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Abstract

Convolutional neural networks (CNN) based tracking
approaches have shown favorable performance in recent
benchmarks. Nonetheless, the chosen CNN features are
always pre-trained in different task and individual compo-
nents in tracking systems are learned separately, thus the
achieved tracking performance may be suboptimal. Be-
sides, most of these trackers are not designed towards real-
time applications because of their time-consuming feature
extraction and complex optimization details.In this paper,
we propose an end-to-end framework to learn the convo-
lutional features and perform the tracking process simul-
taneously, namely, a unified convolutional tracker (UCT).
Specifically, The UCT treats feature extractor and track-
ing process both as convolution operation and trains them
jointly, enabling learned CNN features are tightly coupled
to tracking process. In online tracking, an efficient updating
method is proposed by introducing peak-versus-noise ratio
(PNR) criterion, and scale changes are handled efficiently
by incorporating a scale branch into network. The proposed
approach results in superior tracking performance, while
maintaining real-time speed. The standard UCT and UCT-
Lite can track generic objects at 41 FPS and 154 FPS with-
out further optimization, respectively. Experiments are per-
formed on four challenging benchmark tracking datasets:
OTB2013, OTB2015, VOT2014 and VOT2015, and our
method achieves state-of-the-art results on these bench-
marks compared with other real-time trackers.

1. Introduction
Visual object tracking, which tracks a specified target in

a changing video sequence automatically, is a fundamental
problem in many aspects such as visual analytics [5], auto-
matic driving [6], pose estimation [8] and et al. On the one
hand, a core problem of tracking is how to detect and lo-
cate the object accurately in the changing scenario such as
illumination variations, scale variations, occlusions, shape
deformation, and camera motion [9, 12]. On the other hand,
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Figure 1. Comparisons of our approach with three state-of-the-art
trackers in the changing scenario. The compared trackers are two
recent real-time trackers: SiamFC [33] Staple [26], and another
fully convolutional tracker FCNT [36].

tracking is a time-critical problem because it is always per-
formed in each frame of sequences. Therefore, accuracy,
robustness and efficiency are main development directions
of the recent tracking approaches.

As a core components of trackers, appearance model
can be divided into generative methods and discriminative
methods. In generative model, candidates are searched to
minimize reconstruction errors. Representative sparse cod-
ing [4, 7] have been exploited for visual tracking. In dis-
criminative models, tracking is regarded as a classification
problem by separating foreground and background. Numer-
ous classifiers have been adapted for object tracking, such
as structured support vector machine (SVM) [2], boosting
[3] and online multiple instance learning [1]. Recently, sig-
nificant attention has been paid to discriminative correlation
filters (DCF) based methods [15, 16, 17, 35] for real-time
visual tracking. The DCF trackers can efficiently train a re-
pressor by exploiting the properties of circular correlation
and performing the operations in the Fourier domain. Thus
conventional DCF trackers can perform at more than 100
FPS [15, 25], which is significant for real-time applications.
Many improvements for DCF tracking approaches have also
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been proposed, such as SAMF [35] for scale changes, LCT
[17] for long-term tracking, SRDCF [16] to mitigate bound-
ary effects. The better performance is obtained but the high-
speed property of DCF is broken. What is more, all these
methods use handcrafted features, which hinder their accu-
racy and robustness.

Inspired by the success of CNN in object classifica-
tion [18, 19], detection [20] and segmentation [21], the vi-
sual tracking community has started to focus on the deep
trackers that exploit the strength of CNN in recent years.
These deep trackers come from two aspects: one is DCF
framework with deep features, which means replacing the
handcrafted features with CNN features in DCF trackers
[27, 28]. The other aspect of deep trackers is to design the
tracking networks and pre-train them which aim to learn the
target-specific features for each new video [29]. Despite
their notable performance, all these approaches separate
tracking system into some individual components. What
is more, most of trackers are not designed towards real-
time applications because of their time-consuming feature
extraction and complex optimization details. For example,
the speed of winners in VOT2015 [10] and VOT2016 [11]
are less than 1 FPS on GPU.

We address these two problems by introducing unified
convolutional networks (UCT) to learn the features and per-
form the tracking process simultaneously. This is an end-
to-end and extensible framework for tracking. Specifically,
The proposed UCT treats feature extractor and tracking pro-
cess both as convolution operation, resulting a fully convo-
lutional network architecture. In online tracking, the whole
patch can be predicted using the foreground response map
by one-pass forward propagation. What is more, efficient
model updating and scale handling are proposed to ensure
real-time tracking speed.

1.1. Contributions

The contributions of this paper can be summarized in
three folds as follows:

1, We propose unified convolutional networks to learn
the convolutional features and perform the tracking process
simultaneously. The feature extractor and tracking process
are both treated as convolution operation that can be trained
simultaneously. End-to-end training enables learned CNN
features are tightly coupled to tracking process.

2, In online tracking, efficient updating and scale han-
dling strategies are incorporated into the tacking frame-
work. The proposed standard UCT (with ResNet-101) and
UCT-Lite (with ZF-Net) can track generic objects at 41 FPS
and 154 FPS, respectively, which is of significance for real-
time computer vision systems.

3, Extensive experiments are carry out on tracking
benchmarks and demonstrate that the proposed tracking al-
gorithm performs favorably against existing state-of-the-art

methods in terms of accuracy and speed. Figure 1 shows a
comparison to state-of-the-art trackers on three benchmark
sequences.

2. Related works
Visual tracking is a significant problem in computer vi-

sion systems and a series of approaches have been success-
fully proposed for tracking. Since our main contribution is
an UCT framework for real-time visual tracking, we give a
brief review on three directions closely related to this work:
CNN-based trackers,real-time trackers, and fully convolu-
tional networks (FCN).

2.1. On CNN-based trackers

Inspired by the success of CNN in object recognition
[18, 19, 20], researchers in tracking community have started
to focus on the deep trackers that exploit the strength of
CNN. Since DCF provides an excellent framework for re-
cent tracking research, the first trend is the combination
of DCF framework and CNN features. In HCF [27] and
HDT [28], the CNN are employed to extract features in-
stead of handcrafted features, and final tracking results are
obtained by combining hierarchical response and hedging
weak trackers, respectively. DeepSRDCF [32] exploits
shallow CNN features in a spatially regularized DCF frame-
work. Another trend in deep trackers is to design the track-
ing networks and pre-train them which aim to learn the
target-specific features and handle the challenges for each
new video. MDNet [29] trains a small-scale network by
multi-domain methods, thus separating domain indepen-
dent information from domain-specific layers. C-COT [30]
and ECO [31] employ the implicit interpolation method to
solve the learning problem in the continuous spatial domain,
where ECO is an improved version of C-COT in perfor-
mance and speed. These trackers have two major draw-
backs: Firstly, they can only tune the hyper-parameters
heuristically since feature extraction and tracking process
are separate. And they can not end-to-end train and per-
form tracking systems. Secondly, none of these trackers are
designed towards real-time applications.

2.2. On real-time trackers

Other than accuracy and robustness, the speed of the vi-
sual tracker is a crucial factor in many real world applica-
tions. Therefore, a practical tracking approach should be
accurate and robust while operating at real-time. Classical
real-time trackers, such as NCC [22] and Mean-shift [23],
perform tracking using matching. Recently, discriminative
correlation filters (DCF) based methods, which efficiently
train a repressor by exploiting the properties of circular cor-
relation and performing the operations in the Fourier do-
main, have drawn attentions for real-time visual tracking.
Conventional DCF trackers such as MOSSE, CSK and KCF



can perform at more than 100 FPS [24, 25, 15]. Subse-
quently, a series of trackers that follow DCF method are
proposed. In DSST algorithm, tracker searches over the
scale space for correlation filters to handle the variation of
object size. Staple [26] tracker combines complementary
template and color cues in a ridge regression framework.
CFLB [48] and BACF [49] mitigate the boundary effects of
DCF in the Fourier domain. Nevertheless, all these DCF-
based trackers employ handcrafted features, which limits
better performance.

The recent years have witnessed significant advances of
CNN-based real-time tracking approaches. L. Bertinetto
et.al [23] propose a fully convolutional siamese network
(SiamFC) to predict motion between two frames. The net-
work is trained off-line and evaluated without any fine-
tuning. Similarly to SiamFC, In GOTURN tracker [34],
the motion between successive frames is predicted using
a deep regression network. These two tackers are able to
perform at 86 FPS and 100 FPS respectively on GPU be-
cause no fine-tuning is performed. On the one hand, their
simplicity and fixed-model nature lead to high speed. On
the other hand, this also lose the ability to update the ap-
pearance model online which is often critical to account for
drastic appearance changes in tracking scenarios. There-
fore, there still is an improvement space of performance for
real-time deep trackers.

2.3. On Fully Convolutional trackers

Fully convolutional networks can efficiently learn to
make dense predictions for visual tasks like semantic seg-
mentation, detection as well as tracking. Jonathan Long
et al. [21] transform fully connected layers into convolu-
tional layers to output a heat map for semantic segmenta-
tion. The region proposal network (RPN) in Faster R-CNN
[20] is a fully convolutional network that simultaneously
predicts object bounds and objectness scores at each posi-
tion. DenseBox [37] is an end-to-end FCN detection frame-
work that directly predicts bounding boxes and object class
confidences through whole image. The most related work
in tracking literatures is FCNT [36], which propose a two-
stream fully convolutional network to capture both general
and specific object information for visual tracking. How-
ever, its tracking components are still independently, so the
performance may be impaired. What is more, the FCNT can
only perform at 3 FPS on GPU because of its layers switch
mechanism and feature map selection method, which hin-
der it from real-time applications. Compared with FCNT,
our UCT treats feature extractor and tracking process in a
unified architecture and train them end-to-end, resulting a
more compact and much faster tracking approach.

3. Unified Convolutional networks for tracking
In this section, the overall architecture of proposed UCT

is introduced firstly. Afterwards, we detail the formulation
of convolutional operation both in training and test stages.

3.1. UCT Architecture

The overall framework of our tracking approach is a
unified convolutional architecture (see Figure 2), which
consists of feature extractor and convolutions performing
tracking process. We adopt two groups convolutional fil-
ters to perform tracking process which is trained end-to-
end with features extractor. Compared to two-stage ap-
proaches adopted in DCF framework within CNN features
[27, 28, 32], our end-to-end training pipeline is generally
preferable. The reason is that the parameters in all compo-
nents can cooperate to achieve tracking objective. In Figure
2, the search window of current frame is cropped and sent
to unified convolutional networks. The estimated new tar-
get position is obtained by finding the maximum value of
the response map. Another separate 1-dimentioanl convo-
lutional branch is used to estimate target scale and model
updating is performed if necessary. The solid lines indicate
online tracking process, while dashed box and dashed lines
are included in off-line training and training on first frame.
Each feature channel in the extracted sample is always mul-
tiplied by a Hann window, as described in [15].

3.2. Formulation

In the UCT formulation, the aim is to learn a series of
convolution filters f from training samples (xk, yk)k=1:t.
Each sample is extracted using another CNN from an image
region. Assuming sample has the spatial size M × N , the
output has the spatial size m × n (m = M/strideM , n =
N/strideN ). The desired output yk is a response map
which includes a target score for each location in the sample
xk. The convolutional response of the filter on sample x is
given by

R(x) =

d∑
l=1

xl ∗ f l (1)

where xl and f l is l-th channel of extracted CNN features
and desired filters, respectively, ∗ denotes convolutional op-
eration. The filter can be trained by minimizing L2 loss
which is obtained between the response R(xk) on sample
xk and the corresponding Gaussian label yk

L = ||R(xk)− yk||2 + λ

d∑
l=1

||f l||2 (2)

The second term in (2) is a regularization with a weight pa-
rameter λ.

In test stage, the trained filters are used to evaluate an
image patch centered around the predicted target location.
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Figure 2. The overall UCT architecture. The solid lines indicate online tracking process, while dashed box and dashed lines indicate off-line
training and training on first frame.

The evaluation is applied in a sliding-window manner, thus
can be operated as convolution:

R(z) =
d∑

l=1

zl ∗ f l (3)

Where z denote the feature map extracted from last target
position including context.

It is noticed that the formulation in our framework is sim-
ilar to DCF, which solve this ridge regression problem in
frequency domain by circularly shifting the sample. Dif-
ferent from DCF, we adopt gradient descent to solve equa-
tion (2), resulting in convolution operations. Noting that
the sample xk is also extracted by CNN, these convolution
operations can be naturally unified in a fully convolutional
network. Compared to DCF framework, our approach has
three advantages: firstly, both feature extraction and track-
ing convolutions can be pre-trained simultaneously, while
DCF based trackers can only tune the hyper-parameters
heuristically. Secondly, model updating can be performed
by SGD, which maintains the long-term memory of target
appearance. Lastly, our framework is much faster than DCF
framework within CNN features.

3.3. Training

Since the objective function defined in equation (2) is
convex, it is possible to obtain the approximate global op-
tima via gradient descent with an appropriate learning rate
in limited steps. We divide the training process into two
periods: off-line training that can encode the prior tracking
knowledge, and the training on first frame to adapt to spe-
cific target.

In off-line training, the goal is to minimize the loss func-
tion in equation (2). In tracking, the target position in last
frame is always not centered in current cropped patch. So
for each image, the train patch centered at the given object
is cropped with jittering. The jittering consists of transla-
tion and scale jittering, which approximates the variation in
adjacent frames when tracking. Above cropped patch also
includes background information as context. In training,

the final response map is obtained by last convolution layer
within one channel. The label is generated using a Gaussian
function with variances proportional to the width and height
of object. Then the L2 loss can be generated and the gra-
dient descent can be performed to minimize equation (2).
In this stage, the overall network consists of a pre-trained
network with ImageNet (ResNet101 in UCT and ZF-Net in
UCT-Lite) and following convolutional filters. Last part of
ResNet or ZF-Net is trained to encode the prior tracking
knowledge with following convolutional filters, making the
extracted feature more suitable for tracking.

The goal of training on first frame is to adapt to a spe-
cific target. The network architecture follows that in off-
line training, while later convolutional filters are randomly
initialized by zero-mean Gaussian distribution. Only these
randomly initialized layers are trained using SGD in first
frame.

Off-line training encodes prior tracking knowledge and
constitute a tailored feature extractor. We perform online
tracking with and without off-line training to illustrate this
effect. In Figure 3, we show tracking results and corre-
sponding response maps without or with off-line training.
In left part of Figure 3, the target singer is moving to right,
the response map with off-line training effectively reflects
this translation changes while response map without off-line
training are not capable of doing this. So the tracker with-
out off-line training misses this critical frame. In right part
of Figure 3, the target player is occluded by another player,
the response map without off-line training becomes fluctu-
ated and tracking result is effected by distractor, while re-
sponse map with off-line training still keeps discriminative.
The results are somewhat unsurprising, since CNN features
trained on ImageNet classification data are expected to have
greater invariance to position and same class. In contrast,
we can obtain more suitable feature tracking by end-to-end
off-line training.



Figure 3. From left to right: images, response maps without off-
line training and response maps with off-line training. Green and
red boxes in images indicates tracking results without and with
off-line training, respectively.

4. Online tracking
After off-line training and training on the first frame,

the learned network is used to perform online tracking by
equation (3). The estimate of the current target state is
obtained by finding the maximum response score. Since
we use a fully convolutional network architecture to per-
form tracking, the whole patch can be predicted using the
foreground heat map by one-pass forward propagation. Re-
dundant computation was saved. Whereas in [29] and [38],
network has to be evaluated for N times given N samples
cropped from the frame. The overlap between patches leads
to a lot of redundant computation.

4.1. Model update

Most of tracking approaches update their model in each
frame or at a fixed interval [15, 25, 27, 30, 31]. However,
this strategy may introduce false background information
when the tracking is inaccurate, target is occluded or out of
view. In the proposed method, model update is decided by
evaluating the tracking results. Specifically, we consider the
maximum value in the response map and the distribution of
other response value simultaneously.

Ideal response map should have only one peak value in
actual target position and the other values are small. On the
contrary, the response will fluctuate intensely and include
more peak values as shown in Figure 4. We introduce a
novel criterion called peak-versus-noise ratio (PNR) to re-
veal the distribution of response map. The PNR is defined
as

PNR =
Rmax −Rmin

mean(R\Rmax)
(4)

where

Rmax = maxR(z) (5)

and Rmin is corresponding minimum value of response
map. Denominator in equation (4) represents mean value of
response map except maximum value and is used to mea-
sure the noise approximately. The PNR criterion becomes
larger when response map has fewer noise and sharper peak.
Otherwise, the PNR criterion will fall into a smaller value.
We save the PNR and Rmax and calculate their historical
average values as threshold:

{
PNRthreshold =

∑T
t=1 PNRt

T

Rthreshold =
∑T

t=1 Rt
max

T

(6)

Model update is performed only when both two criterions
in equation (6) are satisfied. The updating is one step SGD
with smaller learning rate compared with that in the first
frame. Figure 4 illustrates the necessity of proposed PNR
criterion by showing tracking results under occlusions. As
shown in Figure 4, updating is still performed if only ac-
cording to Rmax criterion when target is under occlusion.
Introduced noise will result in inaccurate tracking results
even failures. The PNR criterion significantly decreases in
these unreliable frames thus avoids unwanted updating.

Rmax=0.46    PNR=112.5 Rmax=0.48    PNR=35.8

Figure 4. Updating results of UCT and UCT No PNR (UCT with-
out PNR criterion). The first row shows frames that the target is oc-
cluded by distractor. The second row are corresponding response
maps. Rmax still keeps large in occlusion while PNR significantly
decreases. So the unwanted updating is avoided by considering
PNR constraint simultaneously. The red and blue boxes in last im-
age are tracking results of UCT and UCT No PNR, respectively.

4.2. Scale estimation

A conventional approach of incorporating scale estima-
tion is to evaluate the appearance model at multiple resolu-
tions by performing an exhaustive scale search [35]. How-
ever, this search strategy is computationally demanding and
not suitable for real-time tracking. Inspired by [45], we in-
troduce a 1-dimensional convolutional filters branch to es-
timate the target size as shown in Figure 2. This scale filter
is applied at an image location to compute response scores
in the scale dimension, whose maximum value can be used
to estimate the target scale. Such learning separate convo-
lutional filters to explicitly handle the scale changes is more
efficient for real-time tracking.

In training and updating of scale convolutional filters,
the sample x is extracted from variable patch sizes centered
around the target:



size(Pn) = anW × anH n ∈ {−bS − 1

2
c, ..., bS − 1

2
c}
(7)

Where S is the size of scale convolutional filters, W and H
are the current target size, a is the scale factor. In scale esti-
mation test, the sample is extracted using the same way af-
ter translation filters are performed. Then the scale changes
compared to previous frame can be obtained by maximiz-
ing the response score. Note that the scale estimation is
performed only when model updating condition is satisfied.

5. Experiments
Experiments are performed on four challenging track-

ing datasets: OTB2013 with 50 videos, OTB2015 with 100
videos, VOT2014 with 25 videos and VOT2015 with 60
videos . All the tracking results are using the reported re-
sults to ensure a fair comparison.

5.1. Implement details

We adopt ResNet-101 in standard UCT and ZF-Net in
UCT-Lite as feature extractor, respectively. In off-line train-
ing, last four layers of ResNet and last two layers of ZF-Net
are trained. Our training data comes from UAV123 [47],
and TC128 [13] excluding the videos that overlap with test
set. In each frame, patch is cropped around ground truth
and resized into 224*224. The translation and scale jitter-
ing are 0.05 and 0.03, respectively. We apply stochastic
gradient descent (SGD) with momentum of 0.9 to train the
network and set the weight decay λ to 0.005. The model is
trained for 30 epochs with a learning rate of 10−5. In on-
line training on first frame, SGD is performed 50 steps with
a learning rate of 5 ∗ 10−7 and λ is set to 0.01. In online
tracking, the model update is performed by one step SGD
with a learning rate of 1 ∗ 10−7. S and a in equation (7) is
set to 33 and 1.02, respectively.

The proposed UCT is implemented using Caffe [39] with
Matlab wrapper on a PC with an Intel i7 6700 CPU, 48 GB
RAM, Nvidia GTX TITAN X GPU. The code and results
will be made publicly available.

5.2. Results on OTB2013

OTB2013 [14] contains 50 fully annotated sequences
that are collected from commonly used tracking sequences.
The evaluation is based on two metrics: precision plot and
success plot. The precision plot shows the percentage of
frames that the tracking results are within certain distance
determined by given threshold to the ground truth. The
value when threshold is 20 pixels is always taken as the
representative precision score. The success plot shows the
ratios of successful frames when the threshold varies from
0 to 1, where a successful frame means its overlap is larger

than this given threshold. The area under curve (AUC) of
each success plot is used to rank the tracking algorithm.

In this experiment, ablation analyses are performed to
illustrate the effectiveness of proposed component at first.
Then we compare our method against the three best track-
ers that presented in the OTB2013, Struck [2], SCM [42]
and TLD [43]. We also include recent real-time trackers
presented at top conferences and journals, they are KCF
(T-PAMI 2015) [15], Siamese-FC (ECCV 2016) [33], Sta-
ple (CVPR 2016) [26], SCT (CVPR 2016) [34]. What
is more, other recent trackers, HDT (CVPR2016) [28],
FCNT (ICCV 2015) [36], CNN-SVM (ICML 2015) [40],
DLSSVM (CVPR2016) [41] and HCF (ICCV2015) [27]
are also compared, these approaches are not real-time but
most of their speed is more than 10FPS. There are five deep
trackers and seven shallow trackers in total. The one-pass
evaluation (OPE) is employed to compare these trackers.

Figure 5. Precision and success plots on OTB2013 [14]. The
numbers in the legend indicate the representative precisions at 20
pixels for precision plots, and the area-under-curve scores for suc-
cess plots.

5.2.1 Ablation analyses

To verify the contribution of each component in our al-
gorithm, we implement and evaluate four variations of
our approach: Firstly, the effectiveness of our off-line
training is tested by comparison without this procedure
(UCT No Off-line), where the network is only trained
within the first frame of a specific sequence. Secondly, the
tracking algorithm that updates model without PNR con-
straint (UCT No PNR, only depends on Rmax) is com-
pared with the proposed efficient updating method. Last
two additional versions are UCT within multi-resolutions
scale (UCT MulRes Scale) and without scale handling
(UCT No Scale).

As shown in Table 1, the performances of all the varia-
tions are not as good as our full algorithm (UCT) and each
component in our tracking algorithm is helpful to improve
performance. Specifically, Off-line training encodes prior
tracking knowledge and constitute a tailored feature extrac-
tor, so the UCT outperforms UCT No Off-line with a large
margin. Proposed PNR constraint for model update im-



Approaches AUC Precision20 Speed (FPS)
UCT No Off-line 0.601 0.863 41

UCT No PNR 0.624 0.880 33
UCT No Scale 0.613 0.871 51

UCT MulRes Scale 0.629 0.893 22
UCT 0.641 0.904 41

Table 1. Performance on OTB2013 of UCT and its variations

proves performance as well as speed, since it avoids updat-
ing in unreliable frames. Although exhaustive scale method
in multiple resolutions improves the performance of tracker,
it brings higher computational cost. By contrast, learning
separate filters for scale in our approach gets a better per-
formance while being computationally efficient.

5.2.2 Comparison with state-of-the-art trackers

We compare our method against the state-of-the-art track-
ers as shown in 5.2. There are five deep trackers and seven
shallow trackers in total. Figure 5 illustrates the precision
and success plots based on center location error and bound-
ing box overlap ratio, respectively. It clearly illustrates that
our algorithm, denoted by UCT, outperforms the state-of-
the-art trackers significantly in both measures. In success
plot, our approach obtain an AUC score of 0.641, signifi-
cantly outperforms SiamFC and HCF by 3.3% and 3.6%,
respectively. In precision plot, our approach obtains a score
of 0.904, outperforms HCF and HDT by 1.3% and 1.5%,
respectively. It worth mentioning that our UCT provides
significantly better performance while being 13 times faster
compared to the FCNT tracker.

The top performance can be attributed to that our meth-
ods encodes prior tracking knowledge by off-line training
and extracted features is more suitable for following track-
ing convolution operations. By contrast, the CNN features
in other trackers are always pre-trained in different task
and is independently with the tracking process, thus the
achieved tracking performance may not be optimal. What
is more, efficient updating and scale handling strategies en-
sure robustness and speed of the tracker.

Besides standard UCT, we also implement a lite version
of UCT (UCT-Lite) which adopts ZF-Net [46] and ignores
scale changes. As shown in Figure 5, the UCT-Lite ob-
tains a precision score of 0.856 while operates at 154 FPS.
Our UCT-Lite approach is much faster than recent real-time
trackers, SiamFC and Staple, while significantly outper-
forms them in precision.

5.3. Results on OTB2015

OTB2015 [9] is the extension of OTB2013 and con-
tains 100 video sequences. Some new sequences are
more difficult to track. In this experiment, we com-
pare our method against the best trackers that presented

Figure 6. Precision and success plots on OTB2015 [9]. The num-
bers in the legend indicate the representative precisions at 20 pix-
els for precision plots, and the area-under-curve scores for success
plots.

in the OTB2015, Struck [2]. What is more, some re-
cent trackers are also compared, they are KCF (T-PAMI
2015) [15], DSST (T-PAMI 2017) [45], SiamFC (ECCV
2016) [33], Staple (CVPR 2016) [26], HDT (CVPR2016)
[28], HCF (ICCV2015) [27], FCNT (ICCV 2015) [36],
DLSSVM (CVPR2016) [41] and CNN-SVM (ICML 2015)
[40]. There are five deep trackers and four shallow track-
ers in total. The one-pass evaluation (OPE) is employed to
compare these trackers.

Figure 6 illustrates the precision and success plots of
compared trackers, respectively. The proposed UCT ap-
proach outperforms all the other trackers in terms of both
precision score and success score. Specifically, our method
achieves a success score of 0.611, which outperforms the
SiamFC (0.582) and Staple (0.581) method with a large
margin. Since the proposed tracker adopts a unified con-
volutional architecture and efficient online tracking strate-
gies, it achieves superior tracking performance and real-
time speed.

For detailed performance analysis, we also report the re-
sults on various challenge attributes in OTB2015, such as il-
lumination variation, scale changes, occlusion, etc. Figure 7
demonstrates that our tracker effectively handles these chal-
lenging situations while other trackers obtain lower scores.
Comparisons of our approach with three state-of-the-art
trackers in the changing scenario is shown in Figure 1.

5.4. Results on VOT

The Visual Object Tracking (VOT) challenges are well-
known competitions in tracking community. The VOT have
held several times from 2013 and their results will be re-
ported at ICCV or ECCV. In this subsection, we com-
pare our method, UCT with entries in VOT 2014 [44] and
VOT2015 [10].

VOT2014 contains 25 sequences with substantial varia-
tions. A tracker is re-initialized whenever tracking fails and
the evaluation module reports both accuracy and robustness,
which correspond to the bounding box overlap ratio and the
number of failures, respectively. There are two sets of ex-



Figure 7. The success plots of OTB2015 [9] for five challenge attributes: illumination variation, out-of-plane rotation, scale variation,
occlusion deformation and background clutter. In the caption of each sub-figure, the number in parentheses denotes the number of the
video sequences in the corresponding situation.

periments: trackers are initialized with either ground-truth
bounding boxes (baseline) or randomly perturbed ones (re-
gion noise). The VOT evaluation then provides a ranking
analysis based on both statistical and practical significance
of the performance gap between trackers. We compare our
algorithm with the top 7 trackers in VOT2014 challenges
[44]. What is more, we add additional three state-of-the-
art real-time trackers GOTURN (ECCV2016) [34], SiamFC
(ECCV2016 Workshop) [33] and Staple (CVPR2016) [26].

Figure 8. Accuracy and robustness rank plot on VOT2014.The bet-
ter trackers are located at the upper-right corner.

As shown in Figure 8, proposed UCT is ranked top both
in accuracy and robustness. With precise re-initializations,
UCT ranks second both in accuracy and robustness while
comprehensive performance is best. It worth mention-
ing that UCT significantly outperforms three state-of-the-
art real-time trackers in robustness rank. The similar per-
formance is obtained with imprecise re- initializations as
shown in region noise experiment results, which implies
that out UCT can achieve long-term tracking within a re-
detection module.

VOT2015 [10] consists of 60 challenging videos that are
automatically selected from a 356 sequences pool. The
trackers in VOT2015 is evaluated by expected average over-
lap (EAO) measure, which is the inner product of the em-
pirically estimating the average overlap and the typical-
sequence-length distribution. The EAO measures the ex-
pected no-reset overlap of a tracker run on a short-term se-

quence.
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Figure 9. EAO rank plot on VOT2015. The better trackers are
located at the right. The ranking of other trackers is consistent
with VOT2015.

Figure 9 illustrates that proposed UCT can ranked sev-
enth in EAO measures. None of top six trackers can perform
in real-time(their speed is less than 5 EFO). Since UCT em-
ploys end-to-end training, efficient updating and scale han-
dling strategies, it can achieve a great balance between per-
formance and speed.

6. Conclusions
In this work, we proposed a unified convolutional tracker

(UCT) that learn the convolutional features and perform the
tracking process simultaneously. In online tracking, effi-
cient updating and scale handling strategies are incorpo-
rated into the network. It is worth to emphasize that our pro-
posed algorithm not only performs superiorly, but also runs
at a very fast speed which is significant for real-time appli-
cations. Experiments are performed OTB2013, OTB2015,
VOT2014 and VOT2015, and our method achieves state-
of-the-art results on these benchmarks compared with other
real-time trackers.
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