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Abstract

Deep Learning based AI systems have shown great
promise in various domains such as vision, audio, au-
tonomous systems (vehicles, drones), etc. Recent research
on neural networks has shown the susceptibility of deep net-
works to adversarial attacks - a technique of adding small
perturbations to the inputs which can fool a deep network
into misclassifying them. Developing defenses against such
adversarial attacks is an active research area, with some
approaches proposing robust models that are immune to
such adversaries, while other techniques attempt to detect
such adversarial inputs. In this paper, we present a novel
statistical approach for adversarial detection in image clas-
sification. Our approach is based on constructing a per-
class feature distribution and detecting adversaries based
on comparison of features of a test image with the feature
distribution of its class. For this purpose, we make use of
various statistical distances such as ED (Energy Distance),
MMD (Maximum Mean Discrepancy) for adversarial de-
tection, and analyze the performance of each metric. We
experimentally show that our approach achieves good ad-
versarial detection performance on MNIST and CIFAR-10
datasets irrespective of the attack method, sample size and
the degree of adversarial perturbation.

1. Introduction

Deep Learning has been instrumental in the past few
years in various domains such as computer vision [11], au-
dio processing [8], natural language processing [3] [4] and
autonomous vehicles [1]. However, it has recently been
shown that these deep networks can be fooled by adding
subtle perturbations to the input resulting in misclassifica-
tion. These perturbed inputs which can still be classified
correctly by humans, are known as adversaries [5] [15].
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Two types of approaches are proposed to handle these
adversarial attacks. The first approach makes a model ro-
bust by training with adversarial examples [9] [17]. It ap-
plies random perturbations to activations or weights, or it
performs feature denoising or by defensive distillation [18]
to make a model robust to adversaries.

Other defence approaches based on adversarial detec-
tion either use auxiliary networks [14] or modify the model
architecture and add a detection module and train on ad-
versaries to detect them [14]. These approaches are often
model centric and are not robust enough for all kinds of at-
tacks. Any network based approach is costly as it involves
re-training and customizing the defences for different at-
tacks is also a costly operation.

Earlier Grosse et. al. [7] proposed a statistical based ap-
proach which detect adversaries based on the assumption
that the original images and the adversarial images belong
to two different distributions. They use raw vectorized orig-
inal images from train set to create a reference distribution
and that form the test set to create a test distribution. They
create another test distribution from the adversarial images.
They compare the two test distributions against the refer-
ence distribution using MMD and ED to calculate distances
and perform a two sample kernel test to detect if the test dis-
tribution belongs to the reference distribution or not. One
disadvantage of their experiments is that since they use raw
images, the dimensionality is high, so they require samples
of higher sizes to approximate the distribution and achieve
higher detection confidence (50-100 for the entire dataset).
They have also reported per class detection confidence also
and they need samples of lower sample size than that for the
whole dataset but still it is as high as 20-50 samples.

In this paper, we propose a novel statistical based adver-
sarial detection approach which is agnostic to attacks. Our
hypothesis is that the distribution of activations (output of
any intermediate layer) of the original data for a particu-
lar class is different from that of the adversarial data mis-
classified into that class. We make use of various statistical
metrics to estimate the distance between distributions of the
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original and the adversarial activations. Adversarial sam-
ples will have larger statistical distances from the original
distribution and hence can be detected. The proposed ap-
proach is attack agnostic (does not vary with the type or
degree of attack) and sample efficient (sets with less sample
size achieve good detection performance).

2. Background

A neural network takes an input x and gives an output,
y. The outputs are termed as softmax probabilities where
yi denotes the probability of the input x belonging to the
class i. The softmax probabilities sum up to 1 and lie in the
range of 0 to 1. The output label for a particular input, l(x)
is assigned by the model as l(x) = argmaxi(yi) ∀i ∈ C
where C is the total number of classes. The correct label for
the class is denoted as l∗(x). The input to the second last
layer of the model is termed as pre-logits and that to the last
softmax layer of the model is termed as logits.

Adversarial generation involves perturbing an input x by
a small amount to x′ such that the output label of the per-
turbed input is not same as the output label of the original
input, i.e. l∗(x) 6= l∗(x′) where abs(x − x′) < ε where
ε is the amount of perturbation and abs represents absolute
difference. In the next section we will discuss the various
adversarial attacks used in our work.

2.1. Adversarial Attacks

Fast Gradient Sign Method (FGSM): Goodfellow et.
al. (2015) [5] proposed this attack where the perturbation
∆x is based on the gradient of the loss function with re-
spect to the input such that the loss function of the network
C(x, y) is maximized. The perturbation is obtained by

∆x = ε.sign(∇xC(x, y)) (1)

where ε is the L∞ norm bound. It is chosen to be small so
that ∆x is undetectable. The sign refers to the direction in
which the input feature has to be changed.

Carlini-Wagner (CW-l2): Carlini Wagner et. al. [2]
proposed an attack using an optimization framework that
perturbs the input by inducing very small changes at each
iteration to maximize a predefined loss. It generates attack
for three different loss metrices, L0, L2 and L∞. We have
used Carlini Wagner L2 attack in this paper.

Madry et. al. Attack: Madry et. al. [13] proposed
a robust optimization based attack to generate adversaries
with varying degrees of perturbation, ε. They came up with
stronger attacks than FGSM using PGD (Projected Gradient
Descent).

In the next section, we give a brief description of the
various statistical metrics used in this paper.

2.2. Statistical Metrics

Maximum Mean Discrepancy (MMD): Gretton et. al.
[6] introduced a kernel based test to compute the distance
between probability distributions of two sample sets. The
kernel for probability distribution function is chosen such
that the difference of the means of the two distributions is
maximum.

MMDb[F,X1, X2] = supf∈F (
1

n
Σn

i=1f(x1i)

− 1

m
Σm

i=1f(x2i))

(2)

X1 and X2 refer to the two sample sets and f is the kernel
function chosen from F where F represents the super-set
of all kernel functions possible. f is chosen to be the kernel
which maximizes the difference between the means of the
two probability distributions. x1i and x2i denote the proba-
bility values of the samples belonging toX1 andX2 respec-
tively for each class i and m and n denotes the number of
samples.

Energy Distance (ED): Szekely et. al. [19] proposed an
energy based approach to compute distances between two
distributions. Let us assume F and G to be two cumulative
distribution functions. X , X ′ and Y , Y ′ are independent
vectors chosen from F and G respectively which belong to
real numbers set Rd. The energy distance between the two
distributions F and G is the square root of:

D2(F,G) = 2E||X − Y || − E||X −X ′||
−E||Y − Y ′||

(3)

where E denotes expectation, ||.|| denotes the norm. ED
calculates the distance between two distributions by con-
sidering norm distances between samples of different dis-
tributions and that of same distribution.

3. Methodology
Our method is based on the hypothesis that the original

image activations sample and the adversarial image activa-
tions sample belong to two different distributions. We per-
formed a statistical distance based analysis to differentiate
between the original and adversarial activations distribution
for each class.

Fig.1 shows a brief overview of the methodology we are
following. The model is trained on the data(x, gt) where x
is the input image and gt is the ground truth label. We store
the output labels and extract the activations (hidden layer
activations) from the model. The activations for each class
are generally clustered together and each cluster represent
different classes as shown in the figure. As observed from
the figure, the partition lines are the decision boundaries.
When this model is attacked by adversarial samples, the



Data
(x, gt)

Classes
(y)

Activations

Class 1:

Class 3:

Class 2:

Class 4:

Neural 
network

Figure 1. Illustration of our hypothesis: The activations are ex-
tracted from the network for both the original and the adversarial
samples. These are shown in a representative plot demarcated by
the decision boundaries in the above figure. Adversarial samples
which are misclassified are indicated with filled markers. It can
be observed that while the activations of original samples belong-
ing to a class cluster together, the adversaries remain as outliers
indicating that they do not fit in the distribution.

adversarial sample activations lie far away from the orig-
inal class activations distribution and are misclassified as
another class.

The triangles (refer Fig. 1) refer to Class 3 original ac-
tivations distribution where the samples belonging to that
are clustered together. The adversarial samples to this class,
like the class 4 sample (triangle inside diamond space) or
the class 1 sample (triangle inside the circle space) lie fur-
ther away from the original distribution.

4. Experiments
We perform experiments to validate our hypothesis on

MNIST (Modified National Institute of Standards and Tech-
nology) [12] and CIFAR-10 (Canadian Institute For Ad-
vanced Research) [10]datasets.

4.1. Network Setup

The table below shows the model architecture used for
MNIST (refer Table 1). We use the default convolution neu-
ral network present in the cleverhans repositiory [16].

ID Layer Type Kernel # O/p Stride
Size Channels

1 Conv,Relu 8 32 2
2 Conv,Relu 6 64 2
3 Conv, Relu 3 128 1
4 Conv, Relu 2 128 1
5 Dense 256
7 Dense 128

Table 1. Model architecture for MNIST

The neural network is trained for 220 epochs with 0.001
learning rate and batch size 128 using Adam optimizer.

We used the same network as above for CIFAR-10 but
increased the number of channels in each convolution lay-

ers by 4 times. This neural network is trained on the training
dataset for 400 epochs, with learning rate 0.001, Adam op-
timizer and batch size 128. After the training is over, we
calculate the accuracy of the model on the test set.

We discard the misclassified samples from the test data
after accuracy evaluation as these might lead to false adver-
saries in adversarial set.

4.2. Adversarial Attack Generation and Activations
Extraction

We attack our model using three adversarial attack gener-
ation techniques FGSM, Madry and Carlini Wagner. FGSM
and Madry attack are generated for 5 varying degrees of
perturbations (epsilons), 0.01, 0.05, 0.1, 0.2 and 0.3. We
generate adversaries on the correctly classified samples of
test data only.

Here we describe the method for activations extraction
and distribution generation. We store the original labels
(ground truth labels for original sample) and extract logits
and pre-logits from the trained model. We store the adver-
sarial labels (predicted labels for adversarial sample) and
extract logits and pre-logits from the model. Here we have
considered logits as the activations for original and adver-
sarial samples. The original activations are partitioned into
a baseline holdout set and rest of the original activations in
another set. The baseline holdout set is of fixed size having
100 samples or half the number of total original samples
present for that class. The rest represents the rest of the
original activations set. So we have three activations set
now, baseline holdout set, rest of the original activations
set and the adversarial activations set. The baseline holdout
set is our reference set. The other 2 sets are our test sets.
Each set is a 2-D matix made up of 1-D activation vectors
corresponding to each image. We apply softmax over the
activation vector for a sample and perform this for all sam-
ples present in all the three sets. A fixed size set of randomly
sampled samples is picked from adversarial activations set
and rest of the original activations set. This is our test sam-
ple size which tells us if that number of samples is enough
to distinguish between original and adversarial samples.

4.3. Statistical Distances Computation and AUC
Scores Generation

We calculate statistical metrics for rest of the original
activations set w.r.t the reference set and for the adversar-
ial activations distribution w.r.t the reference set. We repeat
the above operation 100 times, each time randomly sam-
pling our test sets for a particular sample size. We compute
AUC score for a particular class for a particular sample size
and degree of perturbation. The AUC scores indicate how
well the original and adversarial samples can be separated.
These scores are tallied for varying sample sizes, degrees of
perturbation and different classes.



Sample Sizes FGSM MADRY CARLINI WAGNER
ED MMD ED MMD ED MMD

1 98.7 (± 0.4) 97.9 (± 0.006) 99.5 (± 0.2) 98.9 (± 0.005) 100 (± 0) 100 (± 0)
5 99.6 (± 0.04) 98.4 (± 0.002) 99.7 (± 0.02) 98.97 (± 0.0014) 99.9 (± 0) 99.99 (± 0)
10 99.7 (± 0.03) 99.1 (± 0.001) 99.8 (± 0.01) 99.4 (± 0.0007) 99.9 (± 0) 99.98 (± 0)
20 99.8 (± 0.01) 99.4 (± 0.0005) 99.8 (± 0) 99.6 (± 0.0004) 99.9 (± 0) 99.99 (± 0)

Table 2. AUC scores (%) for MNIST dataset.

Sample Sizes FGSM MADRY CARLINI WAGNER
ED MMD ED MMD ED MMD

1 75.9 (± 2.66) 71.5 (± 0.03) 88.4 (± 2.68) 87.4 (± 0.03) 94.2 (± 2.08) 92.6 (± 0.03)
5 83.1 (± 0.4) 76.5 (± 0.02) 91.9 (± 0.13) 88.5 (± 0.006) 94.5 (± 0.22) 92.6 (± 0.008)
10 84.6 (± 0.42) 83.11 (± 0.01) 92.3 (± 0.11) 90.1 (± 0.003) 94.8 (± 0.19) 94.6 (± 0.004)
20 87.4 (± 0.3) 87.4 (± 0.009) 92.9 (± 0.09) 91.2 (± 0.003) 95.4 (± 0.11) 95.8 (± 0.003)

Table 3. AUC scores (%) for CIFAR-10 dataset.

5. Results and Discussion
We present our results on MNIST and CIFAR-10 with

three different kinds of attack FGSM, Carlini Wagner and
Madry using two statistical distances, MMD and ED. We
compute the mean and standard deviation of AUC scores
across all the classes and all the epsilons (degrees of per-
turbation), 0.01, 0.05, 0.1, 0.2, 0.3. To maintain the brevity
of the paper we are showing results corresponding to test
sample sizes 1,5,10 and 20.

5.1. MNIST

We trained our model on MNIST and it gave a test accu-
racy of 99.44%. The AUC scores for MMD and ED for each
attack were similar for each sample sizes. Both the statis-
tical distances perform better for strong attacks like Madry
and Carlini Wagner than FGSM. The AUC scores increase
with increase in test sample size. (see Table 2).

5.2. CIFAR-10

Our model trained on CIFAR-10 gave a test accuracy of
71.8% which isn’t high enough but surprisingly AUC scores
were really good for both the statistical distances for differ-
ent attacks. We observed similar trends on CIFAR10 as that
on MNIST. (see Table 3)

5.3. Discussion

We obtained the following insights by analysing our re-
sults 1) The AUC scores obtained using ED and MMD were
high and similar for our model across all the three attacks
and two datasets. 2) The AUC scores increase proportion-
ally with increase in sample size of the test set (works well
for test sample of size 1 also) as expected. 3) The AUC
scores vary negligibly with change in the degree of attack.

Hence our model is attack agnostic, which means it
doesn’t vary with the kind of attack and degree of perturba-

tion. Our model is sample efficient because we experimen-
tally demonstrated that even if the size of our test sample
set is one, we are able to achieve good detection.

Since the statistical distances(ED and MMD) perform so
well in separating the original and adversarial distributions,
it proves our hypothesis that the adversaries don’t belong to
the same distribution as the natural image distribution and
hence can be separated by such statistical distance metrics.
The results also prove that the learnt features extracted from
the model which are low-dimensional, provides a good ap-
proximation of the data. Hence we don’t need samples of
large sizes to get high detection performance.

6. Conclusion
We experimentally demonstrated that the original and

adversarial sample do not belong to the same distribution.
We also experimentally validated our approach to be attack
agnostic and sample efficient. We could expand this work
to include more statistical distance metrics and also can ex-
tend to use pre-logits. More research will surely contribute
to coming up with better statistical models for detecting ad-
versaries.
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