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Abstract

Training convolutional neural networks for image clas-
sification tasks usually causes information loss. Although
most of the time the information lost is redundant with re-
spect to the target task, there are still cases where discrim-
inative information is also discarded. For example, if the
samples that belong to the same category have multiple cor-
related features, the model may only learn a subset of the
features and ignore the rest. This may not be a problem un-
less the classification in the test set highly depends on the
ignored features. We argue that the discard of the correlated
discriminative information is partially caused by the fact
that the minimization of the classification loss doesn’t en-
sure to learn the overall discriminative information but only
the most discriminative information. To address this prob-
lem, we propose an information flow maximization (IFM)
loss as a regularization term to find the discriminative cor-
related features. With less information loss the classifier
can make predictions based on more informative features.
We validate our method on the shiftedMNIST dataset and
show the effectiveness of IFM loss in learning representa-
tive and discriminative features.

1. Introduction

Usually a classification model is trained with a softmax
loss which is quite successful in many scenarios. This loss
typical helps the model learn discriminative features for the
target task and ignore the irrelevant features. However, if
there are several discriminative features that are correlated
within a category, the model may choose the most discrim-
inative feature (e.g. color and texture) and ignore the rest
(e.g. object structure). The reason is that the most discrim-
inative features are those that make the steepest descend in
loss function. As the training continues, those features will
dominate the final feature representation and the rest dis-
criminative features will be discarded as well as the irrele-
vant features. Similar evidence can also be found in recent

study on ImageNet-trained CNNSs. It shows that those mod-
els are biased towards texture rather than object shape [J5].
Learning partial discriminative features does not make the
most of the dataset and thus reduces the generalization ca-
pability of the model.

Information theory has been widely used to improve the
representation capability of deep neural networks [2, 4} |6,
11,112} [14]]. In this work, we focus on how to apply mutual
information to find correlated features in image classifica-
tion tasks. According to Data Processing Inequalities (DPI),
the mutual information between the input data and the hid-
den layers are decreasing as the layer goes deeper [13]. The
main idea of information bottleneck (IB) trade off is that
we can try to minimize the mutual information between the
input data and the hidden representation and maximize the
mutual information between the hidden representation and
the label to find the optimal achievable representations of
the input data [13]. In contrast, we find that when discrim-
inative features are correlated, the maximization instead of
minimization of mutual information between hidden rep-
resentations can provide extra benefits for representation
learning. We call this strategy information flow maximiza-
tion (IFM) which is achieved by estimating and maximizing
the mutual information between convolutional layers simul-
taneously. IFM is implemented using a multi-layer fully
connected neural network and it serves as a plugin in the
conventional CNNs in the training stage. In the test stage,
the IFM block is removed and thus there is no extra compu-
tation cost.

2. Related work

There are many work concentrating on information max-
imization for deep networks. In [2], Chen et al. introduce
InfoGAN which is a generative adversarial network that
maximizes the mutual information between a small subset
of the latent variables and the observation. In [1], Belg-
hazi et al. present a Mutual Information Neural Estimator
(MINE) that estimates mutual information between high
dimensional continuous random variables by gradient de-



scent over neural networks. In [6], Hjelm et al. introduce
Deep InfoMax (DIM) to maximize mutual information be-
tween a representation and the output of a deep neural net-
work encoder to improve the representation’s suitability for
downstream tasks. In [9], Jacobsen et al. propose an invert-
ible network architecture and an alternative objective that
extract overall discriminative knowledge in the prediction
model.

The difference between our work and [6]] is that we are
concentrating on maximizing the mutual information be-
tween adjacent layers so that the information loss can be
reduced while [6] tries to maximize the mutual informa-
tion between the final representation and the output convo-
lutional feature maps. The work in [9] is closely related to
our work, the main difference is that we apply IFM blocks
instead of flow-based models to reduce the information loss.

3. Method

The pipeline of the proposed method is shown in Fig-
ure [l The backbone network is a vanilla convolutional
neural network. The IFM blocks are plugged in between
adjacent convolution layers. Note that the IFM blocks are
only used in the training stage. In the test stage, those IFM
blocks is removed so that there are no extra computation
cost.

Softmax
loss

Figure 1. The training pipeline of the proposed method. In the
training stage, the model is trained to minimize the classification
loss and maximize the information flow between layers.

3.1. Mutual information estimation

In oder to be self-contained, in this section we will in-
troduce how to estimate mutual information. Formally, the
mutual information is calculated as

I(X,2) = Z Z p(:c,z)logM

z2€Z x€X p(x)p(Z) (1)
= KL(p(z, 2)||p(x)p(2)),

where X and Z are two random variables. p(zx, z) is the
joint probability mass function of X and Y. p(x) and p(2)
are the marginal probability mass functions of X and Z re-
spectively. From Equation [T} we can find that maximizing

the mutual information between X and Z is equivalent to
maximizing the Kullback-Leibler divergence between the
joint distribution of p(x, y) and the product of marginal dis-
tribution of p(z) and p(z).

Following [10],the general form of f-divergence can be
approximated by

D(P[|Q) = ;lell;(EP[T(X)] — logEq[f*(T(X))]), (2

where P is the joint distribution p(z, z) and @ is the product
of marginal distribution p(z)p(z). T is an arbitrary class
of functions 7" : X — R and f* is the convex conjugate
function of the generator function f. Since D(P||Q) can be
approximated by the supremum of the difference between
two expectations, we can choose to maximize

F(w) = Ep[To(X)] — logEq /" (TL(X))]), (3

where 7, is a neural network parametrized by w. More
specifically, T;, can be represented in the form T,,(x) =
g5 (Vi,(z)) where gy is specific to the f-divergence used.
Since Kullback-Leibler divergence is not upper bounded,
we use Jensen-Shannon divergence as a surrogate to esti-
mate the mutual information. Thus, we can replace f*(t)
with —log(2 — €')) and choose g (v) = log(2) — log(1 +
e~?). Then we obtain

Flw) = Ep| -

] ~logBell = vy
“4)
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Let 0(v) = 172=7. We have

F(w) = Ep[o(Vo(2))] —logEq[1 — o (Vo (x))]).  (5)

o(V,,(x)) is represented by network D in Figure From
Equation[5] we can find that the maximization of F'(w) will
result in the network D outputting one for samples from the
joint distribution and zero for samples from the product of
the marginal distributions.

3.2. Constructing sample pairs

In Equation[5] we still need to estimate two expectations.
In the first term the samples are sampled from the joint dis-
tribution and in the second term the samples are sampled
from the product of marginal distributions. Since we are es-
timating the mutual information between adjacent convolu-
tional layers H; and H,,, we firstly resize [, to the size
of H;. Then sampling from the joint distribution p(h;, h;41)
could be achieved by sampling feature vectors at the same
spatial location on the convolutional feature maps. For sam-
pling from the second distribution, we can firstly sample a
random feature vector from H; and then randomly sample
another feature vector from H;, ;. For each sample pair,
the two feature vectors are concatenated as a single vector.
The details are shown in figure 2| o(V,,(z)) is represented



by network D and the maximization of Equation 5] will op-
timize network D to distinguish the sample pairs from the
two distributions.

3.3. Information flow maximization

When stacking convolutional layers, we are potentially
losing information. According to DPI, we have I (X, Hy) <
I(X,Hy) < ... < I(X, H,). Suppose we are given a train-
ing dataset for classification and the data representation can
be decomposed into three disentangled features z;40, ziq1
and z, where z;40 and z;4; can be used for classification
and z, describes some random variations that are shared
across categories. Ideally, we can used these three features
to perfectly reconstruct the input data. When we are train-
ing a model for the target classification task, the information
about 2, will be gradually discarded from the information
flow which is as expected. However, if the classification
task is biased towards one of the id features, say z;q9, wWe
may unexpectedly lose the information of z;4; as well in
the information flow. This is because during model training
621-1; . will be much larger than %. Zido Will get more and
more strengthened than z;4;. Finally, our model will rely
only on z;49 for classification. This behavior undermines
the generalization capability of our model especially when
the test task depends on z;4; for classification.

In order to reduce the loss of information in the informa-
tion flow, we propose to maximize the mutual information
between adjacent convolutional layers. The entire objective
function is

L
L="Las— Y FWw), (6)
l

where L is the classification loss (e.g. the softmax loss)
and L is the number of layers that used to calculate the in-
formation flow.

Although some task-irrelevant information may also be
involved in the final representation, the training process will
let the discriminative information dominate the representa-
tion. Thus the classifier can make predictions based on more
informative features.

4. Experiments
4.1. Dataset

The dataset we used in evaluation is the shift MNIST
dataset introduced in [9]. It is a modified version of MNIST
dataset. For the ten digits, ten texture images are randomly
selected from a texture dataset [3]] and applied on the digit
as its background. We split one-fifth of the original MNIST
training set to construct the validation set. In the training
set, each digit is associated with a fixed type of texture. For
example, for digit 1, its background patch is sampled from
texture 1, and for digit 2, its background patch is sampled
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Figure 2. Constructing sample pairs from the joint distribution and
the product of marginal distributions. H; and H;;, are two adja-
cent convolutional feature maps. We upsample H;4; to the size of
H; in (a). In (b), we feed sample pairs from both distributions to
network D. The superscript indicates the spatial location on feature
maps.

from texture 2, etc. However, in the validation set and test
set, the digit is associated with a random texture. In other
words, the texture id and the digit id are the same for given
a training image while they are not necessarily the same for
a given validation or test image. Some examples from the
shiftedMNIST dataset are shown in Figure 3]

Figure 3. Some training examples (a) and test samples (b) from the
shiftedMNIST dataset.

4.2. Implementation details

The details of the classification network and the network
D are shown in Table [T] and Table 2] The learning rate is
0.01. Mutual information is estimated for (convl, conv2),
(conv2, conv3) and (conv3, conv4). For each pair of the
convolutional feature maps, the upsampling step uses near-
est neighbor interpolation. The size of the input image is
32x32. Both the classification network and the network D
are trained in an end-to-end way simultaneously.



Layer | Network details

convl | Conv(32,3,3)-BN-leakyReLU
- Maxpool(2,2)

conv2 | Conv(64,3,3)-BN-leakyReLU
- Maxpool(2,2)

conv3 | Conv(128,3,3)-BN-leakyReL.U
- Maxpool(2,2)

conv4 | Conv(128,3,3)-BN-leakyReL.U
- Maxpool(2,2)
f FC(128%x2x2, 10)

Table 1. Details of the classification network. “Conv(c,3,3)” indi-
cates that there are ¢ convolution kernels with size 3 x 3. “Max-
pool(2,2) ” means max-pooling with stride 2 and the pooling win-
dow size is 2 x 2. “BN ” indicates batch normalization [8]. All
leakyReL.Us share the same ratio of 0.2 in the negative region. “FC
” is the fully connected layer.

Layer \ Network details

fcl FC( N, 256)-BN-leakyReL.U
fc2 FC(256, 128)-BN-leakyRel.U
fc3 FC(128, 64)-BN-leakyReLU
fc4 FC(64, 1)-sigmoid

Table 2. Details of the network D. IV indicates the input dimension
of the concatenated feature vector.

4.3. Evaluation protocol

For the shiftedMNIST dataset, one may argue that only
the digit feature should be considered as the correct feature
for label prediction in the training set. However, as stated
in [7], the digit features can be viewed as a kind of hu-
man prior. For our model, it does not have such a prior so
that both the digit feature and the texture feature may be
viewed as the discriminative features. It leaves to the opti-
mization dynamics to choose which feature as the final pre-
dictor. Note that the digit label and texture label are iden-
tical for a given training image. In the training stage, we
select models with best digit validation accuracy and best
texture validation accuracy to observe how the optimization
dynamics influences the knowledge learning. The optimal
test classification accuracy should be around 50% since the
classification model is not aware of whether the test task is
a digit classification task or a texture classification. So it
should learn both features equivalently.

4.4. Results

The classification results are shown in Table 3l In this
section, we train a baseline model without IFM blocks.
Model Baselinep,q;: achieves best digit validation accu-
racy and the model Baselineres,t,re achieves best texture
validation accuracy. The test accuracies are shown in the
first two rows in Table E} For both models, the prediction

Model acc (digit) acc (texture)
Baselinepigit 12.44% 95.07%
Baselinerezture 12.05% 96.44%
iCE fi-RevNet [9] 40.01% -
OUTS Digit 54.54 % 40.41%
OUT STexture 31.78 % 69.00%

Table 3. Test classification accuracy from the baseline model, iCE
fi-RevNet and ours.

accuracies on the digit are slightly above 10% which is quite
similar to random guess. It means that both models ignore
the digit structure as the discriminative feature. The predic-
tion accuracies on texture are above 95% which means the
final representations are dominated by the texture features.
The results of the baseline models demonstrate that if the
model is trained in the vanilla way it only learns partial dis-
criminative features and ignore other correlated features. In
this experiments, the baseline models are sensitive to tex-
ture features which is in accordance with the observations
in [5].

The benefit of applying IFM is shown in the bottom two
rows. It can be found that the classification accuracies of
digit are much higher than that of the baseline model. It
indicates that our models indeed learn the digit structure as
the discriminative feature. The reason for the test digit ac-
curacy of oursregture being lower than that of oursp;gqe is
that digit structure features are more difficult to learn than
texture features. When the texture features are well learned
(with high texture validation accuracy), the learning of digit
features may still be halfway. oursp;q:; also outperforms
the model in [9] which is a flow based model with no in-
formation loss. It implies that our IFM can be potentially
viewed as an alternative way to flow-based models to re-
duce information loss in deep networks.

5. Conclusion

In this work, we propose to maximize the information
flow in convolutional neural networks as a kind of regular-
ization term. The benefit of this regularization is that we can
find correlated features that are difficult to be disentangled.
Thus, the learned representations are more informative and
generalizable than representations learned in conventional
training without this information regularization term. Our
future work will focus on how to apply the proposed infor-
mation flow maximization on natural image classification
tasks.
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