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Abstract

In this paper, we demonstrate that computer vision

pipelines utilising deep neural architectures are well-suited

to perform automated Holstein Friesian cattle detection as

well as individual identification in agriculturally relevant

setups. To the best of our knowledge, this work is the

first to apply deep learning to the task of automated vi-

sual bovine identification. We show that off-the-shelf net-

works can perform end-to-end identification of individu-

als in top-down still imagery acquired from fixed cameras.

We then introduce a video processing pipeline composed

of standard components to efficiently process dynamic herd

footage filmed by Unmanned Aerial Vehicles (UAVs). We

report on these setups, as well as the context, training and

evaluation of their components. We publish alongside new

datasets: FriesianCattle2017 of in-barn top-down imagery,

and AerialCattle2017 of outdoor cattle footage filmed by

a DJI Inspire MkI UAV. We show that Friesian cattle de-

tection and localisation can be performed robustly with an

accuracy of 99.3% on this data. We evaluate individual

identification exploiting coat uniqueness on 940 RGB stills

taken after milking in-barn (89 individuals, accuracy =

86.1%). We also evaluate identification via a video process-

ing pipeline on 46,430 frames originating from 34 clips (ap-

prox. 20 s length each) of UAV footage taken during graz-

ing (23 individuals, accuracy = 98.1%). These tests suggest

that, particularly when videoing small herds in uncluttered

environments, an application of marker-less Friesian cattle

identification is not only feasible using standard deep learn-

ing components – it appears robust enough to assist existing

tagging methods.

1. Introduction and Motivation

This paper aims at providing a proof of concept that ro-

bust individual Holstein Friesian cattle identification can

occur automatically and non-intrusively using computer vi-

sion pipelines fuelled by standard architectures utilising

deep neural networks. We will explore practically relevant

Figure 1: Proposed Component Pipelines. (top) Off-the-

shelf baseline layout utilising still image input and compris-

ing a VGG-M 1024 end-to-end R-CNN trained for individ-

ual Friesian cattle identification. (bottom) Extended aerial

video monitoring pipeline with separation of species detec-

tion and individual identification components, added KCF

tracking unit for fast trajectory extraction, and enhanced

temporally-integrating individual identification component

combining an Inception V3 network feeding into a stan-

dard LSTM unit to utilise complementary information as

revealed across several frames in tracked RoI streams.

imaging setups using fixed and mobile camera platforms,

that is, top-down observations in-barn, as well as airborne

monitoring of freely grazing herds, respectively (see Fig. 1).

Holstein Friesian cattle are the highest milk-yielding

bovine type [57]; they are economically important and es-

pecially prevalent within the UK [44]. Identification and

traceability of these cattle is not only required by export

and consumer demands [6], but in fact many countries

have introduced legally mandatory frameworks [47] re-
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volving around national databases in conjunction with ear-

tagging [30, 7, 54]. Despite the heavy reliance of bovine

identification upon this tagging approach, its effectiveness –

as opposed to branding, tattooing [6] or electronic solu-

tions [51] – has been called into question on numerous oc-

casions, largely since ear-tags are subject to loss and physi-

cal damage [41]. In addition, animal welfare concerns have

been raised regarding ear-tagging [16, 60]. Therefore, the

automated and non-intrusive nature of visual bovine iden-

tification based on coat patterns promises both to aid effi-

ciency within the farm and to contribute to animal welfare.

2. Related Work

2.1. Biometric Bovine Identification

The problem of automated biometric bovine identifica-

tion has been well-studied over time. Approaches may be

separated into three categories: those that utilise cattle muz-

zle patterns, rarer systems that employ retinal, facial or body

scans, and those that exploit coat pattern characteristics.

Cattle muzzle patterns were first introduced as an

individually-unique, dermatoglyphic trait in 1922 [48].

This seminal work was extended in 1993 where significant

differences in cattle dermatoglyphics across breeds were

discovered [8]. Muzzle patterns form the foundation of

much research into semi-automated bovine identification

methods [35, 37]. In many cases, feature-description al-

gorithms such as Scale-Invariant Feature Transform (SIFT)

[39] or Speeded-Up Robust Features (SURF) [4] are em-

ployed. In particular, Noviyanto et al. utilise SIFT on 160

manually-acquired muzzle prints of 20 individuals after ap-

plying ink to the cattle’s muzzle [46], similarly to Mina-

gawa et al. [42]. These semi-automated solutions are im-

proved by approaches operating on muzzle images alone

[36, 58, 45, 25]. As an example, Awad et al. combine SIFT

and Random Sample Consensus (RANSAC) for feature ex-

traction and filtering to achieve 93.3% identification accu-

racy on muzzle images [19].

Alternative approaches to bovine identification include

constructing cattle facial representations based on Local Bi-

nary Pattern (LBP) texture features [9], utilising 3D visual

appearances [3] and retinal imaging technology [1]. Note

that advanced non-biometric computerised vision schemes

for identification exist too, including work that takes ad-

vantage of the European cattle ear-tagging mandate [47] by

applying text and character recognition in order to match

tagged individuals against respective Bovine Identification

Documents [59].

2.1.1 Coat Pattern Identification of Friesian Cattle

Holstein Friesian cattle are distinctive for exhibiting

individually-unique black & white (or brown & white) coat

patterns, patches and markings over their bodies (see Fig. 2

Figure 2: UAV Acquisition of a Friesian Cattle Herd.

Representative frame from AerialCattle2017 captured by a

DJI Inspire MkI UAV filming at 5 meters above ground. In-

dividual cows are resolved at approximately 100×300 pix-

els within frames resolved at 3840×2160 pixels captured at

a frame-rate of 24 fps. The animals’ distinctive black and

white coat patterns are clearly resolved and are used as an

individually-characteristic biometric entity in this work.

for examples). Building on early systems that used Prin-

cipal Component Analysis (PCA) and SIFT on image se-

quences [40], previous work has shown that dorsal pat-

terns alone form sufficiently complex visual alignments

for robust individual identification across a small herd [2].

This was achieved by extracting Affine SIFT (ASIFT) fea-

ture descriptors [43] from RGB-D-segmented coat patterns

and learning those properties that contribute beneficially

towards identification via a Radial Basis Function Sup-

port Vector Machine (RBF-SVM). However, this approach

comes with a high computational burden due to extensive

computations required for ASIFT feature calculation and

matching, which places limits on the practical use of the

framework.

2.2. Key Computational Methodologies

2.2.1 Deep Neural Architectures

Recent improvements in deep Convolutional Neural Net-

works (CNNs) have seen them outperform traditional

computer vision techniques in object detection [53, 22]

as well as image classification tasks across benchmark

datasets [34]. Regional Convolutional Neural Networks

(R-CNNs) combine these two tasks; candidate object loca-

tions are determined and subsequently classified [23]. Yet,

in its original form, R-CNNs are computationally expen-

sive to train and evaluate. With the introduction of shar-

ing convolutions across proposals in Fast R-CNN and SPP-

net [21, 26], significant improvements to efficiency were

made, although region proposal computation remained the

bottleneck. Circumventing this problem, Ren et al. pro-

pose the addition of a Region Proposal Network (RPN),

which shares convolutional features with the detection net-
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work leading to Faster-RCNN [49]. Furthermore, Region-

based Fully Convolutional Networks (R-FCNs) [12] – based

on fully convolutional architectures, such as FCN [38] – go

further and avoid the per-proposal evaluation of Fast and

Faster R-CNN. This change results in a significant speedup

over Faster R-CNN on the PASCAL VOC datasets [12].

2.2.2 Recurrent and Memory-bearing Networks

Recurrent Neural Networks (RNNs) introduce the notion of

memory across multiple evaluations of a network by addi-

tionally outputting information to the subsequent iteration.

This renders them useful for tasks such as image sequence

captioning where the processing of temporal or linked in-

formation requires retention.

Despite their intuitive simplicity, basic RNNs are

unable to learn long-term dependencies [5] via tradi-

tional training methods such as Back-Propagation Through

Time (BPTT) [61] or Real-Time Recurrent Learning

(RTRL) [50]. This is due to the temporal progression of

back-propagated error values being exponentially depen-

dent on the size of weights [28]. First introduced in 1997,

Long Short-Term Memory networks (LSTMs) [29] eradi-

cate this problem by design. The architecture of LSTM cells

or units enforce constant error flow, therefore preventing

back-propagated errors from exploding or vanishing [28].

Following the success of LSTM networks, extensions or

variations upon the original cell architecture have included

allowing gate layers to examine the cell state [20], arranging

networks of LSTM cells in a multidimensional grid [33],

introducing a depth gate to connect memory cells of ad-

jacent layers (Depth-Gated LSTM) [62], and many more.

Proposed in 2014, Gated Recurrent Units (GRUs) [11] have

been gaining popularity. They combine LSTM forget and

input gates together into a single ”update” gate as well as

other modifications resulting in a simpler model overall.

However, despite all these efforts, Greff et al. [24] find that

no variants significantly outperform the original LSTM ar-

chitecture over large-scale analysis of eight LSTM variants

covering three popular machine learning tasks. Further-

more, Jozefowicz et al. [32] identify a RNN architecture

that outperforms both LSTM and GRU units at only a small

proportion of evaluated tasks. Thus, the original LSTM ar-

chitecture is used in this work.

2.3. Paper Outline

The remainder of this paper is organised as follows: Sec-

tions 3 and 4 describe the employed approaches to cattle de-

tection and identification, respectively. Section 5 provides

details about the acquisition and pre-processing of the two

datasets: FriesianCattle2017 and AerialCattle2017. Results

and evaluations are then given in Section 6, whilst conclud-

ing remarks and details of future work are provided in Sec-

tion 7.

3. Species Detection and Localisation

A first principal goal is to detect and locate Friesian cat-

tle in images obtained from a top-down or aerial stand-

point (see Fig. 3). The deep network utilised to address

this problem is the R-CNN adaptation of the VGG CNN M

1024 network published as part of several other network ar-

chitecture proposals [10]. The core architecture consists of

5 stacked convolutional layers, which are shared with the

region proposal network – plus two fully connected layers.

Instead of training from scratch, weights were initialised

with a model trained on the ImageNet database [13] sup-

plied with the Faster-RCNN Python implementation [49].

The object detection and localisation task produces im-

age Regions of Interest (RoIs) or proposals in the form of

bounding boxes. Proposals can then be passed to a sub-

sequent process such as a tracking algorithm or individual

classifier. Operating on single images, forward propaga-

tion on an image yields a set of n bounding box rectan-

gles {bbox1
pred, bbox

2
pred, ..., bbox

n
pred} defined spatially by

bboxi
pred = ((xi

1, y
i
1), (x

i
2, y

i
2)) for all 0 < i ≤ n. Each pre-

dicted object RoI is also associated with scores that reflect

membership of each of the target class(es) such as cow and

background (see Fig. 3). By placing a confidence thresh-

old on the scores for the trained target class cow, predicted

RoIs can be retained for further processing or discarded ap-

propriately.

Figure 3: Species Detection and Localisation. Examples

of species detection and localisation for the (top) Friesian-

Cattle2017 indoor and (bottom) AerialCattle2017 outdoor

datasets using a R-CNN. (blue) Ground truth bounding

boxes for object class cow and (red) predicted cow object

bounding boxes with class membership score values.
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4. Individual Identification

4.1. Single Frame Individual Identification

In order to produce the simplest possible individual iden-

tification pipeline using R-CNNs operating on single im-

ages, the classes set is extended to include all m indi-

viduals of a particular cattle population explicitly. That

is, classes = {background, cow1, cow2, ..., cowm} where

|classes| = m + 1 to include the negative class case also

(background). In this way, the tasks of species detection

and individual identification for trained individuals are in-

corporated naturally within a single end-to-end process (see

Fig. 1, top). Whilst this setup is the most simple to build

and replicate, it does not allow for an effective and efficient

handling and processing of video.

4.2. Video­based LRCN Identification

Video – as opposed to a single still image of a scene,

event or environment – intrinsically provides an additional

(temporal) dimension of information relevant to individual

identification. We propose to incorporate information from

subsequent frames into the identification estimate to benefit

from complementary information revealed progressively.

In the vast majority of cases, an individual cow can be

tracked well within herd videos using the standard Ker-

nelised Correlation Filter (KCF) tracking algorithm [27]

given a good initialisation RoI yielded from the aforemen-

tioned species localisation component. This is since on av-

erage, cattle walk relatively slowly – D’Hour et al. find

the average Holstein walking speed to be 1.37 m/s over dis-

tances of 5.6 and 3.2 km for two trials [14]. Additionally,

cattle are unlikely to suddenly start walking backwards or

change their heading by more than ±30◦. Thus, if cowx is

present in frame fi, it is also likely to be present in fi+1

(given a sufficiently frequent frame-rate in source footage).

These factors combined with the fact that UAV-captured

source footage will exhibit positional and rotational vari-

ID

fn

CNN

LSTM LSTMLSTM

VISUAL

INPUT

CNNCNNCNN

LSTM

f1 f2 f3

VISUAL	

FEATURES

RECURRENT

LAYER

Figure 4: Recurrent Convolutional Architecture. Un-

rolled identification refinement pipeline for an input video

based on the LRCN architecture [15]. Visual features for

input video frames {f1, f2, ..., fn} are extracted via a CNN

for input into a LSTM layer ultimately yielding a ID predic-

tion.

ation due to winds, GPS inaccuracy, etc. contribute to-

wards variation in viewpoint, object configuration and/or

scale. However importantly, this often reveals the pres-

ence of further salient visual features useful for identifi-

cation purposes. Such continual assessment of an object’s

identity over time under varying parameters permits class

predictions to be refined and improved iteratively.

LSTM networks fundamentally operate on temporally-

based data series rendering them intrinsically oriented to-

wards the goals of this task. In application to the evaluation

of video and image sequences of length n, constituent indi-

vidual image frames are considered sequentially. For some

frame fi, output from LSTM layer(s) are fed as input to

layer(s) in the subsequent iteration for frame fi+1. In the

case of the task here, following processing of frame fn, a

final class-prediction vector is yielded for the entire input

sequence via a fully connected layer.

Convolutional visual feature representations of input in-

dividual frames are extracted prior to input into a LSTM

layer using the pool3-layer output of an Inception V3 CNN

[56]. Such a combination of CNNs and LSTMs – first in-

troduced by Donahue et al. [15] – is referred to as Long-

term Recurrent Convolutional Networks (LRCNs) and is

employed here for the task of spatio-temporal identifica-

tion. Figure 4 illustrates the standard LRCN pipeline used.

We propose that this core identification pipeline can then be

easily integrated into a complete video processing architec-

ture as illustrated in Figure 1, (bottom).

5. Datasets

In order to train and evaluate the efficacy of proposed

approaches, we make use of two datasets captured in prac-

tically relevant scenarios – namely FriesianCattle2017 and

AerialCattle2017. We publish both datasets for public use

online at: http://data.bris.ac.uk.

5.1. FriesianCattle2017

This dataset comprises 940 RGB images based on data

capture from the work preceding this paper [2]. Of those

images, there are 89 distinct Holstein Friesian individuals.

The data was captured over a two hour-long session via the

use of a Microsoft Kinect 2 camera affixed statically over

the walkway between holding pens and milking stations in

a real indoor farming environment. The camera was config-

ured to capture top-down still images of cattle dorsal coat

patterns at a rate of 0.5 Hz. A more in-depth discussion of

dataset acquisition, pre-processing steps, etc. is given in the

original paper [2]. Example images of individuals from the

dataset are given in Figure 5a.

5.1.1 Ground Truth Labelling

The use of R-CNNs intrinsically requires training data to

include ground truth bounding boxes as well as class labels
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(a) FriesianCattle2017 Dataset. Examples of normalised still im-

ages. The camera was affixed statically above a walkway between

holding pens and milking stations in a barn environment.

(b) AerialCattle2017 Dataset. Example frames from RoI streams

extracted from outdoor video data and forwarded as input to the

LRCN identification architecture.

Figure 5: Dataset Examples. Images from both indoor and outdoor datasets used in this work. (rows) Example individuals

and (columns) example instances (or frames) for a particular individual.

for each object RoI. The dataset ground truth labelling pro-

cess was therefore a two-fold task:

1. Bounding Box Annotation: After user annotation of

bounding boxes in an image, the generated data was

stored in an XML format aligned with that required by

the Faster-RCNN framework for data annotation. An-

notations were performed adhering to labelling guide-

lines of the VOC challenges [18] – specifically, the

VOC2012 guideline [17].

2. Individual/Class Labelling: Following bounding box

annotation, the users were sequentially presented each

labelled RoI and asked to identify the individual cow

contained within the presented bounding box.

5.1.2 Augmentation

During data capture, cows were free to walk from a hold-

ing pen to a milking station as they pleased. This results in

per-individual variation in the time spent within view of the

static acquisition system. Consequently, the number of im-

ages (or instances) obtained per individual are not balanced

across the population – the mean being µ = 15 images with

standard deviation σ = 19.9.

To balance the number of images per individual for train-

ing purposes, the dataset was augmented via image synthe-

sis. The target number of instances was chosen to be the

maximum number of original (non-synthesised) instances

for any particular individual (in this case, 127 images for

Cow 11). Additional images were synthesised by rotat-

ing original images by some random angle α about the

image centre (xc, yc) whilst maintaining the original im-

age resolution for dataset consistency. Bounding box co-

ordinates were also transformed by angle α. However,

since the Faster R-CNN implementation currently does not

support the parameterisation of object rotation (bounding

box angle), orthogonal bounding boxes were generated via

min,max functions of transformed coordinates. The neg-

ative implication of this is that more background pixels are

often included within ground truth object RoIs.

5.2. AerialCattle2017

The AerialCattle2017 dataset consists of 34 herd videos

of cattle captured from an aerial standpoint of an outdoor

agricultural field environment. Each video is approximately

20 seconds in length and is taken from a top-down perspec-

tive (see Fig. 2). For each video, cow regions were extracted

and used to produce cropped videos containing single in-

dividuals (examples provided in Fig. 5b). Following indi-

vidual cropping, the resulting regional dataset contains 23

individuals and a total of 160 videos for a mean of µ = 7
instances per individual with standard deviation σ = 3.87.

5.2.1 Acquisition

This aerial video dataset was acquired via the use of a DJI

Inspire MKI UAV or drone and its integrated camera/3-axis

gimbal system. It was flown above a herd of approximately

30 young Holstein Friesians in a nursery field at the Uni-

versity of Bristol’s veterinarian farm. During flights under

the supervision of veterinarian researcher Dr Becky Whay,

footage was captured over an hour-long period at a resolu-

tion of 3840x2160 pixels at 24 fps. Over the 34 acquired

videos, the UAV height from the ground was varied by 5

m decrements starting at 25 m and with the lowest height
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Figure 6: Species Detection and Localisation Failures.

Shown are examples where cattle detection failed due to:

(top) frame boundary clipping and (bottom) multi-cow

alignment.

being 5 m – note that altitudes were varied only in-between

video capture. This allowed the cattle to become accus-

tomed and comfortable with the physical and sonic presence

of the UAV – after initially exhibiting signs of some anxiety

towards it.

5.2.2 Ground Truth Labelling and Cropping

To produce ground-truth bounding box and class labels, the

first frame of each video was extracted and considered as for

the indoor, still-image dataset. Object bounding boxes were

manually annotated for these frames in accordance with la-

belling guidelines created for the VOC challenges [17, 18].

As for the aforementioned dataset, labelled bounding boxes

were subsequently categorised into respective individual

classes. To generate ground-truth bounding boxes for all

subsequent frames of each video, an instance of the KCF

tracking algorithm [27] was initialised for each RoI. Bound-

ing box coordinates are updated over frames and were di-

rectly used to crop images to individual size. Clipped/lost

regions were manually deleted to adhere to the VOC la-

belling guidelines. Cropped RoIs containing single cows

were then saved as independent videos and grouped accord-

ing to their original class label. Example frames yielded

from this process are given in Figure 5b.

6. Results and Evaluation

In this section, results and corresponding evaluations are

given for the three tasks of: (a) cattle/species detection and

localisation, (b) single frame identification, and (c) video-

based identification. All training and evaluation was con-

ducted using a 3.6 GHz AMD 8-core Bulldozer CPU with

an Nvidia GTX 1080Ti GPU and 32 GB of DDR3 RAM.

6.1. Cattle Detection and Localisation

We implement cattle detection and localisation using the

VGG CNN M 1024 network adapted for the Faster R-CNN

framework [49]. Written to support a Python API, the soft-

ware implementation of Faster R-CNN is founded upon the

Caffe deep learning library developed by Jia et al. [31].

The dataset used for evalutating detection and localisa-

tion performance of the R-CNN was formed as a union over

frames from the FriesianCattle2017 and AerialCattle2017

datasets. This combination yields improved solution gener-

alisation and avoids simplification of the detection task to-

wards a single agricultural environment. All original (non-

synthesised) images were used from the FriesianCattle2017

dataset. Every 12th frame (or a rate of 0.5 Hz) for each

AerialCattle2017 video was extracted. This combination

yielded the dataset consisting of 1077 images. We per-

formed 2-fold cross validation over this set.

Region predictions from the R-CNN are accepted as true

positives provided there is sufficient overlap with a same-

class ground truth bounding box via a binary threshold

tov = 0.5. Rectangle overlap is computed via Intersection-

over-Union (IoU):

ov =
bboxgt ∩ bboxp

bboxgt ∪ bboxp

(1)

where bboxgt and bboxp denote the ground truth and pre-

dicted bounding box regions respectively. Categorised de-

tections are subsequently used to compute class precision

and recall data. Mean Average Precision (mAP) is com-

puted here via the Area under Curve (AuC) for generated

precision-recall curves.

Table 1 summarises the 2-fold cross-validated perfor-

mance tests, whilst Figure 7 illustrates a detail from the cor-

responding precision-recall curves. The evaluation demon-
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Figure 7: Precision-Recall Curve for Detection. Detailed

section of the precision-recall curve for cattle detection and

localisation for each of the two folds of cross validation.
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strates that the task and data tested are well suited to the

employed R-CNN framework. It produces near perfect re-

sults of correctly localising cows across the datasets. Figure

6 depicts some of the few examples where cattle detection

failed. Examined failures consisted of: (a) erroneous de-

tections created by the alignment and proximity of multiple

cows or (b) false positive detections of partially-visible cat-

tle having no corresponding ground-truth label due to the

VOC labelling guidelines on object visibility/occlusion.

mAP (%)

Task Fold 1 Fold 2 Average

Detection & Localisation 99.02 99.59 99.3

Table 1: Species Detection Accuracy. mAP values for 2-

fold cross-validated performance tests for cattle detection

and localisation. mAP scores are computed via AuC for

generated precision-recall curves shown in Figure 7. The

R-CNN cattle detector produces near perfect results for the

task of correctly localising cows across the tested datasets.

6.2. Single Frame Individual Identification

For this task, the augmented (including synthesised im-

ages) FriesianCattle2017 dataset of indoor still images was

used. Following synthesis on the 940 original instances

Figure 8: 1-Frame Identification Failures. Shown are

ground-truth/prediction examples where single-frame cattle

identification failed due to: (top) no corresponding ground-

truth annotation from following VOC labelling guidelines

[17, 18], (middle) individual visual similarity and (bottom)

multi-cow alignment/proximity.

for 89 individuals, the ∼11,000 yielded instances were ran-

domly partitioned towards 2-fold cross validation. How-

ever, synthesised instances were never included in testing

sets. Similarly to the previous task of cattle detection and

localisation, the VGG CNN M 1024 network adapted for R-

CNN was also employed. Training end-to-end for 100,000

iterations for both folds, the mAP values given in Table 2

were obtained. Figure 8 illustrates occasions where identi-

fication failed. These were found to be due to visual similar-

ity across individuals and as for species detection; multiple

cow proximity/alignment and frame boundary clipping.

mAP (%)

Task Fold 1 Fold 2 Average

R-CNN Identification &

Localisation
87.21 84.93 86.07

Table 2: Single Frame Individual Identification Accu-

racy. Classification mAP for single frame individual iden-

tification and localisation on the indoor FriesianCattle2017

dataset over 2-fold cross validation via the use of a R-CNN

and the VGG CNN M 1024 network.

6.3. Video­based LRCN Identification

The dataset used for this task originates solely from the

outdoor video dataset (AerialCattle2017) and consists of

46,430 cropped image frames and 23 individual cows over

160 total video instances. Video instances were split into

40-frame long spatio-temporal streams. Performing this

stage for the entire data corpus resulted in 1064 labelled

streams, each containing a single individual. This data was

then partitioned1 into a ratio of 9:1 for training and testing.

1Data partitioned using the train test split SciKit-Learn

Python machine learning library function.
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Figure 9: Training towards Individual Identification.

Prediction accuracy for identification at different stages of

LSTM training over 1,000 epochs on the training and test-

ing datasets consisting of 957 and 107 streams, respectively.
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Figure 10: Precision-Recall Curve for Video Identifica-

tion Evaluation. Detailed precision-recall curve for LRCN

[15] identification on retained testing data consisting of 23

possible cow classes for 107 video streams.

To perform identification refinement, the Inception V3

network [56], an extension of GoogLeNet [55], was fine-

tuned on the 23-class training dataset. In particular, each

frame from the 957 training streams was used to fine-

tune Inception originally trained for the ImageNet Large

Scale Visual Recognition Challenge (ILSVRC) [52]. Sub-

sequently, all frames from each training stream were passed

through the re-trained network. The 2048-wide vector

yielded at the pool3-layer was captured in each case. Con-

volutional frame representations were then used to train a

single LSTM layer comprised of 256 cells. Figure 9 il-

lustrates prediction accuracies on the training and testing

datasets over 1,000 epochs, with detailed identification re-

sults given in Table 3. For each prediction, an ordered vec-

tor of size |classes| = 23 is produced with class confi-

dences ∈ [0, 1]. The predicted class label is taken to be the

index of the maximum value in that vector. A prediction is

then considered a true positive if the predicted and ground

truth class labels match.

Figure 10 shows a detailed section of the precision-recall

curve for the identification task, whilst some examples of

false positive classifications are given in Figure 11. In the

vast majority of failure cases, the individuals referred to by

predicted and ground truth class labels were visually simi-

lar. The quantity (number of white, black or brown patches),

Accuracy (%)

Task Training Testing

LRCN Individual Identification 99.79 98.13

Table 3: Video Identification Accuracy. Classification ac-

curacies of the LRCN setup after training for 1,000 epochs.

(a) Predicted and ground truth

IDs = {3, 10} respectively.

(b) Predicted and ground truth

IDs = {11, 14} respectively.

Figure 11: Video Identification Failures. Examples of

false positive classifications from LRCN [15] identification

on the AerialCattle2017 dataset. In all failure cases, dorsal

features are very similar in structure and positional distribu-

tion on the body.

position and shape/structure of coat pattern features were

found to bare strong resemblance across mistaken labels.

7. Conclusions and Future Work

This work demonstrates that the task of automatic Hol-

stein Friesian detection and individual identification can be

addressed via standard deep learning pipelines. For identi-

fication in particular, we show that convolutional-based ar-

chitectures are well suited towards learning and distinguish-

ing the properties of unique dorsal pattern and structure ex-

hibited by the species individually. Importantly, this pro-

cess can take place non-intrusively in practically relevant

settings, in contrast to the majority of existing identification

frameworks revolving around physical tagging.

Future work will include testing identification in fully

independent captured scenarios to avoid possible data cor-

relation completely. Throughout the identification process

conducted here, the agent (UAV) was flown manually and

merely captured data. It was not informed by the identifica-

tion process and therefore can be seen as passive; captured

video footage was analysed by the LRCN offline. Whilst

we have shown that this can prove sufficient in the scenar-

ios presented, future work will consider more complicated

setups of faster moving and larger herds, as well as tight an-

imal gatherings. In order to achieve sufficient identification

performance in those scenarios and minimise animal distur-

bance, our work will begin to involve active robotic agents

in an online identification process; that is, navigation will

be directly informed by the progress of monitoring tasks

and side parameters such as disturbance minimisation.
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