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Abstract

We present a monocular obstacle avoidance method

based on a novel image feature map built by fusing ro-

bust saliency features, to be used in embedded systems on

lightweight autonomous vehicles. The fused salient features

are a textural-directional Harris based feature map and a

relative focus feature map. We present the generation of

the fused salient map, along with its application for obsta-

cle avoidance. Evaluations are performed from a saliency

point of view, and for the assessment of the method’s appli-

cability for obstacle avoidance in simulated environments.

The presented results support the usability of the method in

embedded systems on lightweight unmanned vehicles.

1. Introduction

The goal of this paper is to present a monocular obsta-

cle avoidance method based on the fusion of robust salient

features deployable on lightweight unmanned vehicles.

Regarding monocular obstacle avoidance, there are sev-

eral methods that either only use visual features or augment

them with information from other sensors. For indoor envi-

ronments, in [27] a navigation framework was presented us-

ing a single image for detecting stationary objects and ultra-

sonic sensing to detect moving objects, using the difference

between the current and expected image for detecting static

obstacles. [19] used low resolution color segmentation and

object detection (trained for 8 object classes) for single cam-

era obstacle avoidance. In [18] an indoor obstacle avoid-

ance method is presented, where landmarks are extracted

using feature points and approximate spatial obstacle con-

tours are built using interest point matching among differ-

ent frames. In [1] a monocular obstacle avoidance method

is presented, where a series of captured frames are used to

construct a dense depth map every second to aid navigat-

ing around objects, but all computations are performed off-

board on a base station. In [34] obstacle avoidance was cre-

ated using low resolution images (for color segmentation) to

find ground objects and a sonar sensor for extracting depth

information, while in [32] indoor obstacle avoidance was

produced using optical flow extracted from image series for

finding objects and estimating depth. For outdoor environ-

ments, in [26] a monocular obstacle avoidance method was

introduced using supervised learning to learn depth cues

followed by [20], where monocular obstacle avoidance was

presented for aerial vehicles using Markov Random Field

classification modeling the obstacles using color and texture

features, training the model for obstacle classes with labeled

images. In [6] a visual navigation solution was described,

following a sequence of images acquired in a training phase,

avoiding new obstacles using the camera and a range scan-

ner. In [10] a monocular approach was presented for recog-

nizing forest trails and navigating a quadrotor micro aerial

vehicle in such an environment, by using a deep learning ap-

proach to recognize trail directions, not for avoiding obsta-

cles. In [7] an obstacle avoidance approach was presented

for autonomous watercrafts using a single camera, using op-

tical flow to detect and track potential obstacles, based on

an occupancy grid approach (using GPS and inertial sen-

sors). In [28] a deep convolutional network was used for

spatio-temporal cue analysis for object avoidance in traffic

conditions, by saliency-based modeling of the importance

of scene objects. [33] presents a salient object detection

method on monocular imagery for planetary rover robots

working on images with homogeneous background without

the need for a priori training. [15],[16] introduced a monoc-

ular obstacle avoidance method for both indoor and outdoor

environments, using a depth-like feature map (Dmap) based

on relative focus maps, not requiring a priori training or

learning of specific environments or objects categories. The

current work also uses the relative focus maps as an element

of the fusion process, and proposes a more robust and better

performing solution.

As the analyzed environments may be diverse, it might

be hard to make prior assumptions about specific surround-

ings. From a human vision point of view, the eyes are con-

tinuously fixating on the most important or salient areas or

targets (such as obstacles), meanwhile filtering the less rel-

evant visual information and calculating a saliency map. To
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model such behavior, saliency-based solutions have been

introduced for various environments. The method of this

paper uses a single camera without other sensors. It does

not work by detecting or recognizing objects, but on the

overall analysis of a fused salient feature map to avoid pos-

sible collisions. The approach has the benefits of not be-

ing scenario-constrained, not requiring a priori training and

not having any requirements or constraints regarding cam-

era motion or obstacle classes. The method is also frame

rate independent, since it processes single frames, thus it is

applicable in embedded systems of various capabilities. We

evaluated the proposed method through comparisons with

saliency methods and evaluated its obstacle avoidance ca-

pabilities in simulated environments. The fused salient fea-

ture map incorporates information about feature points, tex-

ture, edges and local orientation provided by the Textural-

Directional Harris based Features (TDHF) along with the

relative depth information (Dmap) features, resulting in a

more higher level and more reliable solution.

2. Salient Features for Obstacle Avoidance

In the following we present the steps of the Textural-

Directional Harris based Feature map (TDHF) and its fu-

sion with the relative focus feature map (Dmap) - Sec. 2.3 -

and its application for monocular obstacle avoidance.

2.1. Textural­Directional Feature Map

Since we do not assume to have a priori information

about obstacles, we use a bottom-up saliency approach, bi-

ologically inspired and task-independent, which is driven

by low-level image features which can be normalized and

combined, using different models and scales to calculate

a saliency value for image pixels. Recent state-of-the-art

saliency methods are using various features, like contrast

[5] or texture [31]; others use less traditional ones, like an-

alyzing the log spectrum of the image [12]. In [23] was

shown that orientation information from the gradients in

the vicinity of the interest points is a valuable feature for

object representation: interest points are calculated as the

local maxima of a modification of the Harris characteristic

function [11], emphasizing both edges and corners in a bal-

anced manner [14], then, based on orientation information,

relevant edges can be emphasized for creating a feature map

by fusing edges with other features.

Based on [23],[14], we will use the Textural-Directional

Harris based Feature (TDHF) model, calculated as a fusion

of structural and textural features. The structural part con-

tains improved edge data based on the modified Harris char-

acteristic function, interest point set and the main local ori-

entation map. The textural part is based on the texture dis-

tinctiveness map of [31].

(a) (b) (c) (d)

Figure 1. Main visual steps of the TDHF calculation: (a) is the

original image; (b) T texture distinctiveness map; (c) improved S

structure feature map; (d) TDHF feature map.

2.1.1 Texture Distinctiveness Map

The statistical texture distinctiveness model was introduced

in [31],[8] based on a sparse texture model of the image,

where rotation-invariant, neighborhood-based textural rep-

resentations are used to define representative texture atoms

in the image and to build a sparse model of 20 textures.

After extracting the texture model, the T (x,y) texture map

computes the distinctiveness of each texture compared to

the others, where a higher value defines a more distinct re-

gion. The distinctiveness value of an atom is assigned to

all of its pixels, resulting in the T map. Fig. 1 (b) shows

examples for extracted texture features.

2.1.2 Harris Based Feature Map and Direction Feature

Extraction

To emphasize the structural information of the image, [14]

proposed a modification of the Harris detector’s character-

istic function for object boundary detection. The local max-

ima of the Modified Harris for Edges and Corners (MHEC)

characteristic function formalizes an interest point set with

points on object boundaries. The proposed characteristic

function is based on the λ1 and λ2 eigenvalues of the Harris

matrix [11]:

Hmod = max(λ1,λ2). (1)

Structural information represented by the Hmod function

will be used in the proposed feature model. By extracting

its local maxima, the point set PMHEC (red pixels in Fig. 2
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(a) (b) (c)

(d)

Figure 2. Calculating the relevant orientations of the ROI: (a) input

image; (b) MHEC point set (red dots), the ϕ orientation values

are calculated for these pixels; (c) the DMFC improved directional

edge map; (d) shows the ϑ(ϕ) orientation histogram in black and

the correlated Gaussian functions for the salient directions in gray.

(b)) represents important contours and relevant direction in-

formation can be defined by analyzing their vicinities:

PMHEC=
{

pi :Hmod(pi)>Tmax , pi=argmax
r∈bi

{Hmod(r)}
}

,

(2)

where a pixel pi is a member of the set, if it has larger value

than its 8-connected neighbors and it exceeds an adaptive

Tmax threshold (calculated by Otsu’s method [29]).

Local direction as a feature has been adapted earlier for

edge and contour detection, however some [4],[30] cannot

handle multiple orientation cases (like corners), and some

[25],[3] calculate the orientation value on the pixel-level,

losing the scaling nature of the feature. Other methods ap-

ply histogram binning [35] which is only a loose estimation.

In our case the task is twofold: 1). proper direction informa-

tion has to be extracted, and 2). an edge detection method is

required which can handle directions and contours.

For the first point, we use an algorithm for direction fea-

ture extraction [24], using the PMHEC point set for salient

direction extraction. We analyze local gradient orientation

density (LGOD) [2] in a small Wn(i) neighborhood (n× n)

around the members of the PMHEC point set and assign the

main direction to the ith point:

ϕi = argmax
ϕ∈[−90,+90]

{λi} , (3)

λi(ϕ) =
1

Ni
∑

r∈Wn(i)

1

h
· ‖∇gr‖ · k

(

ϕ−ϕ∇
r

h

)

, (4)

where ∇gi is the gradient vector for the ith point with ‖∇gi‖
magnitude and ϕ∇

i orientation, Ni = ∑r∈Wn(i) ‖∇gr‖ and k(·)
is a non-negative, symmetric function, chosen as a Gaussian

smoothing kernel with h = 0.7 bandwidth parameter.

After calculating the ϕi for each point, we obtain a ϑ(ϕ)
orientation histogram, representing the main orientations of

the image (black in Fig. 2 (d)). To calculate the salient ori-

entation a Gaussian function (η(.), with m mean, dϑ stan-

dard deviation) is correlated iteratively to the ϑ(ϕ) [24] to

maximize α(m) (Fig. 2 (d) in gray):

α(m) =

∫
ϑ(ϕ)η(ϕ,m,dϑ) dϕ. (5)

The m mean represents the most correlating orientation.

The iteration stops if: 1). the correlated Gaussians cover a

fixed ratio (80%) of the PMHEC points; 2). the α correlation

rate is starting to decrease. The result of the process is a

set of salient orientations, the input for a direction selective

edge detection algorithm (described in the following).

2.1.3 Direction Selective Edge Map

Referring to the above, we need an edge detection which

can exploit the salient directions and can handle formations

with multiple orientations (like corners) on a higher, object

level. We apply the Morphological Feature Contrast (MFC)

operator [36], which is able to distinguish background tex-

tures and isolated salient features. A linear extension of

MFC, also introduced in [36], is able to extract linear fea-

tures in defined directions. MFC has separate operators for

bright and dark features, defined as the difference of the

original signal and one of its envelopes. After removing

texture details and extracting potential edges, we apply the

mentioned linear filter for linear feature detection. This em-

phasizes edges in the salient orientations and background

information is reduced, resulting in a less noisy and direc-

tional feature enhanced DMFC edge map (Fig. 2 (c)).

2.1.4 Textural-Directional Harris Based Feature Map

(TDHF)

We fuse the obtained DMFC edge map with the Hmod (Eq. 1)

Harris based feature map to include boundary information.

Both functions are rescaled to reduce their range, and the

directional-structural feature map has the following form

(visual examples in Fig. 1 (c)):

S = max(max(0, log(DMFC)),max(0, log(Hmod))). (6)

To further improve the salient feature map, we also in-

corporate textural information in the Textural-Directional

Harris based Feature (TDHF) model:

fTDHF = γ |∇S(x,y)|+(1− γ) |∇T (x,y)| , (7)
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(a)

(b)

Figure 3. (a) Example images from the MSRA dataset, rectangles

showing the regions extracted based on Dmap, (b) the Dmap fea-

ture maps.

where the γ is a balancing parameter between structural and

textural parts (a constant γ = 0.3 is used). Visual examples

for TDHF maps are shown in Fig. 1 (d).

2.2. Relative Focus Feature Map (Dmap)

The second element of the fused salient feature map

is obtained by the so called relative focus map extraction

method [17]. The method was originally introduced for

relative classification of image regions based on their esti-

mated blurriness, producing an intensity map with higher

values representing more in-focus regions. It was also

shown to be usable for separating differently textured re-

gions. Later it was also used for monocular obstacle avoid-

ance [15],[16], where the produced feature map (denoted by

Dmap) was the basis for suggesting possible movement di-

rections for ground and aerial robots. For the Dmap method,

we use 32×32 image blocks with 16 pixel overlap, and run

10 iterations on each block. Then, we use the obtained local

reconstruction errors in a linear classification producing the

Dmap feature map. Fig. 3 shows examples for generated

maps for images from the MSRA dataset [22].

2.3. Fused Salient Feature Map (Dmap+TDHF)

The final feature map Dmap+TDHF is the result of the

fusion of the Textural-Directional Harris based Feature map

(TDHF) with the relative focus feature map (Dmap). We

build on TDHF’s capability of producing a feature map in-

herently including feature point, texture, edge and local ori-

entation information thus providing a powerful source of

information that, when combined with the Dmap’s relative

depth information, results in a fused map that incorporates

both object-based and relative depth data.

The fused feature map is produced through the following

steps:

1. Extract Dmap ( fDmap).

2. Extract fTDHF.

3. Filter fTDHF to produce f ′TDHF:

(a) Extract blobs from fTDHF.

(b) For each blob, assign its maximum intensity

value to the whole region.

(a)

(b)

(c)

Figure 4. (a) Example images from the MSRA dataset, rectangles

showing the final regions, (b) the filtered f ′T DHF maps, (c) the final

Dmap+TDHF feature maps.

(c) Morphologically dilate the resulting image (with

a small 3× 3 rectangular structuring element to

eliminate eventual small holes), denoting the re-

sult as f ′TDHF.

4. Fuse the feature maps:

fDmap+T DHF = ε · fDmap +(1− ε) · f ′TDHF. (8)

Based on extensive empirical tests, we propose a con-

stant ε = 0.5 (except in the rare cases when the TDHF pro-

duces an empty map, then we use 1.0 as a fallback).

Fig. 4 shows some visual examples of the produced

fused feature maps, and the resulting marked rectangular

salient regions. During the evaluations from a saliency per-

spective (Sec. 3.1) these will be the maps and resulting re-

gions that will be used when comparing with other saliency

approaches. When using these maps for obstacle avoidance,

they will be looked upon from a reverse perspective, with

the goal being to avoid eventual collisions, as will be de-

tailed in the following section.

2.4. Using Dmap+TDHF for Obstacle Avoidance

A contribution of this paper is the use of the fused

Dmap+TDHF feature map for automatic monocular obsta-

cle avoidance. The main targeted platforms of this approach

are mobile sensing units, typically unmanned ground and

aerial robots. To use the above generated Dmap+TDHF

feature maps for avoiding collisions, our goal is to take the

produced maps and find regions in them which likely do not

contain near objects, i.e, we are looking for regions which

are non-salient, thus have the lowest intensity in the pro-

duced feature maps.

Following [15], we scan the resulting fused feature map

and we partition it into 3×3 regions Rm (m = 1...9), and we

look for regions that contain the maximum number of pix-

els that are below the detection threshold: R = max(SRm),
where SRm = |{Rm(i)|Rm(i)< τ}|; Rm(i) are the pixels in

region Rm and we set τ to 20%. If more regions produce

the same maximum R value, then the region will be picked
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which has the lower sum of feature map intensities that fall

below the detection threshold.

Based on the above, we can propose a movement direc-

tion, towards the region that has been selected. There can

be situations when no such region exists: either when there

is no such region at all (the map suggests an unavoidable

obstacle), or when we find such a region, but its area is too

small (usually we only accept regions with area larger than

5% of the frame). In such situations we propose a stop con-

dition, which means the method cannot suggest a movement

direction. When the method can find a movement direction

to propose, it will signal such directions as FWD, E, or W

(forward, right turn, left turn). In case of a “STOP” signal

the robot will make 20 degree left turns until a movement

direction can be proposed.

3. Evaluations

We present the results of evaluations regarding the pro-

posed Dmap+TDHF feature map from two points of view.

The first part deals with evaluating the obtained feature map

from a saliency point of view, for which we generate the

feature maps for the user labeled images of the Microsoft

Research MSRA Salient Object Database1,[22] and com-

pare it with other methods. In the second part, we evalu-

ate the performance of the proposed feature map for obsta-

cle avoidance in simulated environments, comparing with

other saliency-based methods. The main objective here is

to showcase a practically usable monocular obstacle avoid-

ance solution, showing that its usability rests on its good

performance from a saliency perspective.

3.1. Saliency­based evaluation

The MSRA dataset consists of a larger (20840 images

labeled by three users) and a smaller (5000 images labeled

by nine users) subset. To show the performance of the

proposed feature map, we compare it with several other

salient map generation methods: the Dmap method [16], the

Saliency Toolbox (SBOX)2 [13] (taking its ‘Winner Take

All’ outputs similarly to [22]), the Histogram Based Con-

trast (HC) and the Region Based Contrast (RC) methods

of [5], and the Spectral Residual (SR) method [12]. There

are several other salient region extraction methods, among

which we selected recent methods that also have usable

sources available that could be ported to different platforms.

For our purposes, i.e., monocular obstacle avoidance, the

main goal is not to produce pixel perfect salient regions, but

to be able to broadly estimate such regions so they can be

avoided. Thus, for each method, we fit rectangles on the

obtained feature maps (keeping the top 90% of the gener-

ated intensity maps and fitting rectangles over the obtained

1http://research.microsoft.com/en-us/um/people/jiansun/

salientobject/salient_object.htm
2http://saliencytoolbox.net

maps), and compare such rectangular regions with the sim-

ilar rectangular ground truth labels of the MSRA dataset.

First, for each image, we take all the ground truth regions

created by users (3 and 9 respectively), and we create an

average rectangular region for each image, which will be

the average rectangle of all the user-provided regions. Then

we extract the region boundaries with the proposed and the

compared methods for each image.

Then, we use the similarity between regions to com-

pare the ground truth and the generated regions. For com-

parisons, we use the same metrics as in [15], namely the

Boundary Displacement Error [9] (BDE) and the Jaccard-

index (i.e., intersection over union, IOU) [21] (J). Fig. 5

shows visual examples for accepted regions for images of

the dataset for all methods.

We included numerical comparison results in Table 1.

The first value (“%”) is the region acceptance rate accord-

ing to the metrics in [15] (i.e., regions have at least a 25%

overlap and the centers of mass are close together), while

the other values show the Jaccard/IOU similarity and the

BDE difference values. For the smaller dataset, the pro-

posed method achieves the highest acceptance rate, while

being a close second and third according to the Jaccard and

BDE values respectively.

For the larger dataset, the proposed method also achieves

the higher acceptance rate, while having the best Jaccard

value and a close second in BDE. Overall, we can state that

the proposed Dmap+TDHF method has a good saliency per-

formance and for our purposes it is good for extracting re-

gions to be avoided: it produces contiguous regions with

somewhat wider boundaries (suggested by larger BDE val-

ues), which in our case for obstacle avoidance is actually a

positive property. This will also be supported by the colli-

sion rate statistics.

3.2. Obstacle avoidance evaluation

For evaluating the proposed feature map’s performance

for obstacle avoidance we implemented the Dmap+TDHF,

Dmap, HC, RC and SR methods for ROS (the Robot Op-

erating System3). We performed tests of the methods in

simulated environments. For the simulations, we used a

virtual environment running in Gazebo4, with a simulated

TurtleBot ground robot equipped with a camera. The bot

was also equipped with bumpers to detect ground truth col-

lisions. Fig. 6 shows sample images for the environment.

First and foremost, our goal is to achieve a low collision

rate, thus creating a method that enables the autonomous

vehicle to browse around, rarely hitting obstacles. Fig. 7

(a) shows collision rates. Results contain the averages from

all 3 rooms of the virtual environment for a total of 1500

movements for each algorithm performed by the TurtleBot.

3http://www.ros.org
4http://gazebosim.org
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 5. Example images with obtained regions based on the extracted maps with (a,b) the proposed Dmap+TDHF; (c,d) Dmap [16]; (e,f)

SBOX [13]; (g,h) HC [5].

% µBDE σBDE µJ σJ

MSRA set B (5000 images, 9 labels)

SBOX 83.42 41.3 19.17 0.5 0.16

HC 82.08 34.33 24.74 0.58 0.22

RC 81.56 28.39 20.32 0.55 0.24

SR 24.3 46.45 19.64 0.36 0.16

Dmap 83.28 45.75 25.41 0.45 0.19

Dmap+TDHF 97.3 37.55 26.19 0.55 0.23

MSRA set A (20840 images, 3 labels)

SBOX 88.37 40.18 19.22 0.51 0.16

HC 86.76 35.76 23.42 0.56 0.19

RC 80.3 33.46 20.78 0.5 0.22

SR 25.53 47.67 19.19 0.36 0.16

Dmap 83.98 44.97 23.46 0.46 0.18

Dmap+TDHF 97.14 34.15 23.6 0.58 0.21
Table 1. Acceptance rate (%), mean (µ) and deviance (σ) of BDE

and the Jaccard similarities for MSRA sets A and B using the pro-

posed method (Dmap+TDHF), Dmap [16], SBOX [13], HC [5],

RC [5] and SR [12]. (Best values in bold.)

Figure 6. Images from the test environment.

Results show that the proposed approach has a lower colli-

sion rate than the other evaluated methods, i.e., when freely

browsing, the proposed method causes less bumps into ob-

stacles.

As described above, STOP signals are generated when

the methods cannot find a direction to propose at a given

situation (i.e., there seems to be no “way out” at a given po-

sition and point of view). Fig. 7 (b) shows the rates (w.r.t.

all performed moves) of the false STOP signals generated

by the different methods, i.e., when the methods falsely ob-

serve an unavoidable obstacle in front of the camera. The

proposed method has a relatively high false positive STOP

rate, however, when observed in combination with the col-

lision rate figures, the proposed method and Dmap are the

better performers. Among these two, Dmap+TDHF per-

forms with less collisions with a higher false positive rate,

which translates to a better practical performance, albeit

with more turns during the browsing movement of the robot.

To provide further details, Fig. 7 (c) shows the ratio of

movement direction proposals of the different methods. The

graphs show that overall the Dmap+TDHF and Dmap meth-

ods perform better, since they make more turns based on de-

tections - relevant part detailed in Fig. 7 (d), which shows

the aggregated right/left (E/W) turn ratios -, while the other

methods make more forward (FWD) movements (they de-

tect less obstacles) which is in accord with their higher col-

lision rates.

Regarding the relation between the proposed method

and Dmap, the figure shows that Dmap+TDHF has a de-

creased forward movement ratio and increased right/left

(E/W) movements, which is in accord with its lower col-

lision rate (since it detects obstacles better, it makes more

right/left turns to avoid them), which also results in a lower

stopping rate (stop is signaled when an algorithm cannot

find a “way out” from the current point of view).

Fig. 8 shows motion paths from the simulation for all

methods (the red dot shows the constant starting position).

The proposed approach enables the robot to move around

more freely and cover more area. Others tend to follow

longer linear paths between two collisions, while the pro-

posed method makes more turns during its browsing, going
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(a) (b) (c) (d)

Figure 7. (a) Collision rates for the simulated environment. Values are percentages w.r.t. all the performed bot movements. (b) The rates of

false STOP signals in the simulated environment for all methods. (c) The ratios of movement direction proposals of the different methods.

(d) The aggregated right/left (E/W) turn ratios w.r.t. all movements for all methods.

(a) Dmap+TDHF (b) Dmap (c) HC

(d) RC (e) SR (f) The top view of the sce-

nario.

Figure 8. Visualized movement positions/paths from a simulated

scenario for all methods.

more around obstacles than hitting them. This supports the

general conclusion that the proposed approach is better in

avoiding obstacles.

Regarding computational time, we evaluated the pro-

posed method on several platforms, and compared it with

the Dmap approach which ran with 1 frame/second on 3-

5 years old hardware. Our goal was to achieve at least

the same performance for Dmap+TDHF on current hard-

ware. The hardware were smartphones with Qualcomm

Krait 400/MSM 8974 2.3 GHz and Exynos M1 2.60 GHz

(denoted by A1 and A2); an ODROID-XU4 with 2GHz

Cortex-A15 (denoted by XU4); a desktop PC with Intel

Core i7 930 2.80 GHz (denoted by PC). The results are

shown in Fig. 9. There are still optimization possibili-

ties, yet the numbers show that at least a 1 frame/second

speed can be achieved on current hardware. These results

combined with the average 2-3% collision rate support real

world applicability.

4. Conclusions

We presented a monocular obstacle avoidance method

based on the fusion of structural and directional salient fea-

tures. The intended platforms are embedded systems for

autonomous vehicles as a part or a basis for visual naviga-

tion. The method does not need a priori training, is not con-

Figure 9. Time requirements of the proposed Dmap+TDHF and

the Dmap approaches for the processing of a single frame on all

evaluated platforms.

strained to a particular application scenario, is frame rate

independent, thus usable on embedded vision systems with

varying capabilities, has a low collision rate, and shows a

performance level suitable for deployment.
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