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Abstract

Principal component pursuit (PCP) is a state-of-the-art
approach for background estimation problems. Due to their
higher computational cost, PCP algorithms, such as ro-
bust principal component analysis (RPCA) and its variants,
are not feasible in processing high definition videos. To
avoid the curse of dimensionality in those algorithms, sev-
eral methods have been proposed to solve the background
estimation problem in an incremental manner. We pro-
pose a batch-incremental background estimation model us-
ing a special weighted low-rank approximation of matri-
ces. Through experiments with real and synthetic video se-
quences, we demonstrate that our method is superior to the
state-of-the-art background estimation algorithms such as
GRASTA, ReProCS, incPCP, and GFL.

1. Introduction
Background estimation and moving object detection is

an important step in many computer vision systems and
video-surveillance applications. In the past decade, one of
the prevalent approaches used for background estimation
is to treat it as a low-rank and sparse matrix decomposi-
tion problem [1, 2, 24]. Oliver et al. [19] showed that when
the camera motion is small, the background is not expected
to change much throughout the video frames and they as-
sumed it to be low-rank. The seminal work of Lin et al.,

Wright et al., and Candès et al. [5, 18, 27], which is referred
as robust principal component analysis (RPCA), solves the
problem of background estimation and moving object de-
tection in a single framework.

Given a sequence of n video frames with each frame
ai ∈ Rm being vectorized, let the data matrix A =
(a1,a2, · · · ,an) ∈ Rm×n be the concatenation of all
the video frames. The foreground is usually sparse if its
size is relatively small compared to the frame size [5, 18,
27]. Therefore, it is natural to consider a matrix decomposi-
tion problem by writing A as the sum of its background and
foreground:

A = B + F,

where B,F ∈ Rm×n are the low-rank background and
sparse foreground matrices, respectively. RPCA solves:

min
B
‖A−B‖`1 + λ‖B‖∗, (1)

where ‖ · ‖`1 and ‖ · ‖∗ denote the `1 norm and the nuclear
norm (sum of the singular values) of matrices, respetively.

Consider a situation when a few, say k, principal direc-
tions are already specified and one wants to find a rank r
approximation of the data, where k ≤ r. In 1987, Golub et
al. [11] formulated the following constrained low-rank ap-
proximation problem (to be referred as GHS from now on)
to address this situation: GivenA = (A1 A2) ∈ Rm×n with
A1 ∈ Rm×k and A2 ∈ Rm×(n−k), find AG = (B̃1 B̃2)
such that
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(B̃1 B̃2) = arg min
B=(B1 B2)

B1=A1

rank(B)≤r

‖A−B‖2F , (2)

where ‖ · ‖F denotes the Frobenius norm of matrices. That
is, Golub et al. required a few columns, A1, of A be
preserved when looking for a low rank approximation of
(A1 A2). When A1 = ∅, we are back to the standard
problem of low-rank approximation: find B̃ such that

B̃ = arg min
B

rank(B)≤r

‖A−B‖2F . (3)

As it is well known, this problem is equivalent to principal
component analysis (PCA) [15] and has a closed form so-
lution using the singular value decomposition (SVD) of A:
if A = PDQt is a SVD of A with unitary matrices P,Q
and diagonal matrix D (of non-ascending diagonal entries),
then the solution to (3) is given by B̃ = Hr(A) := PDrQ

t,
where Dr is a diagonal matrix obtained from D by only
keeping the r largest entries and replacing the rest by 0. The
operator Hr is referred to as the hard thresholding opera-
tor. Using the thresholding operator, GHS problem (2) has
a closed form solution as the following theorem explains.

Theorem 1 [11] Assume rank(A1) = k and r ≥ k, the
solution B̃2 in (2) is given by

B̃2 = PA1
(A2) +Hr−k

(
P⊥A1

(A2)
)
, (4)

where PA1
and P⊥A1

are the projection operators to the col-
umn space of A1 and its orthogonal complement, respec-
tively.

Assuming some pure background frames are known,
GHS can be applied by using these background frames as
the first block matrix A1. Along a similar line, recently,
Xin et al. [28] proposed a supervised learning model called
generalized fused Lasso (GFL) which solves:

min
B

B=(B1 B2)
B1=A1

rank(B) + ‖A−B‖gfl, (5)

where ‖·‖gfl denotes a norm that is a combination of the `1
norm and a local spatial total variation norm (to encourage
connectivity of the foreground). To solve GFL problem
(5), Xin et al. [28] further specialized the above model
by requiring rank(B) = rank(A1). Note that, with this
specialization, problem (5) can be viewed as a constrained
low-rank approximation problem as in GHS problem (2)
and can be formulated as follows:

min
B=(B1 B2)
rank(B)≤r
B1=A1

‖A−B‖gfl. (6)

1.1. Incremental Methods

Conventional PCA [15] is an essential tool in numeri-
cally solving both RPCA and GFL problems. PCA oper-
ates at a cost of min{O(m2n),O(mn2)} which is due to
the SVD of an m × n data matrix. For RPCA algorithms,
the space complexity of an SVD computation is approxi-
mately O((m + n)r), where r is the rank of the low-rank
approximation matrix in each iteration, which is increas-
ing. For a high resolution video sequence characterized by
very large m, this results in high computational cost and
memory usage for the RPCA and GFL algorithms. For ex-
ample, the accelerated proximal gradient (APG) algorithm
runs out of memory to process 600 video frames each of
size 300 × 400 on a computer with 3.1 GHz Intel Core i7-
4770S processor and 8GB memory. In the past few decades,
incremental PCA (IPCA) was developed for machine learn-
ing applications to reduce the computational complexity of
performing PCA on a huge data set. The idea is to pro-
duce an efficient SVD calculation of an augmented ma-
trix of the form [A Ã] using the SVD of A, where A ∈
Rm×n is the original matrix and Ã contains r newly added
columns [29]. Similar to the IPCA, several methods have
been proposed to solve the background estimation problem
in an incremental manner [10, 17]. In 2012, He et al. [14]
proposed the Grassmannian robust adaptive subspace esti-
mation (GRASTA), a robust subspace tracking algorithm,
and showed its application in background estimation prob-
lems. More recently, Guo et al. [12] proposed another on-
line algorithm for separating sparse and low dimensional
subspace. Given an initial sequence of training background
video frames, Guo et al. devised a recursive projected com-
pressive sensing algorithm (ReProCS) for background esti-
mation (see also [13, 20]). Following a modified framework
of the conventional RPCA problem, Rodriguez et al. [21]
formulate the incremental principal component pursuit (in-
cPCP) algorithm which processes one frame at a time in an
incremental fashion and uses only a few frames for initial-
ization of the prior (see also [22, 23]). To the best of our
knowledge, these are the state-of-the-art incremental back-
ground estimation models.

1.2. Contributions

In this paper, we propose an adaptive batch-incremental
model for background estimation. The strength of our
model lies in finding the background frame indexes in a ro-
bust and incremental manner to process the entire video se-
quence. Unlike the models described previously, we do not
require any training frames. The model we use allows us to
use the background information from previous batch in a
natural way.

Before describing our main contribution, let us take a
pause here and revisit the idea of Golub et al. Inspired by
(2) and motivated by applications in which A1 may contain



noise, it makes more sense if we require ‖A1 − B1‖F
small instead of asking for B1 = A1 as in (2). This leads
Dutta et al. [7, 8, 9] to consider the following more general
weighted low-rank (WLR) approximation problem:

min
X=(X1 X2)
rank(X)≤r

‖ ((A1 A2)− (X1 X2))�W‖2F , (7)

where W ∈ Rm×n is a matrix with non-negative entires
and � denotes the Hadamard product. Using W = (W1 1)
in [7], the model (7) was applied to solve background es-
timation problems. Here we propose a batch-incremental
background estimation model using the WLR algorithm
of Dutta et al. to gain robustness. Similar to the `1 norm
used in conventional and the incremental methods, the use
of a weighted Frobenius norm makes WLR robust to the
outliers for background estimation problems [7, 9]. Our
batch method is fast and can deal with high quality video
sequences similar to incPCP and ReProCS. Some conven-
tional algorithms, for example, supervised GFL or Re-
ProCS, require an initial training sequence which does not
contain any foreground object. Our experimental results on
both synthetic and real video sequences show that unlike the
supervised GFL and ReProCS, our model does not require a
prior instead, it can estimate its own prior robustly from the
entire data. We believe the adaptive nature of the algorithm
is suitable for real time high-definition video surveillance
and for panning motion of the camera where the background
is slowly evolving.

Algorithm 1: WLR Algorithm

1 Input : A = (A1 A2) ∈ Rm×n (the given matrix),
W = (W1 1) ∈ Rm×n (the weight),
threshold ε > 0;

2 Initialize: (X1)0, C0, B0, D0;
3 while not converged do
4 Ep = A1 �W1 �W1 + (A2 −BpDp)CT

p ;
5 for i = 1 : m do
6 (X1(i, :))p+1 = (E(i, :))p(diag(W 2

1 (i, 1)

W 2
1 (i, 2) · · ·W 2

1 (i, k)) + CpC
T
p )−1;

end
7 Cp+1 =

((X1)Tp+1(X1)p+1)−1(X1)Tp+1(A2 −BpDp);
8 Bp+1 = (A2 − (X1)p+1Cp+1)DT

p (DpD
T
p )−1;

9 Dp+1 =

(BT
p+1Bp+1)−1BT

p+1(A2 − (X1)p+1Cp+1);
10 p = p+ 1;

end
11 Output : (X1)p+1, (X1)p+1Cp+1 +Bp+1Dp+1.

Algorithm 2: Incremental Background Estimation us-
ing WLR (inWLR)

1 Input : p, A = (A(1) A(2) . . . A(p)) ∈ Rm×n, τ >
0 (for SVT), α, β > 0 (for weights),
threshold ε > 0, kmax, ir ∈ N;

2 Run SVT on A(1) with parameter τ to obtain:
A(1) = B

(1)
In + F

(1)
In ;

3 Initialize the background block by B = B
(1)
In and

A(0) = A(1);
4 for j = 1 : p do
5 Identify the indices S of at most kmax columns of

A(j−1) that are closest to background using B
and F = A(j−1) −B;

6 Set k = #(S), r = k + ir;
7 Set the first block: Ã1 = (A(j−1)(:, i))m×k with

i ∈ S;
8 Define W = (W1 1) with W1 ∈ Rm×k where

(W1)ij are randomly chosen from [α, β];
9 Apply Algorithm 1 on Ã(j) = (Ã1 A

(j)) using
threshold ε and weight W to obtain its low rank
component B̃(j) and define F̃ (j) = Ã(j) − B̃(j);

10 Take the sub-matrix of B̃(j) corresponding to the
A(j) block such that A(j) = B(j) + F (j);

11 Update the background block: B = B̃(j);
end

12 Output : B = (B(1), B(2), ..., B(p)).

1.3. The WLR algorithm

We now give a brief overview of the WLR algorithm
proposed by Dutta et al. [8, 9]. Let rank(X1) = k. Then
any X2 such that rank(X1 X2) ≤ r can be given in the
form

X2 = X1C +BD,

for some matricesB ∈ Rm×(r−k), D ∈ R(r−k)×(n−k), and
C ∈ Rk×(n−k). Therefore, problem (7) with W = (W1 1)
of compatible block partition is reduced to:

min
X1,C,B,D

‖(A1 −X1)�W1‖2F + ‖A2 −X1C −BD‖2F .

(8)

The complexity of one iteration of Algorithm 1 isO(mk3 +
mnr) [8].

2. An incremental model using WLR
In this section, we propose an incremental weighted low-

rank approximation (inWLR) algorithm for background es-
timation based on WLR (see Algorithm 2 and Figure 1).
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Figure 1: A flowchart for WLR inspired background estimation model proposed in Algorithm 2.

Our algorithm takes the full advantage of WLR in which
a prior knowledge of the background space can be used
as an additional constraint to obtain the low rank (thus
the background) estimation of the data matrix A. Indeed,
we start by partitioning the original video sequence into
p batches: A = (A(1) A(2) . . . A(p)), where the batch
sizes do not need to be equal. Instead of working on the
entire video sequence, the algorithm incrementally works
through each batch. To initialize, the algorithm performs
a coarse estimation of the possible background frame in-
dices of A(1): we run the classic singular value threshold-
ing (SVT) of Cai et al. [4] onA(1) to obtain a low rank com-
ponent (containing the estimations of background frames)
B

(1)
In and let F (1)

In = A(1) − B(1)
In be the estimation of the

foreground matrix (Step 2). From the above, we obtain the
initialization for B and A(0) (Step 3). Then we go through
each batch A(j) using the estimates of the background from
the previous batch as prior for the WLR algorithm to get
the background B̃(j) (Step 9). The identification of the “best
background frames” is obtained by a modified version of the
percentage score model by Dutta et al. [6] to determine the
indices of frames that contain the least information of the
foreground (Step 5). This allows us to estimate k, r, and the
first block Ã1 which contains the background prior knowl-
edge (Steps 6-7). Weight matrix W = (W1 1) is chosen by
randomly picking entries of the first blockW1 from an inter-
val [α, β] using an uniform distribution, where β > α > 0
are large (Step 8). To understand the effect of using a large
weight in W1 we refer the reader to [7, 8]. Finally, we col-
lect background information for next iteration (Steps 10-
11). Note that the number of columns of the weight ma-
trix W1 is k which is controlled by bound kmax so that the
column size of Ã(j) is not growing with j. The output of
the algorithm is the background estimations for each batch

0 100 200 300 400 500 600
0.86
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0.92

0.94

0.96

0.98

1

Regular WLR, mean:0.9399

GHS model, mean:0.9524

inWLR, mean:0.9525

Figure 2: Comparison of MSSIM of WLR acting on all
frames, inWLR, and GHS inspired background estimation
model with frame size [144, 176] and p = 6.

collected in a single matrix B. When the camera motion is
small, updating the first block matrix Ã1 (Step 7) has trivial
impact on the model since it is not changing much. How-
ever, when the camera is panning and the background is
continuously evolving, this could be proven very robust as
new frames are entering in the video.

2.1. Complexity analysis

Now, we analyze the complexity of Algorithm 2 for
equal batch size. Primarily, the cost of the SVT algorithm
in Step 2 is only O(mn2

p2 ). Next, in Step 9, the complexity
of implementing Algorithm 1 is O(mk3 + mnr

p ). Note that
r and k are linearly related and k ≤ kmax. Once we obtain



Figure 3: SSIM map of inWLR and GHS inspired background estimation model, frame size [144, 176], and p = 6. Top to
bottom: Frame 420 with dynamic foreground, frame 600 with static foreground. Left to right: Original, ground truth, inWLR
SSIM, GHS SSIM, inWLR background, and GHS background. SSIM index of the methods are 0.95027 and 0.96152,
respectively.

(a)

(b)

Figure 4: Basic scenario frame: (a) 50, (b)100. Left to right: Original, inWLR background, GFL background, inWLR
SSIM, and GFL SSIM. The MSSIM of inWLR on two frames are 0.9595 and 0.9457, and that of GFL are 0.9534 and
0.9443, respectively.

a refined estimate of the background frame indices S as in
Step 5, and, form an augmented matrix by adding the next
batch of video frames, a very natural question in proposing
our WLR inspired Algorithm 2 is: why do we use Algo-
rithm 1 in each incremental step (Step 9) of Algorithm 2
instead of using a closed form solution (4) of GHS? We
give the following justification: the estimated background
frames Ã1 are not necessarily exact background, only es-
timations of background. So, GHS inspired model may
be forced to follow the wrong data while inWLR allows
enough flexibility to find the best fit to the background sub-
space. This is confirmed by our numerical experiments (see
Section 3.1 and Figure 2). Thus, to analyze the entire se-
quence in p batches, the complexity of Algorithm 2 is ap-
proximatelyO(m(k3p+nr)). Note that, the complexity of
Algorithm 2 is dependent on the partition p of the original
data matrix. Our numerical experiments suggest for video
frames of varying sizes, the choice of p plays an important
role and is empirically determined.

Unlike Algorithm 2, if Algorithm 1 is used on the entire
data set, and if the number of possible background frame in-
dices is k′, then the complexity isO(mk′

3
+mnk′). When

k′ grows with n and becomes much bigger than kmax in
order to achieve competitive performance, we see that Al-

Figure 5: Basic scenario frame 420: (a) GRASTA, (b) in-
WLR. Left to right: Original, background, and fore-
ground. GRASTA with subsample rate 10% recovers a frag-
mentary foreground and degraded background.

gorithm 1 tends to slow down with higher overhead than
Algorithm 2 does (see Table 1).

3. Qualitative and quantitative analysis

Due to the availability of ground truth frames for each
foreground mask, we use 600 frames of the Basic scenario
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Figure 6: ROC curves on Stuttgart Basic scenario to com-
pare between GRASTA, inWLR, incPCP, and ReProCS.

of the Stuttgart artificial video sequence [3] for quantitative
and qualitative comparisons. To capture an unified compar-
ison against each method, we resize the video frames to
[144,176] and for inWLR set p = 6, that is, we add a batch
of 100 new video frames in every iteration until all frames
are exhausted.

3.1. Comparison with GHS

Since the Basic scenario has no noise, once we estimate
the background frames, GHS can be used as a baseline
method in comparing the effectiveness of Algorithm 2. To
demonstrate the benefit of using an iterative process as in
Algorithm 1, we first compare the performance of Algo-
rithm 2 against the GHS inspired models. We also compare
regular WLR acting on all 600 frames with the parameters
specified in [9]. The structural similarity index (MSSIM) is
used to quantitatively evaluate the overall image quality as
it mostly agrees with the human visual perception [26]. To
calculate the MSSIM of each recovered foreground video
frame, we consider a 11 × 11 Gaussian window with stan-
dard deviation (σ = 1.5). We perceive the information how
the high-intensity regions of the image are coming through
the noise, and consequently, we pay much less attention
to the low-intensity regions. We remove the noisy compo-
nents from the foreground recovered by inWLR, F , by us-
ing a threshold ε1 (calculated implicitly in Step 5 of Al-
gorithm 2 to choose the background frames, see [6]), such
that we set the components below ε1 in F to 0. The average
computation time of inWLR is approximately in the range
17.829035 seconds to 19.5755 seconds in processing 600
frames each of size 144× 176. On the other hand, the GHS
inspired model and WLR take approximately 273.8382 and
64.5 seconds, respectively. The MSSIM presented in Fig-
ure 2, indicates that inWLR and GHS inspired model pro-
duce same result with inWLR being more time efficient than
GHS. Next in Figure 3, the SSIM map of two sample video

frames of the Basic scenario show both methods recover
the similar quality background and foreground frames. Fig-
ure 2 shows that to work on a high resolution video, inWLR
is more accurate than GHS and WLR.

3.2. Comparison with GFL

We compare the performance of inWLR with the GFL
model of Xin et al. [28]1. For both models we use 200
frames of the Basic sequence, each frame resized to
[144, 176]. From the background recovered and the SSIM
map in Figures 4 and 11, it is clear that both methods are
very competitive. However, it is worth mentioning that in-
WLR is extraordinarily time efficient compare to the GFL
model.

3.3. Comparison with other state-of-the-art models

In this section, we compare the performance of inWLR
against other incremental background estimation models
such as, GRASTA, incPCP, and ReProCS on 600 frames
of the Basic scenario of the Stuttgart sequence. For quan-
titative measure we use the receiver operating characteris-
tic (ROC) curve, the recall and precision (RP) curve, and the
MSSIM. For ROC curve and RP curve, we use a uniform
threshold vector linspace(0, 255, 100) to compare pixel-
wise predictive analysis between each recovered foreground
frame and the corresponding ground truth frame.

3.3.1 Comparison with GRASTA [14]

At each time step i, GRASTA solves the following opti-
mization problem: For a given orthonormal basis UΩs

solve
min
x
‖UΩs

x−AΩs
(:, i)‖`1 , (9)

where each video frame A(:, i) ∈ Rn is subsampled over
the index set Ωs ⊂ {1, 2, · · · , n} following the model:
AΩs

(:, i) = UΩs
x + FΩs

(:, i) + εΩs
, such that, x ∈ R|Ωs|

is a weight vector and εΩs
is a Gaussian noise vector of

same size. After updating x, one has to update UΩs . We set
the subsample percentage s to 0%, 10%, 20%, and 30% re-
spectively, estimated rank 60, and keep the other parameters
same as in [14]. The GRSTA code is obtained from author’s
website.2 Note that, for a lower estimated rank GRASTA
does not perform well. Referring the qualitative result in
Figure 5, we only provide the ROC curve and RP curve
to compare GRASTA with different subsamples s and in-
WLR (see Figure 6 and 8a). The ROC curves and RP curves
clearly show the superior performance of inWLR on the
Stuttgart Basic scenario.

3.3.2 Comparison with ReProCS [12]

ReProCS is a two stage algorithm. In the first stage, given
a sequence of training background frames, say t, the al-

1http://idm.pku.edu.cn/staff/wangyizhou/
2 https://sites.google.com/site/hejunzz/grasta



Figure 7: Basic scenario frame 123. Left to right: Original, inWLR background, ReProCS background, inWLR foreground,
ReProCS foreground, and ground truth. Both methods recover similar quality background, however, ReProCS foreground
has more false positives than inWLR.

Dataset ReProCS GRASTA inWLR incPCP WLR GHS
Basic 15.8122 22.39 17.829035 58.4132 64.0485 273.8382
Fountain - - 3.709931 - 7.135779 4.327475
Waving Tree 4.548824 - 3.3873 - 13.751490 42.302412

Table 1: Computational time comparison. All experiments were performed on a computer with 2.7 GHz Intel Core i7 pro-
cessor and 16 GB memory. The best and the 2nd best results are colored with red and blue, respectively. For frame numbers,
frame size, and p for inWLR see Section 3 and 4.

gorithm finds an approximate basis which is ideally of
low-rank. After estimating the initial low-rank subspace,
in the second stage, the algorithm recursively estimates
Ft+1, Bt+1, and the subspace in which Bt+1 lies. We use
200 background frames of the Basic sequence for initial-
ization of ReProCS. Figure 7 shows both methods recover
similar quality background. However, ReProCS foreground
contains more false positives than inWLR foreground. The
ROC curve, RP curve, and MSSIM in Figure 6, 8a, and 8b
comply with our claim quantitatively for the Basic se-
quence. Though the average computation time for ReProCS
is 15.644460 seconds which is better than inWLR.

3.3.3 Comparison with incPCP [21]

incPCP follows a modified framework of PCP but with
the assumption that the partial rank r SVD of first k − 1
background frames Bk−1 is known and using them Ak−1

can be written as Ak−1 = Bk−1 + Fk−1. Therefore for
a new video frame A(:, k) one can solve the optimization
problem as follows:

min
Bk,Fk

rank(Bk)≤r

‖Bk + Fk −Ak‖2F + λ‖Fk‖`1 ,

where Ak = [Ak−1 A(:, k)] and Bk = [UrΣrV
T
r B(:, k)]

such that UrΣrV
T
r is a partial SVD of Bk−1. According

to [21], the initialization step can be performed incremen-
tally. For the Stuttgart sequence, the algorithm uses the first
video frame for initialization. The incPCP code is down-
loaded from author’s website3. From the MSSIM presented

3https://sites.google.com/a/istec.net/prodrig/Home/en/pubs/incpcp

in Figure 8c and the background recovered by both meth-
ods in Figure 9, it seems that both methods perform equally
well on the Basic scenario. However, when the foreground
is static (as in frames 551-600 of the Stuttgart sequence),
the `1 norm in incPCP is unable to capture the foreground
object, resulting the presence of the static car as a part of the
background (see Figure 10). On the other hand, our inWLR
successfully detects the static foreground.

4. Results on real world sequences
In this section, we demonstrate the performance of in-

WLR on five challenging real world video sequences [16,
25], containing occlusion, dynamic background, and static
foreground. In Figure 11 we compare inWLR against GFL
and ReProCS on 60 frames of Waving Tree sequence. Re-
ProCS and GFL use 220 and 200 pure background frames
respectively as training data. In Figure 12 we compare in-
WLR only against ReProCS on two complex sequences: 80
frames of Lake, frame size [72, 90], and, 50 frames of Per-
son, frame size [120, 160]. In those sequences, for in-
WLR, we set p = 8 and 5, respectively. Due to the ab-
sence of ground truth we only provide qualitative compar-
ison. In Figure 13 we demonstrate the performance of in-
WLR on two data sets with dynamic background and semi-
static foreground. In almost every video sequence, inWLR
performs reasonably well. See Table 1 for the comparisons
between computational time.

5. Conclusion
In this paper we propose a novel background estima-

tion model which operates on the entire data set in a batch-
incremental way and adaptively determines the background
frames without requiring any prior estimate. The proposed
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Figure 8: (a) Precision-Recall curves on Stuttgart Basic scenario to compare between ReProCS, inWLR, and
GRASTA. MSSIM on Stuttgart Basic scenario to compare between: (b) ReProCS and inWLR, (c) incPCP and inWLR.

Figure 9: Basic scenario frame 420. Left to right: Original,
incPCP background, incPCP foreground, and inWLR back-
ground. Both methods work equally well in detecting the
dynamic foreground object.

model demands less on storage and allows slow change in
background. Through extensive qualitative and quantitative
comparison on real and synthetic video sequences, we es-
tablish our claim and demonstrate the robustness of our
model. The batch sizes and the parameters in our model
are still empirically selected. In future, we plan to propose
a more robust estimate of the parameters and explore the
possibilities in dealing with videos of more dynamic back-
ground using our algorithm.
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