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FullFusion: A Framework for Semantic Reconstruction of Dynamic Scenes
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Abstract

Assuming that scenes are static is common in SLAM re-

search. However, the world is complex, dynamic, and fea-

tures interactive agents. Mobile robots operating in a va-

riety of environments in real-life scenarios require an ad-

vanced level of understanding of their surroundings. There-

fore, it is crucial to find effective ways of representing the

world in its dynamic complexity, beyond the geometry of

static scene elements.

We present a framework that enables incremental recon-

struction of semantically-annotated 3D models in dynamic

settings using commodity RGB-D sensors. Our method is

the first to perform semantic reconstruction of non-rigidly

deforming objects along with a static background. FullFu-

sion is a step towards enabling robots to have a deeper and

richer understanding of their surroundings, and can facili-

tate the study of interaction and scene dynamics.

To showcase the potential of FullFusion, we provide a

quantitative and qualitative evaluation on a baseline imple-

mentation which employs specific reconstruction and seg-

mentation pipelines. It is, however, important to highlight

that the modular design of the framework allows us to easily

replace any of the components with new or existing counter-

parts.

1. Introduction

One of the important prerequisites for building intel-

ligent embodied systems is creating means of interpret-

ing and organising sensory information. Simultaneous Lo-

calisation and Mapping (SLAM) is one of the fundamen-

tal problems in modern computer vision, with applications

ranging from Augmented Reality (AR) to 3D reconstruc-

tion, autonomous driving, robot localisation, and motion

capture. In its simplest form, SLAM is the problem of si-

multaneously building a consistent map and determining the

camera location within that map, with no prior information

about the initial position or the environment. Recent years

have seen SLAM systems evolve to handle a broader num-

ber of real-world applications [5][48]. Ultimately, the goal

is to provide robots with ways of efficiently representing,

understanding, and navigating diverse and challenging en-

vironments. To achieve this, researchers started extending

SLAM solutions to solve related problems such as 3D re-

construction of non-rigidly deforming objects [28], and in-

corporating semantic information [26].

Most work on 3D reconstruction assumes the environ-

ment to be static. In reality, the world is highly dynamic and

interactive. Furthermore, for a wide range of applications,

successfully modelling the scene dynamics and interactions

is central to decision making and data acquisition. Emerg-

ing technologies such as Augmented Reality (AR) headsets

(e.g. Microsoft Hololens, Magic Leap One, Google Glass)

aim to enable virtual telepresence, or “Holoportation”, as

well as other applications such as remote inspection. Mean-

while, in autonomous systems, decisions need to be taken

based on modelling the present state of the scene and mak-

ing predictions. In the context of these applications, captur-

ing only the static aspects of a scene is severely limiting.

Semantic labelling of dense reconstructions facilitates a

shared understanding of the environment between humans

and machines, thus opening up new possibilities for mean-

ingful interaction. For instance, semantic information may

be used by humans for queries: “How many students are

there in the classroom?”, or providing textual or vocal com-

mands: “Close the rightmost valve”. We show that semantic

scene labels not only embed desirable information in 3D re-

construction systems but can additionally be used as priors

to select appropriate reconstruction mechanisms depending

on the properties of the objects present in the scene.

The problem of reconstructing the geometry of static

scenes is well studied, with most solutions adding a dense

representation of the map to SLAM systems. One of the

crucial processes is estimating the camera pose, which in

turn enables data association and fusing data into the map.

This requires finding a single transformation that models

camera displacement and rotation at every frame. In the

case of non-rigid reconstruction, the problem becomes sig-

nificantly more complex, as it involves estimating not only

the camera movement but also the movement in the scene,

thus necessitating thousands of transformations to be com-

puted at every frame. Moreover, ambiguities such as occlu-

sions prompt the use of regularisation techniques in order to



ensure coherence across frames. Due to the computational

demands which arise from such complexity, current non-

rigid reconstruction systems suffer from severe scalability

limitations.

Until recently, RGB-D SLAM systems could only recon-

struct either large, predominantly static spaces, or a single

non-rigidly deforming agent. MixedFusion [44], the most

similar method to ours to date, incorporates both static and

dynamic scene reconstruction by decoupling camera and

scene motion estimation. Their approach uses a Sigmoid-

based Iterative Closest Point (S-ICP) function, which sep-

arates the input into static and dynamic parts. Our method

differs in a few aspects: rather than a tightly-coupled sys-

tem, we propose a generic, modular framework, in order

to easily employ different subsystems depending on the ap-

plication. Secondly, unlike MixedFusion, we use a joint

geometric and semantic formulation, which allows us to re-

liably segment dynamic objects from the first frame they are

observed in. Finally, FullFusion not only uses semantics for

segmentation, but also integrates the semantic information

into the 3D volume.

This paper claims the following contributions:

1. A modular framework that reconstructs the geometric

and semantic aspects of dynamic scenes.

2. A segmentation module based on scene semantics and

3D geometry.

3. State-of-the-art performance in trajectory estimation.

2. Related Work

2.1. Static 3D scene reconstruction

Following the release of the Kinect device, KinectFu-

sion [29] introduced the first real-time dense RGB-D recon-

struction algorithm. An improvement to this technique is

VoxelHashing [30], which proposes a hierarchical hashing

approach to store and access voxels. ElasticFusion [42],

based on Keller et al. [22] is a globally consistent approach

that uses fused surfels [32] to represent the scene and does

not require a pose graph. Later, algorithms such as Infini-

TAM [33] [21] focused on reconstructing large scenes. Re-

cent developments include BundleFusion [8], which per-

forms on-the-fly surface reintegration in real-time. Much

of this research has been focused on improving the quality

of reconstructions in terms of geometry and texture, as well

as allowing the reconstruction of increasingly large spaces

using relatively inexpensive hardware. These systems do,

however, require that scenes are static. Dynamic elements

in the scene can produce artifacts in the reconstruction, as

well as high errors in pose estimation, often causing camera

tracking failures.

2.2. Robustness to dynamic elements

Due to issues in performing reliable pose estimation, re-

cent research has been increasingly focusing on building

systems that are robust to dynamic input. Current SLAM

systems approach dynamic movement (non-rigid in partic-

ular) either by segmenting out the moving parts or by mod-

elling them explicitly. PoseFusion [45] uses OpenPose to

segment out humans by fitting a skeleton. Jaimez et al. [20]

proposed a joint visual odometry and scene flow (VO-SF)

method that segments the scene into rigid clusters and fil-

ters out clusters with high registration error. Building on

VO-SF, StaticFusion [35] adopts the same segmentation ap-

proach and uses ElasticFusion [42] to reconstruct the scene.

DynaSLAM [1] uses ORB-SLAM2 [27] along with an ap-

proach that combines semantic segmentation with geometry

to segment out the dynamic part, showing good improve-

ments in pose estimation. Re-Fusion [31] exploits registra-

tion residuals to segment out high-error regions correspond-

ing to scene motion.

Although these approaches show improvements in pose

estimation and reconstruction, in many practical applica-

tions, dynamic elements are the most important ones in the

scene. In particular, humans are widely encountered and are

able to change the state of the scene in many ways. As such,

in scenarios such as autonomous driving or the deployment

of robots in areas with many humans, it would not be ap-

propriate to discard moving elements.

2.3. Non-rigid reconstruction

Building on KinectFusion, DynamicFusion [28] intro-

duced the first real-time non-rigid 3D reconstruction sys-

tem. VolumeDeform [19] improves on this technique by

computing SIFT [25] features to improve frame alignment.

Guo et al. [17] introduces a pipeline that uses shading in-

formation of dynamic scenes to improve the non-rigid reg-

istration and temporal correspondences to estimate surface

appearance. KillingFusion [36] and SobolevFusion [37] use

displacement vectors in voxel space, rather than explicit

correspondences. BodyFusion [43] fits a skeleton template

for tracking, while HybridFusion [46] uses eight inertial

measurement units attached to the reconstructed subject.

SurfelWarp [15] employs surfels rather than a TSDF vol-

ume and a deformation graph similar to DynamicFusion

for computing correspondences. Fusion4D [12] and Dou et

al. [11] achieve impressive results wielding complex setups

that involve four stereo-camera sensors positioned around a

moving subject.

While these systems show great potential for applica-

tions such as motion capture, they either require complex

setups, or do not scale well beyond modelling a single de-

forming object. As such, they are not fit to be used in ap-

plications such as human-robot cooperation, where mem-

ory and processing power are restricted, and both static and



Figure 1. RGB-D input from a sensor such as Microsoft Kinect is divided into a static and a dynamic frame by the Segmentation module.

The Pose Estimation module uses the static frame and a reference frame from the static model to compute the camera position, thus

reducing ambiguity between scene dynamics and camera movement. Finally, each of the reconstruction systems receives its processed

input, along with the estimated camera pose and semantic labels.

moving elements need to be modelled.

2.4. Semantic scene understanding

Improvements in hardware, and GPU computing in par-

ticular, as well as advancements in machine learning, have

enabled the development of novel methods for semantic un-

derstanding for visual data. Performing online semantic

segmentation along with 3D reconstruction has been ac-

tively studied in the past few years, and approaches such

as SemanticFusion [26], CNN-SLAM [40] and MaskFu-

sion [34] attain excellent results in performing both tasks

in real-time. SceneCode [47] recently introduced a code-

based learned joint representation of scene semantics and

geometry to perform monocular dense semantic reconstruc-

tion. ScanComplete [9] uses semantic priors to fill missing

information in large-scale scenes.

To the best of our knowledge, the issue of semantic 3D

reconstruction with scene labels with both static and non-

rigid objects has not been addressed so far.

3. Overview

FullFusion is structured into four loosely-coupled mod-

ules, for the following processes:

1. Segmentation

2. Pose estimation

3. Static reconstruction

4. Dynamic reconstruction

We present an overview of our pipeline in Figure 1. The

framework receives a registered RGB-D frame pair Ft =
{Ct, Dt} at time t defined by a colour image Ct : Ω →
N

3 and a depth image Dt : Ω → N where Ω ∈ N
2

is the image plane. The Segmentation module produces

pairs of frames for the static and dynamic parts of the

scene: Fstatic
t = {Cstatic

t , Dstatic
t } and Fdynamic

t =

{Cdynamic
t , D

dynamic
t }, as well as a label image Lt : Ω →

R
|L| of probabilities with |L| channels, where L is the set of

labels. The pose estimation module uses Fstatic
t to compute

the pose Tlw ∈ SE(3), representing the 6-DoF transforma-

tion from the camera frame to the world frame. Finally, the

static and dynamic reconstruction modules receive their re-

spective RGB-D frames, along with the pose and labels.

Our implementation adopts KinectFusion [29] for static

reconstruction and DynamicFusion [28] for dynamic recon-

struction. Although more advanced systems are currently

available, a significant number of publications have been

influenced by the ideas presented in KinectFusion and Dy-

namicFusion, and as such, this implementation constitutes

a good baseline for future evaluation. We use DeepLabv3+

to perform semantic segmentation.

3.1. API

FullFusion is designed as a generic framework with

loosely-connected components. The system is implemented

in C++, and only depends on the Eigen library [16], any

other dependencies being specific to the implementation of

each module. A global configuration file is defined, con-

trolling all hyperparameters for the various modules. Ab-

stract interfaces are defined for Segmentation, Pose estima-

tion, and Reconstruction. The constructor of each interface

receives the global configuration and any implementation is

expected to acquire its initialisation parameters through the

global configuration. All inputs and outputs to functions de-

fined by the interfaces are Eigen matrices (either images or

6-DoF pose in matrix form).

Pseudocode for the abstract interface definitions is pro-

vided below:

class SegmentationInterface

{

// Performs segmentation and stores the

// results to be queried later



Figure 2. Our implementation of the Segmentation module uses DeepLabv3+ trained on the PASCAL-VOC dataset along with a geometric

clustering approach to produce geometrically-consistent semantic segmentation

segmentFrame(rgb,depth)

getStaticFrame() -> static_rgb, static_depth

getDynamicFrame() -> dynamic_rgb, dynamic_depth

getSemanticFrame() -> segmentation, probability

}

class ReconstructionInterface

{

ReconstructionInterface(config)

processFrame(pose,

rgb,

depth,

segmentation,

probability)

renderModel(pose) -> reference_frame

}

class PoseEstimationInterface

{

PoseEstimator(config)

getPose(static_frame, reference_frame) -> pose

}

3.2. Segmentation

The segmentation module’s job is to provide the other

components with appropriate input to increase their perfor-

mance. Our implementation is based on the observation that

since integrating semantic labels in 3D models is desirable

for several applications, priors offered by the semantic la-

bels can be used to reason about scene motion. As shown in

Figure 2, our implementation combines two approaches to

perform semantic segmentation, as well as splitting the in-

put into a static and a dynamic frame. We first use DeepLab

v3+ [6]1 trained on the PASCAL-VOC dataset [13] to ob-

tain the label image Lt containing a per-pixel probability

distribution over all the recognised classes.

While the semantic segmentation itself is sufficient to

segment the scene into static and dynamic parts, the depth

input can offer additional geometric priors that can help

refine the segmentation. We build on the geometric clus-

tering method introduced by Jaimez et al. [20] to segment

the scene into K clusters using K-means on the depth im-

age. The refined semantic mask is then obtained by la-

belling each cluster with the dominant semantic label. We

1From the Tensorflow GitHub repository

first extract a segmentation map S : Ω → N by tak-

ing the label with the maximum probability for each pixel:

S = {xi|xi = argmaxi(yi), yi ∈ L}. Each cluster is th en

labelled with the class that occupies the most pixels in the

cluster. Finally, neighbouring clusters with the same label

are merged to obtain the final segmentation map. The seg-

mentation map is then used as a mask to extract the static

and dynamic frame, respectively. Table 1 details the move-

ment labels taken into account when separating the static

and dynamic elements.

Static Non-rigid Rigid

Background Bicycle Aeroplane

Dining table Bird Boat

Bottle Cat Bus

Chair Dog Car

Potted plant Horse Motorbike

Sofa Person Train

TV/Monitor Sheep
Table 1. PASCAL-VOC dataset with movement labels

Since 3D points belonging to different objects may be

clustered together, we mitigate this issue by requiring that a

class occupies at least 70% of the pixels in a cluster. If this

is found not to be the case, we further split the cluster using

K-means with K = 2. However, we have determined that

choosing a reasonably large K, as well as fusing labels from

multiple views generally solves the issue.

Figure 3. Qualitative comparison of semantic segmentation quality

without (left) and with (right) depth clustering



3.3. Pose estimation

The 6-DoF camera pose is estimated using the Itera-

tive Closest Point (ICP) [24] method, as in KinectFusion.

ICP aims to minimize the distance between corresponding

points in the current depth frame and a reprojection of the

current model into the depth frame. Non-rigid motion pre-

vents obtaining good pose predictions using traditional ICP,

due to the ambiguity between local changes in non-rigidly

moving objects and camera motion, which cannot be ex-

plained through a single transformation.

3.4. Reconstruction

Our baseline implementation uses KinectFusion and Dy-

namicFusion for static, and non-rigid reconstruction, re-

spectively. This section provides an outline of the two al-

gorihms and our modifications to include semantic labels,

and why neither of the two systems could independently

achieve the task FullFusion performs.

KinectFusion and DynamicFusion use voxels to store

an implicit volumetric representation as Truncated Signed

Distance Function (TSDF) [7], which encodes the distance

from the voxel to the closest surface, and is updated at ev-

ery frame. In order to fuse labels into the scene, we have ex-

tended the voxel data structure to store a discrete probability

distribution over the set of semantic classes, initialised to a

uniform distribution. At any given time, the predicted label

of a voxel is simply the one corresponding to the class with

the highest probability. Since DynamicFusion is designed

to reconstruct individual deforming objects, we store a sin-

gle semantic label per dynamic model, saving memory and

computation time.

We use a running average to update both the TSDF val-

ues and the label vector to fuse geometry and semantic la-

bels. As KinectFusion assumes a static environment, any

dynamic elements will affect the pose estimation step, as

well as data association, which is achieved by rendering the

model into the current frame. To solve this issue, Dynamic-

Fusion represents the scene using a canonical, rigid model

and a coarse warp field. A mesh with vertices S ∈ IR3 is

extracted using marching cubes from the canonical model

at every frame from the TSDF volume. Given the extracted

surface and the live depth frame with vertices T ∈ IR3, the

objective is to transform the canonical model into the live

frame W(S) = T . This enables alignment between the re-

construction and the current input, which is necessary for

data association and fusion.

To estimate the warp field, the following energy function

is minimized using a Gauss-Newton non-linear optimiza-

tion process:

E(Wt, S, T ) = EData(Wt−1, S, T ) + λEReg(Wt−1, S)
(2)

The energy function is described by two terms: the data

term EData(Wt−1, S, T ) is a non-rigid ICP function (N-

ICP), measuring the difference between the model and the

live frame. As non-rigid registration in R
3 is an inherently

ill-posed problem [14], an infinite number of solutions can

be found, with no guarantee of consistency between frames.

To address this issue, an As-Rigid-As-Possible (ARAP)

[38] regularisation term EReg(Wt−1, S) was introduced.

EReg operates as a graph over the set of deformation nodes,

with all nodes “pulling” together to promote solutions that

deviate the least from the model at t − 1, and thus ensures

smooth deformations. Additionally, it enables the predic-

tion of movement in occluded regions, as there is no EData

associated. λ is a hyperparameter that controls the rigidity

of the warp field.

The regularisation graph is responsible for one of

the main limitations in DynamicFusion: while EData is

bounded in complexity by the frame size, and is more or less

constant between frames, EReg acts globally, and thus the

complexity grows exponentially with the scene size. The

vast majority of scenes present far more static objects than

non-rigid ones. Even when this is not the case, individual

objects deform differently, for unrelated reasons, and have

different rigidity properties. As such, global regularisation

is not only unnecessary, but a purely distance-based regu-

larisation term such as the one used in DynamicFusion is

adverse to the reconstruction quality. As an example, one

can imagine a person running their hand over the top of a

table. A global regularisation term would cause the surface

of the table to “bend” towards the person’s hand, due to the

deformation nodes pulling together. In such cases, more

computation than necessary is performed, however the final

result is affected negatively.

4. Experiments

We evaluate our implementation using the SLAMBench

framework [3][4]. All experiments were performed on a

machine with an Intel Core i7-6700HQ CPU with 16GB

of memory, and an NVidia GeForce GTX 960M with 4GB

VRAM, running Ubuntu 18.04. Unless otherwise noted, all

software was compiled using GCCv6.5.0 and CUDA 9.1.

Both KinectFusion and DynamicFusion 1cm voxel sizes

and 2563 volumes. For DynamicFusion, the decimation

density used is 25mm, and we use the same hyperparam-

eters recommended in the publication [28]. As no public

implementation of either KinectFusion or DynamicFusion

is provided by the authors, the evaluation was performed on

our own implementation.

4.1. Trajectory accuracy

One of the important assertions of our work is that using

only the static component of the scene to estimate the cam-

era pose increases the accuracy. As discussed in Section

2.2, the literature supports this claim.



Setting Sequence VO-SF ElasticFusion StaticFusion KinectFusion FullFusion

Static

fr1/xyz 2.1 1.9 2.3 3.0 2.2

fr1/desk 3.7 2.9 3.0 8.2 5.1

fr1/desk2 5.4 7.2 5.0 6.6 7.9

fr1/plant 6.1 5.0 10.4 8.2 12.2

Slightly

dynamic

fr3/sit static 2.4 0.9 1.1 2.1 2.1

fr3/sit xyz 5.7 1.6 2.8 4.4 3.6

fr3/sit halfsphere 7.5 17.2 3.0 5.7 5.3

Highly

dynamic

fr3 walk static 10.1 26.0 1.3 13.8 3.6

fr3 walk xyz 27.7 24.0 12.1 tracking lost 6.0

fr3 walk halfsphere 33.5 20.5 20.7 tracking lost 7.1

fr3 walk halfsphere* 24.8 16.3 5.0 tracking lost 6.3

(a) Comparison of Relative Pose Error (translational RPE-RMSE)

Setting Sequence VO-SF ElasticFusion StaticFusion KinectFusion FullFusion

Static

fr1/xyz 5.1 1.2 1.4 1.7 1.3

fr1/desk 5.6 2.1 2.3 3.6 3.7

fr1/desk2 17.4 5.7 5.2 6.0 7.1

fr1/plant 7.8 5.3 11.3 9.2 9.1

Slightly

dynamic

fr3/sit static 2.9 0.8 1.3 1.7 1.4

fr3/sit xyz 11.1 2.2 4.0 3.7 4.3

fr3/sit halfsphere 18.0 42.8 4.0 39.6 3.4

Highly

dynamic

fr3 walk static 32.7 29.3 1.4 79.4 1.4

fr3 walk xyz 87.4 90.6 12.7 tracking lost 4.1

fr3 walk halfsphere 73.9 63.8 39.1 tracking lost 2.9

fr3 walk halfsphere* 48.2 48.6 6.3 tracking lost 2.7

(b) Comparison of Absolute Trajectory Error (ATE)

Figure 4. Left: final 3D reconstruction on the upperbody sequence from the VolumeDeform dataset.

Right: in clockwise order, from top-right: RGB frame, Semantic segmentation (without geometric clustering), Depth Frame, Reconstruc-

tion (dynamic model highlighted in red)

We evaluate the accuracy of the trajectory estimation us-

ing the TUM RGB-D [39] dataset, which provides RGB-D

input captured with a Microsoft Kinect device, as well as

ground-truth trajectory measurements with static, low dy-

namic, and highly dynamic sequences. We use the rela-

tive pose error (RPE) and absolute trajectory error (ATE)

metrics as implemented in SLAMBench. The ATE be

computed by directly measuring the absolute distances be-

tween the estimated trajectory and the ground-truth trajec-

tory, while the RPE measures the error at each individual



pose. For RPE, we report the root-mean square error for the

translational component. As seen in Table 3.3, significant

improvement can be seen in pose estimation when using

only the static part of the scene.

We compare our trajectory accuracy against the follow-

ing algorithms:

1. VO-SF, a system for visual odometry and scene flow

developed by Jaimez et al. [20] is a method that com-

putes camera position and is robust to dynamic scenes.

2. StaticFusion [35] builds on VO-SF, additionally per-

forming scene reconstruction using ElasticFusion.

3. ElasticFusion, a surfel-based state-of-the-art method

for reconstructing static scenes.

4. KinectFusion, the method we use for static reconstruc-

tion and the first real-time RGB-D reconstruction sys-

tem.

It is worth noting that for VO-SF, ElasticFusion and Stat-

icFusion, we report the results described in the StaticFu-

sion paper [35], and we did not perform the experiments

independently. We use SLAMBench to evaluate the re-

sults of KinectFusion and FullFusion. In the case of static

or slightly dynamic scenes, ElasticFusion tends to perform

better than the other systems, as it is designed for high qual-

ity static reconstruction. Given the modularity of FullFu-

sion, replacing KinectFusion’s ICP with alternative formu-

lations, such as the one employed by ElasticFusion for pose

estimation would be straightforward. While in some cases,

FullFusion performs worse than the other VO-SF, Elastic-

Fusion, and StaticFusion, we attribute this to our pose esti-

mation module implementation, which is a simple ICP al-

gorithm, whereas ElasticFusion uses a joint ICP and photo-

metric error. We note, however, that almost all cases which

contain movement, FullFusion performs at least as well as

KinectFusion, thus showing that the segmentation improves

pose estimation quality. While FullFusion and KinectFu-

sion use the same pose estimation technique, there are no-

ticeable differences in the results on static scenes. These

differences arise due to the sequences containing persons

which are being segmented out of the frame when comput-

ing the pose. An important highlight of the results is that

in the more challenging cases, KinectFusion eventually suf-

fers from tracking failure, while FullFusion performs better

than any of the other methods. We believe that the reason

FullFusion has better performance then VO-SF and Static-

Fusion is that relying on semantic priors circumvents the

need for an initialization period. For the sake of complete-

ness, we show results on fr3 walk halfsphere with the first 5

seconds skipped (marked as fr3 walk halfsphere*), as done

in StaticFusion.

4.2. Qualitative evaluation

Figure 4 shows the output of our reconstruction on the

upperbody sequence from the VolumeDeform [19] dataset.

We note that the lack of datasets containing ground-truth re-

constructions for both dynamic and static objects is a chal-

lenge yet to be addressed.

4.3. MixedFusion: discussion

As MixedFusion is by far the most similar system to

ours, it would be ideal to include an evaluation against Full-

Fusion. Unfortunately, due to the lack of a public imple-

mentation, or any results on public datasets, we cannot offer

any direct comparison. While we fully acknowledge that a

quantitative comparison would be superior, we believe that

it is necessary to draw a comparison based on our under-

standing of their work and the provided video2.

A summary of the differences between FullFusion and

MixedFusion is necessary. MixedFusion is a reconstruction

system which uses a formulation that jointly computes the

camera pose and segments the scene. On the other hand,

FullFusion is a framework which ensures the interaction of

loosely-coupled subsystems working together to achieve a

more complex goal, while also showing improvements in

some of the tasks performed by the subsystems. Secondly,

rather than using a purely geometric approach to segment

the scene, we leverage both geometry and semantics. Fi-

nally, we not only use semantics for segmentation, but also

fuse the labels into the reconstruction.

An assumption of S-ICP, used for segmentation in

MixedFusion, is that a dynamic objects will occupy a small

portion of the scene. As shown above, FullFusion shows

good performance on cases such as fr3 walk halfsphere, a

sequence where there is significant movement from the very

beginning, whereas algorithms segmenting the scene solely

based on geometry such as StaticFusion require an initial-

ization period, and thus perform poorly. Considering the in-

herent ambiguities in geometry, we believe any geometry-

based method, including that of MixedFusion would pro-

duce similar behaviour.

Further to this, the authors of MixedFusion note that one

of the limitations of their system is that since their seg-

mentation pipeline is based on geometry connectivity, dy-

namic objects cannot be accurately segmented if they are

connected with the static scene, and suggest that semantic

information can help solve the issue. Our results indicate

that a joint semantic and geometric segmentation module

achieve good performance.

One of the downsides of using semantic priors to predict

movement is that exhaustive labelling of all moving classes

may not be possible. Moreover, depending on the context,

objects might exhibit different behaviour (e.g. indoor plants

2Available on IEEE Xplore



may be generally static, but outdoor plants will likely be af-

fected by wind). As such, MixedFusion generalises better to

any scene movement, as it is not restricted to a finite num-

ber of recognised classes. FullFusion could benefit from

implementing more robust pose estimation methods such as

S-ICP into the segmentation module, or using generic mov-

ing object segmentation [41][10] may increase robustness.

5. Limitations and future work

Our system allows overcoming issues presented by 3D

reconstruction systems such as KinectFusion and Dynamic-

Fusion. Nonetheless, many of the shortcomings of the indi-

vidual systems affect FullFusion: relocalisation of dynamic

models that exit the scene continues to be a challenge, and

we do not address the non-functional aspects of 3D scenes,

such as producing textured models.

Our current implementation uses a per-voxel probabil-

ity distribution over the set of labels. This does not scale

well with the number of classes, and thus a method simi-

lar to SemanticFusion [26] which stores a single label and

its probability may be preferable. Additional improvements

to the 3D segmentation may include instance segmentation,

for example using Mask R-CNN [18] or panoptic segmen-

tation [23], as in the current implementation, two objects of

the same class located at a similar distance from the camera

could be treated as a single object.

Finally, we see our work in the context of emerging tech-

nologies for benchmarking (e.g SLAMBench [4] and hy-

perparameter tuning (e.g HyperMapper [2]), which provide

opportunities to tailor SLAM systems to suit specific ap-

plications. In this respect, FullFusion lays groundwork to-

wards finding the right combination of systems for dynamic

environments. Considering that KinectFusion was the first

real-time RGB-D reconstruction system, and DynamicFu-

sion was the first real-time non-rigid reconstruction system,

and both informed a significant number of works, the au-

thors believe that the current implementation constitutes a

good baseline for evaluating future solutions.

6. Conclusion

This paper presents FullFusion, a framework for seman-

tic 3D reconstruction of dynamic scenes using RGB-D sen-

sors. We demonstrate our system using KinectFusion [29]

for static reconstruction, DynamicFusion [28] for dynamic

reconstruction, dense ICP [24] for pose estimation, and a

segmentation module based on DeepLabv3+ [6] for seman-

tic segmentation.

In addition to performing a more complex overall task

than each of its individual components, FullFusion achieves

better performance than its individual modules. Pose esti-

mation is improved by using only the static part of the scene,

and the system is able to reconstruct both the static and dy-

namic scene parts.
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