
Video Instance Segmentation 2019: A winning approach for combined
Detection, Segmentation, Classification and Tracking.

Jonathon Luiten∗

RWTH Aachen University
luiten@vision.rwth-aachen.de

Philip H.S. Torr
University of Oxford
phst@robots.ox.ac.uk

Bastian Leibe
RWTH Aachen University

leibe@vision.rwth-aachen.de

Abstract

Video Instance Segmentation (VIS) is the task of localiz-
ing all objects in a video, segmenting them, tracking them
throughout the video and classifying them into a set of pre-
defined classes. In this work, divide VIS into these four
parts: detection, segmentation, tracking and classification.
We then develop algorithms for performing each of these
four sub tasks individually, and combine these into a com-
plete solution for VIS. Our solution is an adaptation of Un-
OVOST, the current best performing algorithm for Unsu-
pervised Video Object Segmentation, to this VIS task. We
benchmark our algorithm on the 2019 YouTube-VIS Chal-
lenge, where we obtain first place with an mAP score of
46.7%.

1. Introduction
Video Instance Segmentation (VIS) is the task of local-

izing, segmenting, classifying and tracking all instances of
a set of object classes within a video. This task can be seen
as the extension of Instance Segmentation [10] to the video
domain. This extension to video is a natural next step for
the computer vision community in the search for algorithms
that can understand real world scenes through the eyes of a
video camera. This VIS task was recently introduced in
[28], with the release of the YouTube-VIS dataset (YT-VIS)
which is the YouTube-VOS [27] dataset adapted to the VIS
task for 40 different object categories.

VIS differs from Semi-Supervised Video Object Seg-
mentation (VOS) in that in VIS no first frames seg-
mentations are given to guide which objects should be
tracked, and from Unsupervised Video Object Segmenta-
tion (UVOS) in that the objects to be tracked are set by pre-
defined classes rather than whichever objects are salient in
the video. Given the similarities of VIS to UVOS, we pro-
pose to adapt the current best performing UVOS method,
UnOVOST [29], to the VIS task. To do this we divide the
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VIS task into four components: Detection, Classification,
Segmentation and Tracking. We focus on improving de-
tection, classification and segmentation specifically for the
VIS task and then using these as input to the UnOVOST
algorithm for tracking.

Our final VIS solution is evaluated on the 2019 YT-VIS
challenge, where we obtain on mAP score of 46.7% which
obtains first place in the challenge, and outperforms the
previous VIS state-of-the-art by more than 14.4 percentage
points in mAP.

2. Related Work

Video Instance Segmentation. VIS is introduced in [28],
where they provide the YT-VIS dataset, an adaption of [27]
to this new task. This contains 40 object classes, including
people, vehicles, animals and other common objects. As a
baseline they adapt Mask R-CNN [5] by adding an asso-
ciation head used to track objects over time. Their unified
architecture can be trained end-to-end for detection, classi-
fication, segmentation and tracking. This is in contrast to
our work where we tackle each of these components sepa-
rately to achieve maximum performance.

Multi-Object Tracking and Segmentation. Multi-Object
Tracking and Segmentation (MOTS) [22] is very similar to
VIS in that objects are to be tracked and segmented in video
given a set of classes. MOTS differs in that it contains less
classes, requires that masks do not overlap and has much
longer videos with many more objects that frequently ap-
pear and disappear. Because of these differences the eval-
uation metrics used for these tasks are very different, but
the current state-of-the-art approach is very similar, a Mask
R-CNN adapted with a association head for tracking [22].

Unsupervised Video Object Segmentation. Another task
related to VIS is Multi-Object Unsupervised Video Object
Segmentation (UVOS) [1]. In UVOS objects are also re-
quired to be tracked and segmented throughout a video,
but there is no given set of object classes which need to
be segmented. Instead objects need to be tracked if they



are “salient” throughout a whole video sequence. Unlike in
VIS these objects don’t need to be assigned a category label,
but must not have any overlapping pixels between masks.
Recently, the first DAVIS challenge on UVOS was held at
CVPR’19. The winning method, and current state-of-the-
art for the UVOS task is UnOVOST [29]. This method
tracks objects in two stages, first building up short tracklets
based on optical flow motion consistency, before merging
these into long tracks using the visual similarity of track-
lets given by a ReID embedding network. In this work we
adapt this method to the VIS task by changing the way that
detection, classification and segmentation are performed,
but keeping the core tracking algorithm on UnOVOST un-
changed.

Semi-Supervised Video Object Segmentation Semi-
Supervised Video Object Segmentation (VOS) is also re-
lated to VIS. In VOS the objects to be tracked and seg-
mented are given as segmentation masks in the first frame.
VOS was first introduced in [18] for single objects and ex-
tended to multiple objects in [19]. A large scale dataset
for VOS was introduces in [27]. Current best performing
VOS methods either propagate labels from the first frame
[23, 21], or detect and segment potential objects and then
link these over time [13]. Our approach follows this second
paradigm, but isn’t able to use the first frame as guidance
for which objects should be tracked, instead tracking all ob-
jects belonging to a set of classes. We also adapt the seg-
mentation networks and ReID networks from [13], as these
perform very well, winning the 2018 DAVIS Challenge [11]
and the 2018 YouTube-VOS challenge [12], and obtaining
2nd in the 2019 DAVIS Challenge [14].

Instance Segmentation and Object Detection. The task
of instance segmentation was introduced in [10] and was an
extension of the popular task of object detection, from pre-
dicting bounding boxes to predicting segmentation masks.
VIS can be seen as extending this task further to video. Be-
cause of this, the evaluation metrics for VIS are directly
taken from Instance Segmentation [10] and only adapted to
work across a whole video rather than a single image. VIS
can then be approached as performing instance segmenta-
tion on each frame, and then linking these segmentations
through time.

3. Method

Overview. Our approach is to adapt UnOVOST [29],
which won the 2019 DAVIS Challenge on UVOS, to the
VIS domain. To do this, we divide the VIS task into four
subtasks and find solutions for each separately.

Detection. For detection we adapt a Mask R-CNN [5] de-
tector (similarly to UnOVOST). However the detector needs
to be adapted to the YT-VIS benchmark to detect the 40 ob-

ject classes. We use a Mask R-CNN implementation from
TensorPack [24], using a ResNet-101 [6] model with a Fea-
ture Pyramid Network [9], group normalisation [25] and
cascade [2]. This model is pretrained on COCO [10] from
scratch without ImageNet [4] pretraining.

To adapt this network to VIS, we created a training set
by combining the YT-VIS [28], COCO [10] and OpenIm-
ages [8] datasets. We trained this detector on 39 classes,
the 40 classes of YT-VIS with “monkey” and “ape” com-
bined. This is because OpenImages only has a class which
is a mix, and because in the YT-VIS training set it is un-
clear exactly what the difference between these two classes
should be (e.g. baboons are labeled as both ape and mon-
key, some gorillas mislabeled as monkeys). Thus we detect
these classes together and rely on our classifier later to dis-
tinguish between the two.

For COCO we use the 19 classes which overlap with
the YT-VIS classes. The “bird” class was set to ignore
regions (as multiple birds such as owl, eagle and duck
are in YouTube-VOS). We map the OpenImages classes
to YouTube-VOS classes, with all of our 39 classes be-
ing mapped to by at least one OpenImages class. We only
use images that contain at least one annotation from our 39
classes that is not a person (because of too many people in
OpenImages). We set all of the background of OpenImages
images to be ignore regions and we don’t sample negatives
from this dataset (as OpenImages is not densely annotated).
We reweigh how often we sample each image during train-
ing for class balancing. Classes are sampled such there in
one epoch there are at least 5000 examples of each class.
This results in sharks being sampled 18 times more often
than horses. Also images form the YT-VIS dataset are sam-
pled three times more often than those in COCO and Open-
Images.

Classification. The classification branch our Mask R-CNN
detector works reasonably well, but still often misclassifies
examples. To improve this, we use a ResNeXt-101 32x48d
classifier [26] pretrained on 940 million Instagram images
[15], before being trained on ImageNet [4]. We then defined
a mapping of ImageNet (INet) classes to YT-VIS classes.

This mapping results in 310 of the 1000 INet classes be-
ing mapped to our 40 YT-VIS classes, with 123 INet classes
being mapped to dog and 20 to truck. Some classes are
not represented (person, skateboard, giraffe, hand and surf-
board). Some INet classes are mapped to multiple YT-VIS
classes, e.g. “Amphibious vehicle” being mapped to both
boat and truck. There are 11 INet classes mapped to just
monkey, 2 to just ape and 7 to both due to the ambiguity in
YT-VIS as to what is a ape and what is a monkey.

The final INet classification score for each YT-VIS class
is then the sum of the classification scores for all of the con-
tributing INet classes.

The final classification scores were then a weighted com-



mAP AP50 AP75 AR1 AR10
Ours 46.7 69.7 50.9 46.2 53.7

foolwood 45.7 67.4 49 43.5 50.7
bellejuillet 45 63.6 50.2 44.7 50.3

linhj 44.9 66.5 48.6 45.3 53.8
minmingdii 44.4 68.4 48.7 43.6 50.8
xiAaonice 40 57.8 44.9 39.6 45.2

guwop 40 60.8 43.9 41.2 49.1
exing 39.7 62.1 42.6 41.4 46.1

MaskTrack R-CNN[28] 32.3 53.6 34.2 33.6 37.3

Table 1. Results in the 2019 YouTube-VIS Challenge, compared
to top 8 other participants, and the previous state-of-the-art.

bination of the scores from our Mask R-CNN detector and
our INet trained classifier.

Segmentation. UnOVOST [29] used segmentations from
Mask R-CNN maskrcnn. In [13], is was shown that by us-
ing a separate segmentation network on bounding box crops
performs much better. We adopt this network from [13], a
variant of DeepLabV3+ [3]. We take the pretrained weights
from [13] and finetune this on the YT-VIS dataset [28] for
the 40 classes.

Tracking. We use UnOVOST [29] to link our given seg-
mentation masks in time to consistent object tracks. Un-
OVOST works in two stages. It first builds tracklets by link-
ing together segmentations using optical flow. For a mask
in frame t, we check the overlap between the mask gener-
ated by warping this mask into frame t + 1 using optical
flow, and the masks in frame t+1. If this overlap is greater
than a threshold then these masks are merged into a track-
let. For optical flow estimation we use PWC-Net [20]. In a
second stage, these tracklets are merged into long term ob-
ject tracks using their visual similarity, as defined by a ob-
ject reidentification vector extracted from a ReID network
[17, 16]. This network is trained on YouTube-VOS [27]
using a triplet loss variant [7] in order to generate 128 di-
mensional ReID vectors which are similar for crops of the
same object (in different frames), and different for crops
of different objects. For each tracklet, the ReID embed-
ding is extracted for each proposal and averaged over the
whole tracklet. The L2 distance between these embeddings
is then the measure of the visual dissimilarity between two
tracklets. Tracklets are then merged using a dynamic pro-
gramming inspired algorithm which builds a tree of possible
optimal tracks given tracklet’s visual similarities. The best
tracks are then selected from this tree based on their saliency
and their temporal extent (longer tracks are preferred). We
refer the reader to [29] for more details.

Putting it all together. In VIS segmentations are allowed
to overlap, thus when we are not sure which class a track be-
longs to we propose the existence of the same track multiple
times with different classes and scores.

To obtain a track’s score for each class, we average the
class scores for the mask in each timestep. Frames with

Figure 1. Results of three different ablation studies on the YT-VIS
validation set. Blue: Varying the weighting between the detec-
tor scores and the ImageNet classifier scores. Yellow: Varying
the minimum score threshold required for including a classified
track into the results. Red: Varying the segmentations used; Mask
R-CNN classification head [5] trained on COCO, Box2Seg [13]
trained on COCO and Mapillary, and Ours which is Box2Seg fine-
tuned on YT-VIS.

no masks are given 0 score thus short tracks are down
weighted. We do this for both detection scores and INet
scores. The final score is the weighted average of these two
scores (with equal weighting). We output each track multi-
ple times for every class with a score greater than 0.0001.
Note that the detector doesn’t discriminate between apes
and monkey, so the one detection score is used for both.
Also our INet classifier doesn’t give scores for 5 of the 40
classes, so for these we only use detector scores.

4. Experiments

The main evaluation of our method is on the YT-VIS test
set as part of the 2019 YT-VIS Challenge. We also ablate
different design decision using the YT-VIS validation set.

The VIS task is evaluated using the mAP metric. This
is similar to the mAP metric used for instance segmentation
[10], however it has been extended over the whole video
domain. AP is the area under the precision-recall curve,
and mAP is the average of AP over multiple IoU (intersec-
tion over union) thresholds (50% to 95% in 5% steps) and
averaged over all object classes. Other metrics are also pre-
sented such as AP50 and AP75 (AP at 50% and 75% IoU
threshold respectively), and AR1 and AR10 (maximum re-
call given 1 or 10 proposals respectively, also averaged over
IoU thresholds and classes). In order to adapt AP and AR
from images (instance segmentation) to videos, the IoU is
simply calculated over the whole video by summing up the
intersections for every frame and dividing it by the sum of
the unions for each frame. All frames, even frames with no
ground truth object present are used for this evaluation.

Table 1 shows our results in the 2019 YT-VIS Challenge,
and compares to the top 8 competitors and the previous
state-of-the-art from [28]. Our approach wins the challenge
with a 1 percentage point gap between our result and that
of the second place team. We also improve 14.4 percent-
age points over MaskTrack R-CNN [28] the current state-



of-the-art baseline.
As well as our challenge winning results, we also present

a number of ablation studies detailing different aspects of
our architecture design. The blue curve in Figure 1 shows
the effect of combining classification scores from both the
detector and the INet trained classifier. Individually, both
classifiers perform reasonably well, but in combination they
perform much better. This is because the type of mistakes
each make are very different. The detector struggles to cor-
rectly classify classes that were not so common in the train-
ing set, such as seals which are commonly classified as apes.
The ImageNet classifier on the other hand, as it was not
trained on crops but on whole images, will often misclas-
sify a hat with a mouse in the middle as a mouse.

The yellow curve in Figure 1 shows the effect of includ-
ing more and more proposals in the results which are up-
loaded. Interesting, due to the way mAP is calculated it
seems that it is always better to include the classification re-
sult for every class for every track, no matter how low the
classification score is. This is because, when classifications
are completely incorrect, by including low scoring but cor-
rect tracks increases the recall, and including incorrect clas-
sifications but with a low score doesn’t hurt the precision-
recall curve because these are ranked lower than the correct
classifications.

The red curve in Figure 1 shows the effect of using dif-
ferent segmentation results for the VIS task. The Box2Seg
segmentation network [13] performs much better than the
Mask R-CNN [5] segmentation head. Training Box2Seg
on the YT-VIS instances improves performance over the
COCO/Mapillary training.

5. Conclusion

In this paper we have adopted UnOVOST to the task on
Video Instance Segmentation (VIS). In order to do this, we
divided the VIS task into four separate components: detec-
tion, classification, segmentation and tracking. In order to
successfully use UnOVOST for tracking, we needed to train
a detector on a wide range of data specifically for the VIS
task, adapt a segmentation network to the VIS classes and
combine both detection scores and ImageNet trained classi-
fier scores for classification. By adapting UnOVOST in this
way, we are able to outperform previous VIS methods, and
win the 2019 YouTube-VIS challenge. A future direction
for research into VIS is in how to combine all four parts
into one unified model that can be trained end-to-end over
a whole video, while still maintaining competitive perfor-
mance for each part.
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