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Abstract

Image deconvolution is the process of recovering convo-
lutional degraded images, which is always a hard inverse
problem because of its mathematically ill-posed property.
On the success of the recently proposed deep image prior
(DIP), we build an image deconvolution model with deep
image and kernel priors (DIKP). DIP is a learning-free rep-
resentation which uses neural net structures to express im-
age prior information, and it showed great success in many
energy-based models, e.g. denoising, super-resolution, in-
painting. Instead, our DIKP model uses such priors in im-
age deconvolution to model not only images but also ker-
nels, combining the ideas of traditional learning-free de-
convolution methods with neural nets. In this paper, we
show that DIKP improve the performance of learning-free
image deconvolution, and we experimentally demonstrate
this on the standard benchmark of six standard test images
in terms of PSNR and visual effects.

1. Introduction
Image restoration is a long studied and challenging prob-

lem that aims to restore a degraded image to its original
form [1]. One way to model the processes of image degra-
dation is convolution with translational invariance [46]

B = X ∗K + E (1)

where X ∈ Rd×m×n is the original image, K ∈ Rh×w is
the convolution kernel, E ∈ Rd×m×n is the additive noise,
B ∈ Rd×m×n is the degraded image, and d denotes the
number of channels in the images (1 for greyscale images
and 3 for color images). Image deconvolution is the process
of recovering the original image X from the observed de-
graded image B, i.e. the inverse process of convolutional
image degradation. This work focuses on image deconvo-
lution in two different settings: kernel-known and kernel-
unknown (a.k.a. blind deconvolution).

Kernel-known: The preliminary stage of image decon-
volution mainly considers the case where the convolution
kernel is given [37], i.e. recovering X with knowing K in

Equ. 1. This problem is ill-posed, because simply applying
the inverse of the convolution operation on degraded image
B with kernel K, i.e. B∗−1K, gives an inverted noise term
E ∗−1 K, which dominates the solution [16].

Blind deconvolution: In reality, we can hardly obtain
the detailed kernel information and the deconvolution prob-
lem is formulated in a blind setting [25]. More concisely,
blind deconvolution is to recover X without knowing K.
This task is much more challenging than it is under non-
blind settings, because the observed information becomes
less and the domains of the variables become larger [6].

In image deconvolution, prior information on unknown
images and kernels (in blind settings) can significantly im-
prove the deconvolved results. A traditional representation
for such prior information is handcrafted regularizers in im-
age energy minimization [12], e.g. total variation (TV) reg-
ularization for image sharpness [6] and L1 regularization
for kernel sparsity [38, 43]. However, prior representations
like the above-mentioned regularizers have limited ability
of expressiveness [27]. Therefore, this work aims to find
better prior representations of images and kernels to im-
prove deconvolution performances.

Deep neural architecture has a strong capability to ac-
commodate and express information because of its intricate
and flexible structure [40]. Compared to other image prior
representations with limited structures (e.g. regularizers),
neural nets with such powerful expressiveness seem more
capable of capturing higher-level prior of natural images
and degradation kernels. Deep image prior (DIP) [42] is
a neural-based image prior representation which achieved
good performance in various image restoration problems.
The main idea of DIP is to substitute image variable in an
energy function by the output of a deep convolutional neural
net (ConvNet) with random noise inputs, so that the image
prior can be captured by the hyperparameter of the Con-
vNet, and the output image is determined by the parameter
of the ConvNet. One point to emphasize here is that priors
expressed by both handcrafted regularizers and DIP are em-
bodied in their own formulations or structures, which does
not require large datasets for training. In the existing appli-
cations (incl. denoising, inpainting, etc.) of DIP, the degra-
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dation processes are considered as known. In this paper, we
are the first to show that deep priors perform well in image
deconvolution. Furthermore, we show that ConvNets can be
utilized as a source of prior knowledge not only for natural
images but also for degradation kernels (named as deep ker-
nel prior, DKP), bridging the gap between traditional meth-
ods and deep neural nets. Through experiments we demon-
strate that our deep image and kernel priors (DIKP) result
in a significant improvement over traditional learning-free
regularization-based priors in image deconvolution1.

2. Related work
The earliest traditional methods of image deconvolution

include Richardson-Lucy (RL) method [32] and Weiner Fil-
tering [45]. Due to their simplicity and efficiency, these two
methods are still widely used today, but they may be subject
to ringing artifacts [30]. To solve this, many refinements
based on handcrafted regularization priors came out. [8]
adopted TV regularizer as prior in kernel-known deconvo-
lution. [48] proposed a progressive multi-scale optimization
method based on RL method, with edge-preserving regular-
ization as the image prior. For degradation kernels, early
methods [31] only dealt with their simple parametric forms.
Later then, natural image statistics were used to estimate
kernels [11, 26]. After that, [38, 43] adopted L1 regular-
izer as kernel prior in blind deconvolution. However, hand-
crafted priors mentioned above have relatively simple struc-
tures, so their expressiveness is rather limited [27].

This work is inspired by traditional image deconvolu-
tion methods by handcrafted priors [36, 43], but trying to
use deep image priors instead of handcrafted priors. It
uses ConvNet to express the prior information of both nat-
ural images and degradation kernels, putting kernel-known
and blind deconvolution under the same model. Besides,
as discussed in [42], its ConvNet-based image prior rep-
resentation links two sets of popular deconvolution meth-
ods: learning-based approaches by ConvNet [46, 49, 28]
and learning-free approaches by handcrafted prior [38].

3. Data set and evaluation metrics
As discussed in section 1, capturing image prior by either

regularization or deep neural net structures is learning-free.
Therefore, data set explored in this work is only used for
testing. Experiments and performance evaluation are con-
ducted on a data set with 6 standard test images shown in
Fig. 2. Those images, along with their preprocessing and
evaluation mentioned in the following, are in line with stan-
dard practice and widely used in denoising [7], TV deblur-
ring [2], etc., which guarantees the reliability of our results.

1We do not show any results from supervised deep network techniques
because our method is unsupervised and our objective is to prove that our
deep priors are better than handcrafted priors in image deconvolution.
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Figure 1: The generation processes of observed images.
For each process, we first convolve the original image by a
given kernel, then add a noise term to the convolved image.
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Figure 2: Standard test image data set experimented
in our work (zoomed out), containing 4 greyscale and 2
color images, named cameraman (abbr. C.man), house,
Lena, boat, house.c, peppers respectively from left
to right. The original resolutions are marked below them.

3.1. Observed data generation and kernels

To preprocess the image data and obtain degraded obser-
vations, we use the degradation model formulated as Equ. 1
to transfer the original standard test image Xstd to the ob-
served image B, illustrated by the diagram in Fig. 1. The
noise matrix E is i.i.d. Gaussian with respect to each entry,
and the noise strength (i.e. standard deviation) σ is fixed at
0.01 to reduce experimental variables. To explore different
kinds of degradation models, three common kernels for dif-
ferent kinds of degradation, Gaussian kernel [17], defocus
[16] and motion blur [47] are used to generate the data set.

Gaussian: The kernel for degradation caused by atmo-
spheric turbulence can be described as a two-dimensional
Gaussian function [19, 33], and the entries of the unscaled
kernel are given by the formula [16]

Ki,j = exp

[
−1

2

(
i− c1
s1

)2

− 1

2

(
j − c2
s2

)2
]

where (c1, c2) is the center of K, and (s1, s2) determines
the width of the kernel (i.e. standard deviation of the Gaus-
sian). In this work, s1 and s2 are set to s1 = s2 = 2.0.

Defocus: Out-of-focus is another issue in optical imag-
ing. Knowledge of the physical process that causes out-of-
focus provides an explicit formulation of the kernel [16]

Ki,j =

{
1/(πr2) if (i− c1)

2
+ (j − c2)

2 ≤ r2,
0 otherwise.



(a) Gaussian (b) Defocus (c) Motion blur

Figure 3: Visualization examples of the 3 kernels.

where r denotes the radius of the kernel, which is set to
r = bmin (h/2, w/2)c in this work.

Motion blur: This happens if an image being recorded
changes in a single exposure when taking a photograph. For
example, when taking a picture, moving objects being taken
at high speed or lens shake will blur the picture. In noiseless
case, the convolution processes of motion blur with ampli-
tude u and shifting angle α are given by the formula [21]

Bi,j =
1

2u+ 1

u∑
k=−u

Xi+k cosα,j+k sinα

in which the shape of the kernel is a line segment as Fig. 3c
shows. In this work, the blur amplitude and shifting angle
are set as u =

√
2 · bmin (h/2, w/2)c and α = 3π/4.

All the kernels adopted in data generation processes and
experiments in this work are in shape 9×9 (i.e. h = w = 9)
with center (4, 4) (i.e. c1 = c2 = 4), and scaled such that
elements in each kernel sum to 1 [16]. Fig. 3 gives visu-
alization examples of the 3 different kernels adopted with
given settings mentioned above.

3.2. Evaluation metrics

We use the Mean Square Error (MSE) between the de-
graded image variable Bvar = X ∗K and the observation

MSE (Bvar,B) =
1

d ·m · n
‖Bvar −B‖22

to measure the energy function [42] and to track parameter
iterations in the first experiment (see subsection 5.2). Using
this metric, to minimize the energy is to find the image X
that, when degraded, is the same as the observation B.

To measure image deconvolution quantitatively, we use
the Peak Signal to Noise Ratio (PSNR) (in dB) [18] between
the image variable X and the standard test image Xstd

PSNR (X,Xstd) = 10 log10

[
R2

MSE (X,Xstd)

]
where R is the maximum possible pixel value of the image,
e.g. R = 1 if images in double-precision floating-point
data type, R = 255 if in 8-bit data type. In this work, we
use double-precision floating-point data type, i.e. R = 1.

In subsection 5.3, we compare the gradient distributions
among output images and standard test images. To mea-
sure the similarity between a gradient frequency distribution
Pr (·) and one by standard test images Prstd (·), we use the
Kullback-Leibler (KL) divergence [24]

DKL (Pr ‖ Prstd) = −
∑
b∈B

Pr (b) log
Prstd (b)

Pr (b)

where b denotes a bin corresponding to a range of gradient
values, B is the whole bin set covering all possible gradient
values. From the definition, the similarity between two dis-
tributions and their KL divergence are negatively correlated.

4. Methodology
According to section 1, both regularization-based prior

and deep image prior are embedded in energy minimization
models, which, in general, are formulated as [12]

min
X

E (X; B) +R (X) (2)

where E (X; B) indicates the energy term associated with
the data, andR (X) is the prior term. A general explanation
of the energy term is the numerical difference between the
given image data and the image variable processed by given
degradation. For image deconvolution, the degradation op-
erator is convolution, therefore the energy is designed as
E (X; B) = MSE (X ∗K,B). The energy termE (X; B)
can also be designed for other tasks in image restoration,
such as inpainting [39], super-resolution [14] and image de-
noising [36]. Methods adopted in this work are all based on
the deconvolution energy model and its mutants.

4.1. Baseline models with regularization prior

The gradient magnitude of a two-dimensional function
x (s, t) is defined and formulated as the following [15]

|∇x| (s, t) = ‖∇x (s, t)‖2 =

√(
∂x

∂s

)2

+

(
∂x

∂t

)2

,

the discrete formulation of which for an image X is given
by the following matrix

|∇X| =
√(

XD>1,n
)2

+ (D1,mX)
2

where the square and the square root calculations are entry-
wise, and D1,n is the discrete partial derivative operator
(see [16, Chap. 7] and [3, Sec. 2] for its formal definition
and its specified usage in this paper, respectively).

In image processing, discrete gradient magnitudes are
proven to be a strong prior to natural images [38, 16]. The
sum of such magnitudes in a single image is a regularization



representation of the image prior, i.e. total variation norm

‖X‖TV :=

m∑
i=1

n∑
j=1

√(
XD>1,n

)2
i,j

+ (D1,mX)
2
i,j .

The efficiency of TV norm has been proven for recovering
blocky images [10] and images with sharp edges [5].

It is also known that L1 norm is capable of expressing
the sparsity of matrices [13], defined as

‖X‖1 =

m∑
i=1

n∑
j=1

|Xi,j | .

In most instances, degradation convolution kernels are
sparse [38]. Thus L1 sparsity regularization is a strong prior
to convolution kernels in blind settings.

The baseline models in this work are energy minimiza-
tion with TV and L1 regularization priors, of which the de-
tails in the two main settings are as follows.

Kernel-known: The baseline model with K known is
formulated as the following energy minimization model
with TV regularization prior

min
X

MSE (X ∗K,B) + α ‖X‖TV (3)

where α is the TV regularization parameter. To solve
the TV regularization system efficiently, we adopt a fast
gradient-based algorithm named MFISTA [2] , which
has performed remarkable time-efficiency and convergence
property in TV regularization.

Blind deconvolution: The baseline system in blind set-
ting introduces a new sparsity prior compared to the non-
blind baseline above, which is formulated as

min
X,K

MSE (X ∗K,B) + α ‖X‖TV + β ‖K‖1 (4)

where β is the L1 regularization parameter. This TV-L1

double-prior system can be solved using TNIP-MFISTA al-
gorithm proposed in [43]. To optimize both the image and
the kernel, this algorithm adopts fix-update iterations be-
tween MFISTA and an L1 regularization algorithm named
Truncated Newton Interior Point method (TNIP) [22].

4.2. Deconvolution with DIKP

DIKP aim to capture the priors of images/kernels by the
structures of generative deep neural nets. Taking image
variable X as an example, it re-parameterises the image X
as the neural net output X = f (z; θ), defined as the fol-
lowing surjection

f∗ : supp p×Θ
ConvNet7−−−−→ X , (z,θ)→ X

where supp p denotes the support2 of the input noise prob-
ability density function p, Θ denotes the weight space de-
termined by the network structure, and X is the solution

2supp p = {z ∈ Ω | p (z) 6= 0} [35], where Ω is the sample space of
noise vector z.

z

ConvNet

with

parameter

θ

ConvNet output

X = f(θ) X * K

Observation

B
Noise input

Conv

ConvNet

with

parameter

η
z' K

energy function: MSE(X * K, B)

run SGD on ConvNet parameter(s)  

Original DIP

Our DKP
(deactivate if kernel-known)

Figure 4: The overall pipeline of our DIKP deconvolu-
tion model, corresponding to Equ. 6 and Equ. 7.

space of X, containing the prior information. The neural
net f∗ maps the random noise network input z and the net-
work weights θ to the output X. Ideally, by adjusting the
network structure to its optimum, the solution space X only
contains images on desired prior information.

From the perspective of mechanics, the desired prior is
expressed by the network structure, and the weights θ ex-
plores solutions on the prior. The random input noise z is a
high-dimensional Gaussian. The main reason to take a ran-
dom noise as the network input is to increase the robustness
[29] to overcome degeneracy issues. On the other hand,
high-dimensional Gaussian vectors are essentially concen-
trated uniformly in a sphere [20]. Therefore the input space
supp p can be approximated as a single point, and the sur-
jection can be rewritten with the input space eliminated

f : Θ 7→ X , θ → X

which maps only a selection of parameters θ on the net-
work, to an output image X. In the rest of the report, f (θ)
denotes output image by deep image prior f with weight θ.

4.2.1 Energy functions of DIKP deconvolution

Traditional energy minimization (formulated as Equ. 2) for
image deconvolution explores the whole image space as the
domain. By re-parameterising the image term X into the
neural net output f (θ), the solution space contains the prior
information expressed by the structure of f , instead of the
prior term R (X). Thereby with deep image prior the gen-
eral energy model by Equ. 2 turns into

min
θ
E(f (θ) ; B). (5)

By optimizing network weights θ on a ideal structure, an
image is optimized conditioned on the desired prior.

Kernel-known image deconvolution objective with deep
image prior is derived directly from Equ. 5, by applying the
deconvolution energy function

min
θ

MSE (f (θ) ∗K,B) (6)



where K is the observed kernel. The minimizer θ∗ is ob-
tained by Adam optimizer [23] with random initialization.

Blind deconvolution: In blind settings, the convolution
kernel K is assumed to be unobservable. Thereby the kernel
is parameterised by another deep neural net structure g (η)
containing prior information regarding degradation kernels.
After parameterisation on kernel matrix in Equ. 6, the blind
deconvolution objective with deep image prior is formu-
lated as the following system

min
θ,η

MSE (f (θ) ∗ g (η) ,B) (7)

where f and g have different ConvNet structures since the
prior information of natural images and kernels are appar-
ently different. To obtain the minimizers θ∗ and η∗, we use
Adam to update the two variables simultaneously.

Fig. 4 gives a diagram summarizing our DIKP deconvo-
lution model. Hyperparameter settings for both f and g are
explained in detail in section 5.

5. Experiments
To explore to what extent deep priors can capture prior

knowledge of natural images in deconvolution models, we
a) compare the energy convergence property during DIKP
deconvolution optimization between natural images and
noise images; b) compare the gradient distributions among
standard test images and images from both baseline model
and DIKP. This part of experiments aims to evaluate DIKP’s
expressiveness on natural images, therefore it is only con-
ducted in kernel-known setting, i.e. DKP is deactivated.

The second part of our experiment aims to find out
whether our proposed DIKP deconvolution models improve
the performance of image deconvolution in both kernel-
known and blind settings, compared with the baselines. In
our results, PSNR comparison is conducted for quantita-
tive analysis on deconvolution performance, and qualitative
analysis is based on the presented images.

5.1. Experiment Setup

Convolution: Convolution processes in this paper, in-
cluding data generation and energy calculations, are subject
to reflexive boundary condition [16]. Specifically, for color
images, all channels share the same kernel [16].

Baseline: In kernel-known setting, the TV regularization
parameter α is set to 2 × 10−2, within a reasonable range
for image deconvolution according to [2]. In blind setting,
the regularization parameters are set to α = 2 × 10−3 and
β = 5 as the same in [43], among the experiments of which
such setting achieved the best results.

ConvNet architecture as DIKP: As suggested for
super-resolution setting in [42], we use hourglass architec-
ture (shown in Fig. 5) as the main body of DIKP, whose
hyperparameter settings are shown as follows
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Figure 5: The hourglass architecture as our DIKP struc-
tures. The upper half is the high-level encoder-decoder net-
work with skip connections [28]. The detailed structures in-
side each downsample connection di, upsample connection
ui and skip connection si are shown below the high-level
structure, where nu[i], nd[i], ns[i] denote the numbers of
filters in their respective connections at depth i, and ku[i],
kd[i], ks[i] are the corresponding kernel sizes.

For images:
z

i.i.d.∼ U (0, 0.1);
nu = nd = [128]× 5;
ku = kd = [3, 3, 3, 3, 3];
ns = [4, 4, 4, 4, 4];
ks = [1, 1, 1, 1, 1];
upsample stride size 2;
Sigmoid to output.

For kernels (if blind):
z

i.i.d.∼ U (0, 0.1);
nu = nd = [128]× 5;
ku = kd = [3, 3, 3, 3, 3];
ns = [4, 4, 4, 4, 4];
ks = [1, 1, 1, 1, 1];
upsample stride size 1;
Softmax to output.

We put Sigmoid and Softmax on ConvNet outputs for im-
ages and kernels respectively, because image pixels range
from [0, 1] and kernel pixels sum to 1. The reason for setting
upsample stride size to 1 for kernel generation is to prevent
degeneration due to their small size (9×9). It is worth men-
tioning that we apply add-noise regularization to the neural
network, i.e. we disturb the noise input z with an additive
Gaussian z ← z + ∆ z at the beginning of each iteration.
This technique aims to increase model robustness to pertur-
bation [29]. Although this regularization has a negative im-
pact on the optimization process, we find that the network
can still converge the energy to 0 with a sufficient number
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Figure 6: Optimization curves of different types of images/noise for kernel-known DIKP deconvolution.
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Figure 7: Zoomed-in optimization curve of Gaussian case
originally shown in Fig. 6 (from iteration 80 to 200).

of iterations and improve deconvolution performance.

5.2. Bias in convergence

Even though the complex structure of the neural network
in a DIKP model allows the solution space to have a variety
of features regarding natural images, it is still possible for
the DIKP model to express interference information other
than natural images [40], e.g. noise. Therefore, we intro-
duce noise into our experiments, using our DIKP kernel-
known model on natural images (incl. greyscale and color
images) and noise respectively. By comparing the conver-
gence property of the energy functions on the two in the
optimization process, we can know whether our model can
block such interference information in its solution space.

In our control experiment, we decide to use Gaussian
white noise and uniform noise, generated from Gaussian
N (0, 1) and uniform U (0, 1). Fig. 6 shows the optimiza-
tion curves of energy values with respect to iterations in
DIKP kernel-known deconvolution, where each plot corre-
sponds to each degradation kernel. In spite of the Gaus-
sian kernel, energy value convergence shows obvious differ-
ences between natural images and noise in DIKP deconvo-
lution with defocus and motion blur kernels. More specifi-
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Figure 8: Log-probability distributions of image gradients.

cally, we observe that curves by the noise are clearly above
those by natural images, and sudden leaps take place for en-
ergy values by noise in both plots. We speculate, the cause
of this observation is that, the ConvNet structures in DIKP
are unstable to parameter fluctuations for noise generation,
which also explains how DIKP deconvolution blocks noise
information. For the Gaussian, although in Fig. 6 we can-
not see a wild difference between noise and natural images,
in Fig. 7 we can still observe that the energy value by the
uniform noise converges slower than that by natural images
in early iterations, which also indicates that DIKP model
blocks uniform noise in Gaussian degraded deconvolution.

The DIKP deconvolution in the control experiments with
noise indeed shows biases to natural images from the per-
spective of energy function convergence, which means in
most cases, DIKP are capable of blocking interference and
irrelevant information in image deconvolution.

5.3. Image gradient distributions

Previous image statistics studies [44, 34] have shown
that natural image gradients follow heavy-tailed distribu-
tions, which provide a natural prior for natural images.
Starting from this, we consider evaluating the gradient dis-
tributions of our model-generated images with a “standard”
distribution which can be assumed as the natural prior.



C.man house Lena boat house.c peppers avg.

Gaussian reg 24.108 29.541 29.663 26.353 27.842 28.550 27.676
Ours 25.093 30.745 30.705 27.436 29.021 28.827 28.638

Defocus reg 23.841 29.053 29.164 25.874 27.488 28.210 27.272
Ours 25.688 30.473 30.355 27.480 29.594 29.089 28.780

Motion blur reg 6.921 6.142 5.251 6.268 6.172 5.697 6.075
Ours 27.089 31.566 31.801 28.435 30.007 29.661 29.760

Table 1: Kernel-known deconvolution PSNR comparison between baseline (denoted by reg above) and ours.

C.man house Lena boat house.c peppers avg.

Gaussian reg 19.553 14.214 29.798 26.323 14.662 24.790 21.557
Ours 23.230 27.748 26.094 24.977 27.122 21.347 25.086

Defocus reg 18.845 13.519 27.435 24.035 13.849 24.782 20.411
Ours 23.021 23.094 26.286 25.154 24.462 28.229 25.041

Motion blur reg 16.835 12.865 25.304 22.625 15.295 22.207 19.189
Ours 23.935 24.382 26.156 25.039 22.862 26.152 24.754

Table 2: Blind deconvolution PSNR comparison between baseline (denoted by reg above) and ours.

With notations in subsection 4.1, the gradients of im-
age X can be defined as matrices XD>1,n (horizontal) and
D1,mX (vertical) [9], where each element is a gradient
value. In this experiment, we calculate the image gradient
value distributions in 3 image sets, standard test images, im-
ages by the baseline model and images by the DIKP model.
The estimated probability distribution from frequency for
each set is denoted by P̂rstd (·), P̂rreg (·) and P̂rdikp (·),
where P̂rstd (·) is assumed to be the “standard” distribu-
tion. Therefore between the distributions by the 2 model-
generated image sets, the one with greater similarity to the
“standard” distribution is more in line with the natural prior.

Since the values of image gradients are continuous be-
cause of their double-precision floating-point data type, we
split the range of gradient values [−1, 1] into 64 disjoint
bins and count the number of gradient values that fall in
each bin as the frequency. Fig. 8 plots the logarithm prob-
ability distribution for each image set. Since the plot is in
log scale, we can infer that all the three distributions have
the heavy-tailed property, and their log-probability curves
are similar in shape to each other. The peak close-up in
the distribution shows a decreasing order of baseline-DIKP-
standard in terms of log-probability, the gradient values in
which lie around 0. This shows that the density of the base-
line and DIKP model where the gradient values are close to
0 is larger than the standard images, and further speaking,
the DIKP model performs closer to the standard than the
baseline in this range. However, the close-up in the middle
of peak and tail gives an order of standard-baseline-DIKP,
which indicates the exact opposite to the above peak-range
results. The results above are in expectation because the
TV regularizer in the baseline tends to reduce image gradi-
ent values due to the property of TV norm [4] and thereby
gives high frequency where gradients are close to 0, and
low frequency outside of peak range, which also illustrates

DIKP’s better performance in high frequency gradients.
Overall, the KL divergence between gradient distribu-

tions of DIKP-generated images and standard test images
is DKL

(
P̂rdikp

∥∥∥ P̂rstd

)
= 0.954, while for the baseline,

DKL

(
P̂rreg

∥∥∥ P̂rstd

)
= 1.260. This indicates that DIKP

have a greater similarity to the “standard” than the baseline
in terms of gradient distribution. The result is foreseeable
because although the baseline performs closer to the stan-
dard than DIKP in the middle range, DIKP perform closer
to the standard in the peak with much higher frequency.

5.4. Performance on deconvolution

We run our baselines and DIKP models on 18 degraded
images (3 degradation kernels on 6 standard test images) in
both kernel-known and blind settings. Then we compute the
PSNR between generated results and original standard test
images, and visualize some of the results for quantitative
and qualitative comparison respectively.

Shown in Table 1 and Table 2 are PSNR comparisons be-
tween baseline and deep priors for kernel-known and blind
deconvolution respectively. Overall, our DIKP deconvolu-
tion models always perform better than baseline models in
terms of average PSNR on different degradation kernels. In
kernel-known setting, DIKP even give a larger PSNR value
on every single degraded image. Particularly, when the ker-
nel type is set as motion blur, the baseline gives unexpect-
edly bad results as shown by the PSNR values marked in
red in Table 1. We suspect this is because TV regularizer
overfits the gradient prior on the motion deblur, so that the
non-edge regions of the image tend to be in the same pixel
value (see Fig. 9b). When the kernel is set to Gaussian or
defocus, the performance is improved by around 1.2 ± 0.3
in terms of PSNR as we expect. In blind setting, DIKP im-
prove the PSNR performance by around 5.0± 0.5, which is



(a) motion blurred (b) kernel-known baseline (c) Ours (kernel-known) (d) blind baseline (e) Ours (blind)

Figure 9: Comparison on motion blurred cameraman between baseline and DIKP in both kernel-known and blind settings.

(a) Gaussian (b) baseline (kk) (c) Ours (kk)

(d) defocused (e) baseline (kk) (f) Ours (kk)

Figure 10: Comparison on Gaussian degraded Lena, defo-
cused house.c between baseline and deep image prior in
kernel-known (abbriviated as kk above) setting.

significantly beyond the performance of the baseline. How-
ever, baseline gives higher PSNR values than the deep im-
age prior for a few pictures and kernel types, such as Lena
degraded by Gaussian or defocus. A possible reason is that
the gradient values in Lena are relatively small, so that TV
regularization gives better results on this specific image.

Fig. 10 visualizes the comparison between images
restored from Gaussian degraded Lena and defocused
house.c in kernel-known setting. From the pictures and
their close-ups, we see that DIKP perform better in detail
recovery. For example, the hair in Fig. 10b has only a clear
outline, while the details shown in Fig. 10c are more abun-
dant as well as the trees shown in Fig. 10f compared with
Fig. 10e. One possible explanation is that TV regularizer
over-optimizes the sharpness of images, resulting in good
performance only in outlines but not in detail.

In spite of the two kernels above, DIKP achieve remark-
able results especially in motion blur deconvolution. Fig. 9
visualizes the comparison between images restored from
motion blurred C.man in both settings. As mentioned pre-
viously, kernel-known baseline gives an unsatisfactory re-
sult (Fig. 9b), where only the basic outline of the camera-

man can be observed, and all other details inside the image
are lost, while kernel-known DIKP restore the image almost
perfectly as shown in Fig. 9c. For blind motion deblurring
on C.man, The result (Fig. 9d) given by baseline still has
motion blur, and the shape of its kernel is completely dif-
ferent from motion blur, while DIKP remove motion blur
efficiently and the shape of its kernel is much closer to mo-
tion blur than the baseline (see Fig. 9e), which also verifies
ConvNet’s expressiveness on degradation kernels.

6. Conclusions
We investigate deep ConvNet’s expressiveness on the

prior information of natural images and degradation kernels
in DIKP image deconvolution, and present its performance
in both kernel-known and blind settings. More importantly,
we propose DIKP-based energy minimization pipelines for
image deconvolution in the two settings, and achieve perfor-
mance which is far beyond our baselines [2, 43]. Our mo-
tivation is to adopt DIKP with more complex structures to
express image prior information based on the idea of tradi-
tional learning-free optimization methods, and at the same
time to improve image deconvolution performance by tra-
ditional learning-free methods. Through the first two ex-
periments, we prove that the ConvNet structures of DIKP
capture strong prior information on natural images in terms
of generation types and gradient distributions. In the final
experiment, we show the significant improvement by DIKP
models compared with the baselines in terms of both PSNR
values and visual effects, especially for motion-blurred im-
ages. However, we verify DIKP’s expressiveness on degra-
dation kernels only by an adjusted hourglass structure. It
is hard to associate kernel features and deep neural struc-
tures intuitively. Therefore, future endeavours in this topic
should focus on the structures of DIKP generating kernels,
trying other hyperparameters on hourglass, or other Con-
vNet structures, e.g. texture nets [41]. Besides, as applied
in [38], the formulation of energy functions may be adjusted
with gradient terms to become more suitable for this task.
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