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ABSTRACT

A cross-domain visual place recognition (VPR) task is proposed in this work, i.e., matching images
of the same architectures depicted in different domains. VPR is commonly treated as an image
retrieval task, where a query image from an unknown location is matched with relevant instances
from geo-tagged gallery database. Different from conventional VPR settings where the query images
and gallery images come from the same domain, we propose a more common but challenging setup
where the query images are collected under a new unseen condition. The two domains involved in
this work are contemporary street view images of Amsterdam from the Mapillary dataset (source
domain) and historical images of the same city from Beeldbank dataset (target domain). We tailored
an age-invariant feature learning CNN that can focus on domain invariant objects and learn to match
images based on a weakly supervised ranking loss. We propose an attention aggregation module that
is robust to domain discrepancy between the train and the test data. Further, a multi-kernel maximum
mean discrepancy (MK-MMD) domain adaptation loss is adopted to improve the cross-domain
ranking performance. Both attention and adaptation modules are unsupervised while the ranking
loss uses weak supervision. Visual inspection shows that the attention module focuses on built forms
while the dramatically changing environment are less weighed. Our proposed CNN achieves state of
the art results (99% accuracy) on the single-domain VPR task and 20% accuracy at its best on the
cross-domain VPR task, revealing the difficulty of age-invariant VPR.

Keywords Image Retrieval · Domain Adaptation · Attention Model

1 Introduction

Recently, there has been interest among the computer vision researchers to solve the visual place recognition (VPR)
task in the form of image retrieval [1, 2, 3, 4, 5, 6, 7]. In [8], the discriminative visual cues learned for visual place
classification task are investigated. Interestingly, CNN filters learn human-like discriminative visual cues to recognize a
place, including built forms, signs or vegetation. Among these discriminative attributes, buildings are the most robust
that remain, more or less, invariant during the changes in day and night lighting, different seasons and even years.
However, CNNs are still influenced by irrelevant objects like roads and the sky. In this work, we introduce a CNN
model with attention aggregation module to focus on domain invariant features, i.e. buildings, for the cross-domain
VPR task. We will demonstrate that our work can be further combined with multi-kernel Maximum Mean Discrepancy
(MK-MMD) loss to obtain better domain adaptation results. The images from the two domains with a large time lag are
depicted in Fig.1, being historical images (queries) and current street view images (gallery) of Amsterdam.
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Figure 1: Correctly retrieved images with our proposed method. The top row illustrate the general place recognition in
the same domain: both the query (left) and gallery image (right) are from the same dataset. The bottom row shows the
cross-domain place recognition task where the query (left) is from the Beeldbank dataset and the galley image (right) is
from the Mapillary dataset.

The VPR task is commonly formulated as content based image retrieval (CBIR), i.e., sorting the geo-tagged gallery
images by their distances to the unknown query image. The query is then labeled based on its best matching image in
the gallery. Deep image representation learning is currently state of the art for almost all CBIR settings. Among the
deep feature learning methods, distance learning CNNs are the most popular ones [9, 10]. Nevertheless, supervised
deep distance learning requires similar and dissimilar image pairs for training. In this work, image pair labels are not
available and we only have access to geo-tagged images from the Mapillary street view imagery and thus a weakly
supervised deep feature learning is used, similar to the work of NetVLAD[1].

Different from [1], our queries are historical images which are not geo-tagged and exhibit a domain discrepancy between
training data and test data. Age-agnostic place recognition that is addressed in this paper is a more challenging problem
firstly due to the lack of image pair labels for training, secondly due to the domain shift between the gallery and query
images caused by the change of scenery over a large time gap and thirdly due to the outliers in target domain. Different
technologies of photography, equipment and processes used in the production of photos in the past also contribute to
this domain shift. Fig1 shows the general and the age-agnostic place recognition task.

We are inspired by [11], which introduces an attention module into NetVLAD for the classification task to address the
unequal importance of local features in VLAD feature aggregation layer. In our work, a new attention aggregation
technique is proposed to weigh both global VLAD descriptors and local descriptors. A domain adaptation loss based on
MK-MMD is additionally introduced to achieve better cross-domain performance. Note that both the attention and the
domain adaption modules are unsupervised and thus no labels are required.

Our attention-aware architecture is depicted in Fig.2 which consists of three modules and a shared convolutional neural
network for feature extraction (AlexNet cropped before conv5). The attention module is a single convolutional layer
followed by softplus activation function, transforming the feature map to a heatmap. This heatmap contains attention
scores for the deep features. The VLAD module aggregates deep features in the attention-aware scheme by assigning
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Figure 2: Our proposed CNN model include three modules: an attention module, am attention-aware VLAD module
and a domain adaptation module. The attention-aware VLAD module uses the attention scores to weigh both the deep
features and the global descriptors with two streams, A1 and A2, which are explained in Section 3.2.

attention scores to both local and global descriptors. The unsupervised domain adaptation module is additionally used
to learn domain-invariant features. Our oblation studies show that both modules are important to reach state of the
art results. Our speculation is that MK-MMD loss aligns the photo styles while attention module focuses on domain
invariant contents.

Our contributions are summarized as:

• To the best of our knowledge, this is the first large scale (40k) image database for age-invariant visual place
recognition task. We manually annotated 104 historical images and their corresponding matched current street
view images only for evaluation purpose.

• A new attention aggregation scheme is proposed to combine both the local and global image descriptors
(Section 3.2).

• We combined the MK-MMD domain adaptation loss with the ranking loss to learn domain-invariant features
for cross-domain VPR task. (Section 3.3).

We tested our proposed model on conventional VPR task and our experiments show the state of the art results on
Mapillary dataset compared to other competitors. Detailed results and ablation studies will be presented in Section 4.5.
The comparison of single-domain and cross-domain results reveals the difficulty of age-agnostic place recognition task.

2 Related Work

The performance of VPR as an image retrieval problem depends on the ranking accuracy w.r.t. a similarity metric. The
query location is suggested based on the top M similar images (annotated with geo-tags). To extract good features
for indexing, traditional works focus on hand-crafted features such as SIFT[12]) and SURF[13]. Some other efficient
methods are based on the aggregation of local gradient-based descriptors like Fisher Vectors [14] and VLAD[15]. [4] is
a SURF based model which improves the performance by detecting and removing ‘confusing objects’. [6] uses SIFT to
detect the repetitive patterns in the image which is representative for buildings. [16] focuses on matching images that
have large view point changes by generating artificial views of a scene for the training process.

Recent works suggest that a CNN trained on a large scale dataset as a feature extractor outperforms hand crafted
features on various tasks [17, 2, 18, 19]. In turn, [20] shows that features in the early layers of a CNN trained for image
classification can be effectively used as visual descriptors for image retrieval. LIFT [21] is a learning pipeline for
feature extraction which introduces an end-to-end unified network for detection, orientation estimation, and feature
description. [22] proposes a global image representation by the regional maximum activation of convolutional layers
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(R-MAC) well-suited for place recognition. [2] proposes novel CNN-based features designed for place recognition
by detecting salient regions and extracting regional representations as descriptors. NetVLAD [1] introduces a novel
triplet ranking loss together with a VLAD aggregation layer that can learn powerful representations for the VPR task
in an end-to end manner. A known disadvantage of NetVLAD lies in its global feature aggregation. [23] proposes a
region proposal network to learn which regions should be pooled to form the final global descriptor. Similar to [1] , we
use current geo-location tags for weakly supervised feature learning using triplet distance learning network. However,
we do not have access to matched image pairs from the two domains for supervised training, i.e., matched historical
and contemporary images. To address this domain mismatch between the test and train data, we need to promote
domain-invariant feature learning.

We tailor an attention aggregation model that can boost the cross-domain performance for our specific task, age-agnostic
urban scene matching. Attention model is broadly used in natural language processing [24, 25] and computer vision
tasks [26, 27, 18, 28, 29, 7, 30]. [31] shows that attention model can also be adopted to benefit metric learning. [18]
proposes an attention mechanism to select key points for matching. Attention model is considered to be effective for
domain adaptation as well [32, 33]. Our attention model is implemented in an unsupervised way which means no
ground truth score maps are available for training. The learning process of the attention module is guided by the image
retrieval ranking loss.

Given two different domains, unsupervised deep domain adaptation schemes [34, 35] are mostly used to enhance the
performance of CNNs on target domain by using labels only from the source domain.

Among the vast amount of literature on deep domain adaption for classification tasks, the Maximum Mean Discrepancy
(MMD) loss is introduced by [36] to minimize the domain discrepancy by projecting data into a kernel space. Later [37]
proposed multi-kernel MMD (MK-MMD) which uses linear combination of multiple kernels. We adopt MK-MMD loss
as an additional domain adaptation module for our attention aggregation model. Similarly, we feed untagged historical
images of Amsterdam to the adaptation layer in an unsupervised manner.

3 Method

Our proposed model consists of three modules for feature extraction, namely a weakly supervised image retrieval
module with a triplet ranking loss (Section 3.1), an attention aggregation module(Section 3.2) and an unsupervised
domain adaptation module with MK-MMD loss (Section 3.3). MK-MMD loss constrains the feature maps after the last
convolution layer (conv_5). The final loss function for training, Lu, can be expressed as:

Lu = Lr + αM(Ds,Dt) (1)

where M(Ds,Dt) is the MK-MMD loss term, Ds and Dt denote the source domain and target domain, Lr is the triplet
ranking loss used in NetVLAD [1], α is the weight that trades off the image retrieval loss and the domain adaptation
loss.

3.1 Image retrieval with weak supervision

We use NetVLAD [1] as our baseline model which tackles the weakly supervised image retrieval task with a triplet
ranking loss. NetVLAD considers the generated H×W ×D feature maps as a set of N(H×W )×D local descriptors
where N is the number of local descriptors and D is the dimension. Latter, a soft clustering is used to store the residual
information contained in the descriptors to form K×D final descriptors denoted as V where K is the number of cluster
centers. V (j, k) can be expressed as:

V (j, k) =

N∑
i=1

ak(xi)(xi(j)− ck(j)), (2)

where j ∈ {1, . . . , D} is the j-th dimension of a descriptor {xi}, k ∈ {1, . . . ,K} is the k-th cluster center, and ak(xi)
is the soft assignment of the descriptor xi to k-th cluster center ck. In Eq.1, A weakly supervised triplet ranking loss Lr
is used to govern the learning process of descriptors that ensures the Euclidean distance between the query image and
the best potential positive images are smaller than the Euclidean distance between the query image and all the negative
pairs (based on geo-tags).

Lr =
∑
j

l (min
i
d2θ(q, p

q
i ) +m− d2θ(q, n

q
j)), (3)
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where, q denotes the query image and pqi are potential positive images. mini d
2
θ(q, p

q
i ) denotes the best matching pair

with shortest distance dθ. In turn, nqj are all negative image pairs and m is the distance margin to be maintained. The
function l is the hinge loss which penalizes the pairs that violate the margin.

3.2 Attention module

The triplet network for image retrieval task produces feature maps with the dimension of H ×W ×D. The inserted
attention module consists of a 1× 1 convolutional layer with coefficients wa ∈ RD×1 and a softplus activation function.
This convolutional layer will produce an attention score map Ha with spatial size H ×W , which could be interpreted
as the weight {wi} for each descriptor {xi}. [11] proposed an attention aware aggregation scheme A1 as:

V (j, k)A1 =

N∑
i=1

wiak(xi)(xi(j)− ck(j)), (4)

where wi ∈ wa. Note that the VLAD module first assigns the local descriptors {xi} to K cluster centers {ck}, then
computes the residuals of each descriptor xi − ck to its cluster center and assigns the weight ak of descriptor xi to
cluster ck proportional to their proximity.

In Eq.4, the global descriptors (residuals) are weighed after clustering. However, the VLAD descriptor is very sensitive
to cluster centers [38] since it defines the origin of coordinates system to a cluster. Under this circumstance, we propose
to weigh the local descriptors according to attention scores before performing clustering. The soft-assignment term ak
is re-calculated based on the newly weighed descriptors. Our proposed aggregation scheme A2 can be formulated as

V (j, k)A2
=

N∑
i=1

wiak(xiwi)(xi(j)wi − ck(j)). (5)

The difference between A1 and A2 is that A1 assigns the attention scores after clustering the descriptors to multiple
centers so the attention scores are only used to weigh the residuals but A2 first uses the attention scores to filter out
uninteresting regions in the individual local descriptors and then performs the same step as A1. Considering that
the reweighing of individual descriptors may remove information that are useful for global descriptor generation, we
aggregate the two attention schemes linearly:

V (j, k)our = V (j, k)A1
+ V (j, k)A2

. (6)

3.3 Domain adaptation module

We use MK-MMD loss [37] with five Gaussian kernels of different bandwidths for unsupervised domain adaptation.
The loss minimizes the distance between the expectation of the kernel mappings φ(.) of the descriptors in the source
domain xsi and the target domain xti.

M(Ds,Dt) =
N∑
i

||E(φ(xsi ))− E(φ(xti))||2. (7)

The MK-MMD loss guides the CNN to learn a latent space where the two domains are not distinctive, i.e., the gap
between the statistical means of these two domains are closed in the reproducing kernel Hilbert space (RKHS).

4 Experiment

4.1 Dataset

We construct a cross-domain dataset with two sources of data to evaluate our proposed method, namely the street
view panorama images of Amsterdam city from the Mapillary dataset[39] and the Beeldbank dataset[40] containing
historical images from Amsterdam city archives.

Mapillary40k is a subset of Mapillary250k dataset collected from the source domain. The source domain contains
panoramic images with high resolution collected from the Mapillary, Amsterdam area. Each image is annotated with a
geotag. The cylindrical panorama is converted to 6 cubmaps (all share the same geotag): ‘top’, ‘down’, ‘left’, ‘right’,
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Dataset Gallery Query

Source Mapillary40k-train 20,884 2,320
single-domain-test 18,980 (M) 2,108 (M)

Target Beeldbank-train 29,726 -
cross-domain-test 2,469 (M) 104 (B)

Table 1: Mapillary40k−→Beeldbank dataset, the source domain is Mapillary40k and the target domain is Beeldbank
denoted by M and B, respectively. Beeldbank-train is only used for unsupervised domain adaptation. cross-domain
VPR requires matching query images from Beeldbank to gallery images from Mapillary40k.

‘front’ and ‘back’ textures with 512 × 512 resolution. The ‘top’ and ‘down’ textures are discarded since they usually
contain sky and the vehicle that carries the camera. 40k gallery images and 4k query images are collected in total which
are then divided into two roughly equal parts for training and testing when tested for single-domain VPR task, each
containing around 20k gallery images and 2k queries. The two sub-datasets are geographically disjoint.

Beeldbank, the target domain, contains historical images of Amsterdam with low resolution and random size (height
and weight are around 100 pixels). This dataset not only depicts Amsterdam street view in the past but also contains
outliers including people, sketches and indoor scenes.

Mapillary40k - Beeldbank dataset is introduced in this work for the cross-domain VPR task (Table 1). The cross-
domain test set contains 104 labeled queries from the target domain and 2,469 gallery images from the source domain.
In the cross-domain test set, each target query has around 10 corresponding matched images in source domain. 30k
unlabeled Beeldbank images are used during training for domain adaptation.

4.2 Single-domain and Cross-domain VPR tasks

Single-domain VPR task (S −→ S) In the single-domain VPR setup, we train the network with only weakly labeled
source domain images. The network is tested on the test set of the same domain. Mapillary40k is used for this
single-domain VPR experiment as shown in Tab.1. This is the common setting for VPR task as there is no domain
mismatch between train and test data. We use single-domain VPR as a pilot experiment to evaluate the performance of
the proposed model on conventional VPR task.

Cross-domain VPR task (S −→ T ) The domain discrepancy between train and test data makes the cross-domain
VPR task more challenging. This is the core of our experiments in this work which aims at labeling the images
from beeldbank dataset with correct geo-location. We train the MK-MMD layer with weakly labeled source data and
unlabeled target data for the cross-domain VPR task. Labeled data with matching pairs from beeldbank and Mapilary
dataset is only used for evaluation of the model. We use queries from the target domain to retrieve relevant gallery
image(s) collected from the source domain.

We made the hypothesis that our attention module itself can improve the cross-domain VPR task to some extent without
the MK-MMD loss compared to vanilla NetVLAD. An experiment was carried out to examine the function of the
attention module later in Section 3.2. Further ablation study of the attention module and the MK-MMD loss will be
presented in section 4.5.1 and 4.5.2.

Baseline work We compare our attention-aware framework with ‘off-the-shelf’ CNNs for both single-domain VPR and
cross-domain VPR tasks. The baseline work used AlexNet pretrained on ImageNet cropped before conv5 as feature
extractor. Features are then sub-sampled by either max pooling (fmax), average pooling (favg), vanilla VLAD pooling
without attention(fV LAD) and VLAD with attention-aware A1 method (fA1−V LAD) [11].

4.3 Evaluation metrics

We follow the standard place recognition evaluation metric in [1] where the query image is considered as correctly
matched if at least one of the retrieved top N images is located within 25 meters away from the ground truth query
location. The Recall@N evaluates the percentage of correctly localized queries at different N matching levels. For
cross-domain place recognition, since the Beeldbank dataset contains labeled positive pairs, the Recall@N will be
directly calculated using these labels.
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Figure 3: Correctly retrieved top1 image from our framework trained with unsupervised domain adaptation, (top)
queries are from the Beeldbank dataset, (bottom) retrieved images are from the Mapillary dataset. Our model can
retrieve images not only depicting a similarly scene (a.), but also images from a different perspective (c.) and images
captured further away from the query (b., d.). (b.) is correctly retrieved by matching the features of the building like the
window and the unique shape of the door on the right side.
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Figure 4: Visualization of attention score maps for source and target images. The top row shows the input images. The
middle row is the heatmaps obtained by using [11], defined in Eq.4. The bottom row presents the results from our
proposed method defined in Eq.6. It shows that our proposed attention module can generate accurate attention score
maps with higher density on domain invariant objects for both source images and target images.

4.4 Implementation Details

The attention module starts with a ReLU activation, followed by a 1× 1 convolutional layer and softplus activation to
produce attention scores. In the VLAD layer, the number of cluster centers used is K = 64. Mapillary images were
cropped with a random proportion to the original size between (0.3 1.0) for data augmentation before training.
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We froze the layers before conv4 and fine-tuned the weights of all the other layers afterwards with the optimizer ADAM.
We used the following hyperparameters: learning rate lr = 1e-5, batch size = 2 tuples (each tuple contains 24 images,
including query, positive and negative pairs), epochs = 25. The hard negatives mining uses the same technique as
NetVLAD[1]: it first caches all the training queries and gallery images for a time and then randomly selects 1000
negatives (image away from 25 meters). It keeps the top 10 hardest negatives from the cached gallery image features.
The cache is updated every 1000 training queries.

We center cropped and reshaped all target Beeldbank images to 512× 512 pixels in the cross-domain VPR experiment.
The MK-MMD loss is calculated after conv5. The weight α in Eq.1 is 0.99. The margin m in Eq.3 is set as 0.1.

4.5 Results

This section presents the results of the experiments with a detailed ablation study for the attention module (Section
4.5.1) and the domain adaptation module (Section 4.5.2) separately on both single-domain and cross-domain VPR tasks.
Visual inspection of retrieval results and attention heatmaps are shown in Fig.3 and Fig.4.

4.5.1 Attention module

To evaluate the performance of our attention aggregation module on both single and cross-domain VPR tasks, we first
trained the model on the source domain (Mapillary40k) and directly tested it on the source test set and the target test
set without MK-MMD loss. Tab.2 shows the retrieval results where our attention aggregation method consistently
outperforms the model without attention on both S −→ T and S −→ S tasks. A possible explanation could be that the
VLAD descriptors are easily affected by the irrelevant objects. By not focusing on representative details that describe
unique features of each building, it may retrieve an image that has a similar road or sky etc.

S −→ T S −→ S
R@1 R@5 R@10 R@20 R@1 R@5 R@10 R@20

fmax
+ 0.0096 0.0577 0.0769 0.1058 0.6347 0.8226 0.8800 0.9203

favg
+ 0.0000 0.0096 0.0481 0.0769 0.7884 0.9284 0.9535 0.9730

fmax 0.0000 0.0000 0.0577 0.1250 0.7410 0.9108 0.9431 0.9639
favg 0.0096 0.0192 0.0481 0.0577 0.7984 0.9269 0.9564 0.9725
fV LAD 0.0096 0.0192 0.0192 0.0577 0.8843 0.9687 0.9782 0.9853
fA1-V LAD 0.0096 0.0481 0.1058 0.1538 0.8819 0.9649 0.9801 0.9877
four-V LAD 0.0192 0.0577 0.1154 0.2019 0.9132 0.9753 0.9815 0.9900

Table 2: The + denotes that the ‘off-the shelf’ model is pretrained on ImageNet[41] for classification task. The others
are trained on Mapillary40k for place recognition from scratch, and directly tested on the cross-domain dataset.

To inspect whether our attention module can produce reasonable attention scores for each descriptor, we visualize the
attention maps of different attention-aware schemes in Fig.4. Our attention aggregation method generates heatmaps with
higher densities on representative features and better robustness against irrelevant objects. Most attention is assigned to
the architectures and less attention is assigned to non representative regions such as road and sky as expected. Note that
in Tab.2, the performance of fA1-V LAD is worse than fV LAD and four-V LAD achieves the best results. We conclude
that an insufficient attention map will deteriorate the performance.

4.5.2 Domain adaptation module

The additional domain adaptation loss (MK-MMD) is added to our model and all baseline works in this section. The
MK-MMD loss is adopted to further minimize the domain discrepancy in this experiment. We applied it on the vanilla
NetVLAD (fV LAD-DA), A1 attention model (fA1-V LAD-DA) and our attention aggregation model (four−V LAD-DA).
The performance of different models with and without MK-MMD loss are examined on both source and target test test.
The results are visualized at different recall rates in Fig.5.

When trained with the MK-MMD loss for the S −→ T cross-domain VPR task, both fV LAD-DA and four-V LAD-DA
benefit from domain adaptation, while no significant improvement of fA1-V LAD-DA is observed. Detailed results are
presented in Tab.3.

In addition, we also examined the performance of the model trained for the cross-domain VPR task on the source
domain due to the reason that extra data from the target doamin may also help with retrieval in source domain if
the model is robust to the outliers in the Beeldbank dataset. fV LAD-DA does not show much power in the original
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with DA without DA
R@1 R@5 R@10 R@20 R@1 R@5 R@10 R@20

fV LAD 0.0096 0.0481 0.0769 0.1635 0.0096 0.0192 0.0192 0.0577
fA1-V LAD 0.0096 0.0769 0.1058 0.1442 0.0096 0.0481 0.1058 0.1538
four-V LAD 0.0577 0.1346 0.1731 0.2788 0.0192 0.0577 0.1154 0.2019

Table 3: Comparison of different models’ performance on the cross-domain S −→ T VPR task under two conditions:
with or without domain adaptation using the MK-MMD loss. DA stands for domain adaptation using MK-MMD loss.

source domain compared to fV LAD. The retrieval accuracy of fA1-V LAD-DA in the source domain decreases after
domain adaptation. Our proposed model gets better retrieval result even on the source domain as shown in Fig.5. This
experiment proves that the domain specific features and outliers are reduced while more domain invariant features are
captured by our proposed attention aggregation model which further facilitates the domain adaptation procedure.

Figure 5: Comparison of the models trained with or without the MK-MMD loss on both single-domain (S −→ S) and
cross-domain (S −→ T ) tasks. DA denotes that the MK-MMD loss is added during training

Overall, we show that our attention aggregation model can achieve more accurate retrieval results on both single-domain
S −→ S and cross-domain S −→ T VPR tasks even without domain adaptation and it can further facilitate unsupervised
domain adaptation to achieve better performance on both source and target test sets.

5 Discussion

Usually we assume that the training data and test data are sampled from an identical distribution which is violated
in our cross-domain setting. We designed an attention-aware adaptive network to tackle the existing distribution
shift. The results indicate that both the attention and adaptation modules contribute to the accurate retrieval of visual
information. We speculate that the attention module mainly helps with focusing on domain invariant objects and the
domain adaptation module aligns the depiction styles between the two different domains. Our dual experiments on
both conventional and cross-domain VPR tasks admit the difficulty of learning age-invariant features when there is no
cross-domain pairing labels available for directly training CNNs.

Besides the large domain shift, our Beeldbank target dataset contains various classes of images like people, indoor
scenes, sketches and ground plans of buildings. These outliers are not contained in source dataset Mapillary40k
rendering the task more difficult. Domain adaptation with more classes or outliers in the target domain compared to the
source domain can be considered as open-set domain adaptation problem [42, 43, 44, 45]. Some other works refer to
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this as outlier detection problem [46, 47]. We speculate that the attention module can filter out the outliers by weighing
them less with the heatmaps.

6 Conclusion

We proposed a specially-designed CNN for automatic annotation of historical images with their location. This is
helpful specifically for museum curators and historians to retrieve the location information of a historical urban scene
or architecture. This task is more challenging than single-domain (conventional) location retrieval due to the domain
discrepancy caused by the large time lag between depicted scenes. A cross-domain dataset is collected accordingly
with Mapillary40k used as source domain and Beedldbank, as target domain. To tackle this challenge, an attention
aggregation module with a domain adaptation layer is designed, the performance of which is demonstrated by detailed
experiments and ablation studies. Our attention aggregation model achieves state of the art results on both single and
cross-domain VPR tasks by focusing more on domain invariant objects. It can be further combined with an extra
domain adaptation module using the MK-MMD loss to achieve higher retrieval accuracy not only on the target domain
but also on the source domain. Moreover, we believe our methods can achieve promising results on open-set domain
adaptation tasks where unseen classes or outliers are not involved during training.
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for location recognition. Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval -
ICMR ’17, 2017.

[4] Jan Knopp, Josef Sivic, and Tomas Pajdla. Avoiding confusing features in place recognition. In European
Conference on Computer Vision, pages 748–761. Springer.

[5] Manuel Lopez-Antequera, Ruben Gomez-Ojeda, Nicolai Petkov, and Javier Gonzalez-Jimenez. Appearance-
invariant place recognition by discriminatively training a convolutional neural network. Pattern Recognition
Letters, 92:89–95, 2017.

[6] Akihiko Torii, Josef Sivic, Tomas Pajdla, and Masatoshi Okutomi. Visual place recognition with repetitive
structures. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 883–890.

[7] Yingying Zhu, Jiong Wang, Lingxi Xie, and Liang Zheng. Attention-based pyramid aggregation network for
visual place recognition. 2018 ACM Multimedia Conference on Multimedia Conference - MM ’18, 2018.

[8] Xiangwei Shi, Seyran Khademi, and Jan van Gemert. Deep visual city recognition visualization, 2019.

[9] Sumit Chopra, Raia Hadsell, Yann LeCun, et al. Learning a similarity metric discriminatively, with application to
face verification. In CVPR (1), pages 539–546, 2005.

[10] Elad Hoffer and Nir Ailon. Deep metric learning using triplet network. In International Workshop on Similarity-
Based Pattern Recognition, pages 84–92. Springer, 2015.

[11] Krishna Kanth Nakka and Mathieu Salzmann. Deep attentional structured representation learning for visual
recognition. arXiv preprint arXiv:1805.05389, 2018.

[12] David G. Lowe. Distinctive image features from scale-invariant keypoints. International Journal of Computer
Vision, 60(2):91–110, Nov 2004.

10

http://archimedial.eu/


A PREPRINT - SEPTEMBER 12, 2019

[13] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust features. In European conference on
computer vision, pages 404–417. Springer, 2006.

[14] Florent Perronnin, Jorge Sánchez, and Thomas Mensink. Improving the fisher kernel for large-scale image
classification. In European conference on computer vision, pages 143–156. Springer, 2010.

[15] Hervé Jégou, Matthijs Douze, Cordelia Schmid, and Patrick Pérez. Aggregating local descriptors into a compact
image representation. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pages
3304–3311. IEEE, 2010.

[16] András L. Majdik, Yves Albers-Schoenberg, and Davide Scaramuzza. Mav urban localization from google
street view data. In Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on, pages
3979–3986. IEEE.

[17] Zetao Chen, Adam Jacobson, Niko Sünderhauf, Ben Upcroft, Lingqiao Liu, Chunhua Shen, Ian Reid, and Michael
Milford. Deep learning features at scale for visual place recognition. In 2017 IEEE International Conference on
Robotics and Automation (ICRA), pages 3223–3230. IEEE, 2017.

[18] Hyeonwoo Noh, Andre Araujo, Jack Sim, Tobias Weyand, and Bohyung Han. Large-scale image retrieval with
attentive deep local features. In Proceedings of the IEEE International Conference on Computer Vision, pages
3456–3465, 2017.

[19] Paul-Edouard Sarlin, Cesar Cadena, Roland Siegwart, and Marcin Dymczyk. From coarse to fine: Robust
hierarchical localization at large scale. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 12716–12725, 2019.

[20] Artem Babenko, Anton Slesarev, Alexandr Chigorin, and Victor Lempitsky. Neural codes for image retrieval.
Lecture Notes in Computer Science, page 584–599, 2014.

[21] Kwang Moo Yi, Eduard Trulls, Vincent Lepetit, and Pascal Fua. Lift: Learned invariant feature transform. Lecture
Notes in Computer Science, page 467–483, 2016.

[22] Giorgos Tolias, Ronan Sicre, and Hervé Jégou. Particular object retrieval with integral max-pooling of cnn
activations, 2015.

[23] Albert Gordo, Jon Almazán, Jerome Revaud, and Diane Larlus. Deep image retrieval: Learning global representa-
tions for image search. In European Conference on Computer Vision, pages 241–257. Springer, 2016.

[24] Jan K Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, and Yoshua Bengio. Attention-based
models for speech recognition. In Advances in neural information processing systems, pages 577–585, 2015.

[25] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Advances in neural information processing systems, pages
5998–6008, 2017.

[26] Yinzheng Gu, Chuanpeng Li, and Jinbin Xie. Attention-aware generalized mean pooling for image retrieval, 2018.
[27] Xiang Long, Chuang Gan, Gerard de Melo, Jiajun Wu, Xiao Liu, and Shilei Wen. Attention clusters: Purely

attention based local feature integration for video classification. 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, Jun 2018.

[28] Zachary Seymour, Karan Sikka, Han-Pang Chiu, Supun Samarasekera, and Rakesh Kumar. Semantically-aware
attentive neural embeddings for image-based visual localization, 2018.

[29] Jifei Song, Qian Yu, Yi-Zhe Song, Tao Xiang, and Timothy M Hospedales. Deep spatial-semantic attention for
fine-grained sketch-based image retrieval. In Proceedings of the IEEE International Conference on Computer
Vision, pages 5551–5560, 2017.

[30] Tianjun Xiao, Yichong Xu, Kuiyuan Yang, Jiaxing Zhang, Yuxin Peng, and Zheng Zhang. The application
of two-level attention models in deep convolutional neural network for fine-grained image classification. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 842–850, 2015.

[31] Wonsik Kim, Bhavya Goyal, Kunal Chawla, Jungmin Lee, and Keunjoo Kwon. Attention-based ensemble for
deep metric learning. In Proceedings of the European Conference on Computer Vision (ECCV), pages 736–751,
2018.

[32] Guoliang Kang, Liang Zheng, Yan Yan, and Yi Yang. Deep adversarial attention alignment for unsupervised
domain adaptation: The benefit of target expectation maximization. Lecture Notes in Computer Science, page
420–436, 2018.

[33] Ximei Wang, Liang Li, Weirui Ye, Mingsheng Long, and Jianmin Wang. Transferable attention for domain
adaptation. In AAAI Conference on Artificial Intelligence (AAAI), 2019.

11



A PREPRINT - SEPTEMBER 12, 2019

[34] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael I Jordan. Learning transferable features with deep
adaptation networks. arXiv preprint arXiv:1502.02791, 2015.

[35] Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and Trevor Darrell. Deep domain confusion: Maximizing
for domain invariance. arXiv preprint arXiv:1412.3474, 2014.

[36] Karsten M Borgwardt, Arthur Gretton, Malte J Rasch, Hans-Peter Kriegel, Bernhard Schölkopf, and Alex J Smola.
Integrating structured biological data by kernel maximum mean discrepancy. Bioinformatics, 22(14):e49–e57,
2006.

[37] Arthur Gretton, Dino Sejdinovic, Heiko Strathmann, Sivaraman Balakrishnan, Massimiliano Pontil, Kenji Fuku-
mizu, and Bharath K Sriperumbudur. Optimal kernel choice for large-scale two-sample tests. In Advances in
neural information processing systems, pages 1205–1213, 2012.

[38] Relja Arandjelovic and Andrew Zisserman. All about vlad. In Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, pages 1578–1585, 2013.

[39] https://www.mapillary.com.
[40] https://beeldbank.amsterdam.nl/beeldbank.
[41] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255. Ieee, 2009.
[42] Mahsa Baktashmotlagh, Masoud Faraki, and Tom Drummond. Open-set domain adaptation. 2019.
[43] Abhijit Bendale and Terrance E. Boult. Towards open set deep networks. 2016 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), Jun 2016.
[44] Poojan Oza and Vishal M. Patel. Deep cnn-based multi-task learning for open-set recognition, 2019.
[45] Kuniaki Saito, Shohei Yamamoto, Yoshitaka Ushiku, and Tatsuya Harada. Open set domain adaptation by

backpropagation. Lecture Notes in Computer Science, page 156–171, 2018.
[46] Masataka Yamaguchi, Yuma Koizumi, and Noboru Harada. Adaflow: Domain-adaptive density estimator with

application to anomaly detection and unpaired cross-domain translation. In ICASSP 2019-2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 3647–3651. IEEE, 2019.

[47] Lingkun Luo, Liming Chen, Shiqiang Hu, et al. Discriminative label consistent domain adaptation. arXiv preprint
arXiv:1802.08077, 2018.

12


	1 Introduction
	2 Related Work
	3 Method
	3.1 Image retrieval with weak supervision
	3.2 Attention module
	3.3 Domain adaptation module

	4 Experiment
	4.1 Dataset
	4.2 Single-domain and Cross-domain VPR tasks
	4.3 Evaluation metrics
	4.4 Implementation Details
	4.5 Results
	4.5.1 Attention module
	4.5.2 Domain adaptation module


	5 Discussion
	6 Conclusion

