set-based function which yields
slight improvement over softmax baseline. Further exper-
iments give us better insight about set-based learning meth-
ods. Without aiming is still an ongoing work.
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