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Abstract

We present a new approach for a single view, image-
based object pose estimation. Specifically, the problem of
culling false positives among several pose proposal esti-
mates is addressed in this paper. Our proposed approach
targets the problem of inaccurate confidence values pre-
dicted by CNNs which is used by many current methods to
choose a final object pose prediction. We present a network
called CullNet, solving this task. CullNet takes pairs of
pose masks rendered from a 3D model and cropped regions
in the original image as input. This is then used to calibrate
the confidence scores of the pose proposals. This new set
of confidence scores is found to be significantly more reli-
able for accurate object pose estimation as shown by our
results. Our experimental results on multiple challenging
datasets (LINEMOD and Occlusion LINEMOD) reflects the
utility of our proposed method. Our overall pose estimation
pipeline outperforms state-of-the-art object pose estimation
methods on these standard object pose estimation datasets.
Our code is publicly available here.

1. Introduction

Object pose estimation is crucial for machines to inter-
act with or manipulate objects in a meaningful way. It has
applications in various areas such as augmented reality, vir-
tual reality, autonomous driving, and robotics. The chal-
lenges to be dealt with are not trivial; background clutter,
occlusions, textureless objects, and an often ill-posed for-
mulation where small changes in rotation, translation, or
scale can be confused with each other. This paper centers
around the particular problem of recovering the six degrees
of freedom pose of an object, i.e., rotation and translation
in 3D with respect to the camera, dealing with the above-
mentioned challenges.

Here, we address the problem of 6-DoF object pose esti-

mation with respect to the camera using an RGB image, and
corresponding 3D mesh models of object classes of interest.
Specifically, each test image consists of a cluttered environ-
ment with a single instance of a textureless object class for
which the pose with respect to the camera needs to be es-
timated. We address this problem on datasets particularly
having just a couple of hundred training images with given
object pose annotations with respect to the camera. To aug-
ment the training data, available 3D mesh models are thus
rendered with several different pose variations.

Overall, this work presents a new approach to predicting
several object pose proposals in terms of 2D keypoints, fol-
lowed by a method to score these proposals. To accomplish
this, a fixed number of 3D keypoints are first selected from
the object mesh model vertices in the object-centric coordi-
nate system. Given the ground truth pose of the object in
each training image, a CNN based on YOLOv3 [20] archi-
tecture is trained to predict the 2D projections of these key-
points. Among several sets of keypoints predicted by this
CNN, we select the top-k most confident set of keypoints
based on their confidence score produced by YOLOv3 and
compute the pose for each set of 2D-3D keypoint corre-
spondences using the E-PnP [10] algorithm. The object
mesh models are then rendered with the predicted k pose
estimates to estimate the segmentation masks of the object
class of interest. This segmentation mask is tightly cropped
along with the input image to form a 4-channel input for
our final CNN, i.e. CullNet to find the calibrated confidence
scores, used for selecting the most accurate pose proposal.
The above two CNNs, in concert, address the object pose es-
timation problem more accurately because object pose esti-
mation is highly dependent on accurate keypoint proposals.
Thus, in this work, many sets of object keypoint proposals
are predicted, amongst which an accurate candidate is likely
to exist. Via our scoring mechanism, the most accurate key-
point proposal can then be selected as the final prediction.

Recent methods [8, 23, 16] also use deep learning-based
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Figure 1: Comparisons of pose proposal confidence output of the Keypoint proposal network and CullNet. (a) Comparison
of confidence scores for the ‘Duck’ class in the LINEMOD dataset. (b) Comparison of confidence scores for all classes in
the LINEMOD dataset.

methods to predict several pose hypotheses. However, these
methods rely on the same backbone network to produce
both the pose hypotheses and the confidence measure. Se-
lecting the final pose prediction from this set of hypotheses
using the object confidence measures predicted by the same
network is undesirable. The reason for this is that the ob-
ject confidences predicted by the keypoint proposal network
do not contain any estimate on how accurate the respec-
tive proposed pose is. Thus, we present a new way of re-
estimating the object pose confidence measures with an ap-
proach that also takes into account knowledge of proposed
object poses. We refer to these new scores as calibrated
pose proposal confidences. The advantage of using cali-
brated confidence scores is clearly illustrated in Figure 1.
Fig. 1a and Fig. 1b compare the distribution of the back-
bone (keypoint proposal) network or CullNet confidence
scores vs. ground truth pose proposal confidence scores for
the top-k most confident proposals of all1 test images of
the ‘Duck’ class and all classes together in the LINEMOD
dataset respectively. Confidence scores produced by Cull-
Net are more correlated to ground truth confidence scores
than scores produced by the keypoint proposal network.

Similar to recent keypoint based methods [23, 18, 16],
our approach first predicts the 2D keypoints in the RGB im-
ages in an end-to-end learning framework. To accomplish
this, we employ the backbone architecture of YOLOv3 [20]
for the prediction of a set of 2D keypoints. YOLOv3 is
one of the fastest object detectors, producing many object
proposals for object detection. We amended the original
YOLOv3 to predict 2D keypoints rather than object bound-
ing boxes. Then, our proposed method, called CullNet,
crops image patches around the top-k most confident key-
point proposals predicted by the backbone network, along
with crops of their corresponding, proposed, pose rendered
masks. This is used to predict the calibrated confidence

1To simplify the plot, we randomly sample 3000 confidence outputs
from the set of top-k most confident proposals of all test images.

measure which can be used either for non-maximum sup-
pression for multi-object pose estimation, or arg-max sup-
pression for single object pose estimation.

Our main contributions are three-fold. i) a new method
to calibrate the pose proposal confidences using the knowl-
edge of the corresponding predicted pose, called CullNet, ii)
a new keypoint proposal method based on YOLOv3 [20],
which follows a feature pyramid network to predict many
sets of keypoint proposals at multiple scales, and iii) an
extensive set of evaluations, producing a new state-of-the-
art, on the standard benchmark pose estimation datasets:
LINEMOD and Occlusion LINEMOD.

2. Related Work
Object pose estimation was popularly addressed using

keypoint-based methods for a long time [14, 24, 22]. How-
ever, these methods lack the ability to handle textureless
objects as their feature representations require texture in-
formation. Recent deep learning based methods try to solve
this using CNNs. The solution of the problem requires
CNNs to output pose in terms of 3D rotation and 3D trans-
lation which has been achieved in different ways.

Direct Pose Prediction One way to deal with this is to let
the network directly predict the 3D rotation and 3D trans-
lation. However, balancing the rotation and translation loss
is not trivial as discussed in [9], where they attempt to di-
rectly predict rotation and translation vectors for the task of
camera re-localization. PoseCNN [26] directly outputs rota-
tion and translation vectors for the object pose estimation by
predicting them separately in a multi-stage network. Unlike
PoseCNN, which predicts the rotation quaternions, SSD-6D
[8] converts the pose estimation problem into a classifica-
tion problem by discretizing the views instead of directly
predicting the pose. The above-mentioned methods let the
network predict the pose from color images directly, which
can be difficult for CNNs to achieve, as the CNNs are re-



quired to learn all the geometrical knowledge from training
data alone.

Keypoint based methods Another way to formulate the
output of CNNs for object pose estimation is to detect key-
points and then use the Perspective-n-Point (PnP) algorithm
[10] to estimate the final pose. The works of [16, 18, 23]
achieve significant improvements in pose accuracy on chal-
lenging datasets, in particular on textureless objects. A
key problem in the above methods is inaccurate predicted
2D keypoints. PnP-based pose estimation techniques tend
to produce highly perturbed pose estimation results even
by small amounts of noise in the predicted 2D keypoints.
BB8 [18] encounters this problem when predicting a single
pose proposal using a CNN on cropped object segments.
Due to the noisy regression outputs of CNNs, a single pose
proposal often does not result in an accurate one. Also,
BB8 is not able to perform the task of object pose esti-
mation in real-time. To this end, Tekin et al. [23] uses
the YOLOv2 object detection network to predict keypoint
proposals, but the method lacks an effective way to cull
false positives. It uses neighborhood weighted averaging for
the keypoints proposals centered around the most confident
keypoint proposal. Recently proposed PV-Net [17] tries to
address the problem of partial occlusion in RGB based ob-
ject pose estimation by regressing for dense pixel-wise unit
vectors pointing to the keypoints, which are combined using
RANSAC like voting scheme.

Pose refinement methods Recent deep learning solutions
have also considered techniques for pose refinement from
RGB images [11, 15] as a way to bridge the gap between
RGB and RGBD pose accuracies. DeepIM [11] uses a
FlowNet backbone architecture to predict a relative SE(3)
transformation to match the colored rendered image of an
object using the initial pose to the observed image. Man-
hardt et al. [15] introduce a visual loss that optimizes the
predicted refinement of translation and rotation by aligning
the contours of the object in a rendered pose with an initial
rotation and translation and the scene images. The problem
specifically targeted in this paper is about culling false pos-
itives from several object pose proposals, and such a refine-
ment mechanism can still be used at the end of our pipeline.
To the best of our knowledge, there is no work directly ad-
dressing the problem of unreliable object pose confidences
produced by CNNs.

Inaccurate object confidences also cause performance
degradation in multi-object pose estimation where multi-
ple object pose proposals are predicted for each object.
Most state-of-the-art object detection methods [21, 19, 13],
are dependent on non-maximum suppression (NMS) to cull
overlapping, less confident, object proposals. NMS relies
on the confidence measure produced by a CNN for a pro-

posal, which is, again, noisy. Our proposed approach ad-
dresses the above-mentioned problems associated with the
object confidence output of CNNs by calibrating the confi-
dence measures using knowledge of each pose hypothesis.
These calibrated confidence predictions can then be used
both in single and multi-object pose estimation.

3. Approach
In the discussion above, we identify the outstanding is-

sue of overconfident false positives (or inaccurate pose pro-
posals) in current state-of-the-art object pose estimation
methods. We address these issues with our proposed object
pose estimation pipeline illustrated in Figure 2. Our key-
point proposal method is inspired by YOLOv3 [20] which
can produce many sets of object keypoint proposals in real-
time. Our proposed network, CullNet, produces calibrated
object confidences using knowledge of the proposed pose
in relation to the observation in the original image. These
calibrated confidences can then reliably be used to select a
final estimate of the object pose from several object pose
proposals.

Using a feature pyramid network [12], the backbone ar-
chitecture outputs several pose proposals in the form of 2D
keypoints. The network is based on the Darknet-53 archi-
tecture [20]. One of the crucial advantages of the YOLO
network architecture is the gain in speed for object pose
prediction, as it is one of the state-of-the-art real-time object
detection approaches. The network takes an input image of
resolution 416×416 and produces outputs at three scales in
the form of 3D tensors with spatial sizes 13 × 13, 26 × 26
and 52 × 52 cell grids where each grid point corresponds
to a 2n + 1 + c dimensional vector which includes 2n xy
coordinates of 2D keypoints, one proposal confidence and c
class scores. In the case of YOLO object detection, the con-
fidence loss is learned based on ground truth IoU overlap
between the prediction boxes and the ground truth boxes.
Such a formulation of IoU is not easily established in the
case of 2D projections of correspondences. We use a confi-
dence function c(x) proposed in [23] to assign probabilities
to distances between each 2D keypoint in the pose propos-
als and ground truth 2D keypoints based on some threshold.
It is defined as follows:

c(x) =

 exp
(
α
(
1−D(x)

dth

))
−1

exp(α)−1 , if D(x) < dth

0 otherwise
. (1)

The distance D(x) is the Euclidean distance between
the predicted 2D keypoints represented by x and respec-
tive ground truth 2D keypoint. The confidence function is
set to 0 for predictions with a distance value greater than or
equal to the threshold dth. The sharpness of the exponential
function is defined by the parameter α. In place of the IoU



Figure 2: Overview of our pose estimation pipeline. Our approach operates in two stages: a) three 3D tensors are outputted
using a YOLOv3 based architecture at 3 different scales in the form 2n + 1 + c outputs along a spatial grid of each tensor.
b) using k sets of 2D keypoint proposals, k pose proposals are estimated using the E-PnP algorithm, then the original image
and the pose rendered mask are cropped tightly fitting the rendered mask. Cropped RGB patches concatenated with the
corresponding pose rendered masks are passed to CullNet to output calibrated object confidences. Calibrated confidences are
finally used to pick the most confident pose estimate.

based confidence measure of YOLOv3, the final confidence
for each proposal is thus calculated as the mean value of
c(x) over n 2D keypoint predictions.

The backbone network described above predicts 13 ×
13 + 26 × 26 + 52 × 52 = 3549 object pose proposals
in terms of 2n xy coordinates of 2D projected correspon-
dences of object keypoints. In the case of single or multiple
instances of an object in the scene, choosing one or many of
them is not trivial. In object pose prediction, a culling pro-
cess with inaccurate object confidence scores often results
in culling a better candidate for pose prediction because of
being predicted with lower confidence. We thus propose a
new confidence calibrating network called CullNet, to pre-
dict better confidence measures based on the pose informa-
tion of each pose proposal. In between the backbone net-
work and CullNet, there is an intermediate processing step
to associate pose information with each keypoint proposal
as explained below.

First, we take the top-k most confident 2D keypoint pro-
posals output by the backbone network and estimate the
pose for these k proposals using the PnP algorithm. For
each of the k pose proposals, we render binary object seg-
mentation masks. We want to emphasize here that this mask
rendering does not require any extensive computation as
it does not involve a colored mask. These segmentation
masks can simply be calculated by finding the 2D projec-
tions of all the mesh vertices of an object. Each rendered
mask of proposals is cropped out, tightly around the seg-
mentation boundaries. With the same cropping coordinates,
the corresponding RGB patch is formed after cropping the
input image. Then, the cropped segmentation mask is con-
catenated as the fourth channel along with corresponding

RGB patch. For each top-k most confident proposals, our
proposed CullNet takes concatenated RGB patch and mask
(112 × 112 × 4) to predict how accurately each pose pro-
posal aligns with the cropped RGB patch. We formulate the
ground truth confidence measure for our final output from
the proposed CullNet using Eq. 1. The Euclidean distance
D(Xj , [Ri|ti]) mentioned in Eq. 1 is

D(Xj , [Ri|ti]) =
∥∥∥K(RiXj + ti)−K(R̂Xj + t̂)

∥∥∥
2
.

(2)
Here Xj denotes the jth 3D vertex from the object’s mesh
model, [R̂|t̂] is the ground truth pose,K is the intrinsic cam-
era parameters and [Ri|ti] is the ith predicted pose amongst
the top-k most confident pose proposals from the keypoint
proposal network. It is important to note here that the final
ground truth value for the calibrated confidence i.e. Ĉ∗i , is
the mean over the 2D projections of all m mesh vertices of
an object as:

Ĉ∗i =
1

m

m∑
i=1

(c(Xi,K[Ri|ti])). (3)

CullNet is based on the Resnet50 architecture with the
group norm [25] replacing the batch norm. It takes a 4 chan-
nel input of masked out RGB patches. Group Normaliza-
tion helps in faster convergence of the network with larger
batch sizes including patches from the same images hav-
ing a non − i.i.d. distribution, that degrades batch norm’s
statistic estimation [6].

3.1. Training

Our complete approach is trained in two stages. First we
train the backbone network and then train CullNet using the



proposals generated by the backbone network.

Keypoint proposal network In the first stage, the back-
bone network needs to learn prediction of 2D keypoints,
confidence scores and class probabilities. The predictions
for 2D keypoints are done in the down-scaled size of image
coordinates to 13 × 13, 26 × 26 and 52 × 52 respectively.
The 2D keypoint predictions are expressed as an offset from
the top-left corner of the grid cells. The ground truth con-
fidence scores for the set of 2D keypoints based pose pro-
posal corresponding to each grid cell are calculated using
Eq. 1 where the mean confidence of each set of proposals
is calculated as the average over each keypoint confidence.
We use a sigmoid function to restrict the predicted confi-
dence score to the range [0, 1]. We minimize the following
loss function to train our backbone network.

L = Lcoord + Lconf + Lcls (4)

Here, the terms Lcoord, Lconf and Lcls denote the keypoint,
confidence and the classification loss, respectively. We
use mean-squared error for the coordinate and confidence
losses, and cross entropy for the classification loss. The re-
spective loss functions are formulated as follows for each
of the three 3D tensor outputs of the keypoint proposal net-
work:

Lcoord =
1

N

S2∑
i=1

1obj
i

n∑
j=1

[(xij − x̂ij)2 + (yij − ŷij)2] (5)

Lconf =
1

N

S2∑
i=1

1obj
i (Ci − Ĉi)2+

1

M

S2∑
i=1

(1− 1obj
i )(Ci − Ĉi)2 (6)

Lcls =
1

N

S2∑
i=1

1obj
i (−ŷ>i log(yi)). (7)

where 1obj
i denotes if the object’s centroid keypoint appears

in cell i, where it is 1 else it is 0 and the normalizing con-
stantsN =

∑S2

i=1 1
obj
i andM =

∑S2

i=1(1−1
obj
i ). Ci and Ĉi

represent predicted and ground truth confidence scores of
the keypoint proposal network. xij , yij and x̂ij , ŷij denote
xy coordinates for n predicted and ground truth keypoints
for each set of proposals amongst S2 keypoint proposals,
where S varies from 13, 26 and 52 in three different scales.
Here, yi and ŷi represent predicted and ground truth class
probability vectors.

Culling Mechanism In the final stage of training, Cull-
Net needs to learn a prediction of a calibrated pose-aware
confidence measure. We use the sigmoid function to pre-
dict outputs of CullNet in the range [0, 1]. The ground truth
calibrated confidences at this stage are calculated based on
Eq. 1, as an average of the confidence of all 2D projections
of mesh vertices at each predicted pose proposal respec-
tively, using Eq. 3. For each image, the backbone network
passes the top-k most confident object keypoint proposals to
the CullNet. Then, pose hypotheses are estimated for each
keypoint proposal using the E-PnP algorithm [10]. CullNet
then uses concatenated cropped RGB image patches and
mask renderings as an input (rescaled) for each proposal
to produce a confidence measure on how accurate the pro-
posed pose is. We use mean-squared error for the calibrated
confidence loss.

3.2. Inference

For inference, we first output the top-k most confident
keypoints proposals of each object. Then, for each key-
point proposal, the object pose is estimated using the E-
PnP algorithm. Based on the predicted pose of the top-k
most confident keypoint proposals, tightly cropped object
regions in a pose rendered mask and corresponding patches
in concatenation are input to CullNet to predict calibrated
confidences. Finally, using arg-max on the calibrated confi-
dences outputted by CullNet, we find the estimated pose for
the object.

4. Experiments
We evaluate our approach on the task of single object

pose estimation and show comparisons with the state-of-
the-art RGB based object pose estimation approaches.

4.1. Implementation Details

We use Darknet-53 pre-trained on the ImageNet classifi-
cation task as our backbone network. In the Keypoint pro-
posal training, we train only for classification and regres-
sion loss for the first 50 epochs and all losses for the next
50 epochs. CullNet is trained for 15 epochs. The sharpness
of the confidence function α is set to 2 and the distance
threshold to 30 pixels. We found k to be best at 6 keeping
the speed-accuracy trade-off in mind. The backbone net-
work has been trained with a batch size of 16 and CullNet
with a batch size of 128. We start with a learning rate of
0.001 for the backbone network using the SGD optimizer
and divide the learning rate by a factor of 10 after 50 and
75 epochs respectively. We use a learning rate of 0.01 for
the culling network using the SGD optimizer and divide the
learning rate by a factor of 10 after 10 epochs. The num-
ber of group norm channels in CullNet are found to be best
at 32. To avoid overfitting, we use extensive data augmen-
tation for training CullNet by randomly changing the hue,



Ape Bvise Cam Can Cat Driller Duck Box Glue Holep Iron Lamp Phone Avg.
2D Reprojection-5px

Ours w/ BC 97.7 99.0 97.9 98.9 98.7 96.4 97.0 98.7 98.2 99.0 97.2 95.4 95.6 97.7
Ours w/o BC 97.6 99.0 98.6 98.9 98.6 96.5 96.8 98.7 98.3 99.0 96.0 94.7 95.1 97.5
Tekin et al. [23] 92.1 95.1 93.2 97.4 97.4 79.4 94.7 90.3 96.5 92.9 82.9 76.9 86.1 90.4
BB8[18] 95.3 80.0 80.9 84.1 97.0 74.1 81.2 87.9 89.0 90.5 78.9 74.4 77.6 83.9
DeepIM (*) [11] 98.4 97.0 98.9 99.7 98.7 96.1 98.5 96.2 98.9 96.3 97.2 94.2 97.7 97.5
BB8[18] (*) 96.6 90.1 86.0 91.2 98.8 80.9 92.2 91.0 92.3 95.3 84.8 75.8 85.3 89.3
Brachmann[2] (*) 85.2 67.9 58.7 70.8 84.2 73.9 73.1 83.1 74.2 78.9 83.6 64.0 60.6 73.7

AD{D|I}-10%
Ours w/ BC 55.1 89.0 66.2 89.2 75.3 88.6 41.8 97.1 94.6 68.9 90.9 94.2 67.6 78.3
Ours w/o BC 34.5 79.2 71.5 85.8 71.1 89.3 39.3 86.1 87.6 70.4 85.8 73.9 63.8 72.2
Do et al. [3] 2 38.8 71.2 52.5 86.1 66.2 82.3 32.5 79.4 63.7 56.4 65.1 89.4 65.0 65.2
Tekin et al. [23] 21.6 81.8 36.6 68.8 41.8 63.5 27.2 69.6 80.0 42.6 74.9 71.1 47.7 55.9
BB8[18] 27.9 62.0 40.1 48.1 45.2 58.6 32.8 40.0 27.0 42.4 67.0 39.9 35.2 43.6
SSD-6D[8] 0 0.2 0.4 1.4 0.5 2.6 0 8.9 0 0.3 8.9 8.2 0.2 2.42
DeepIM (*) [11] 77.0 97.5 93.5 96.5 82.1 95.0 77.7 97.1 99.4 52.8 98.3 97.5 87.7.0 88.6
Manhardt [15] (*) - - - - - - - - - - - - - 34.1
BB8[18] (*) 40.4 91.8 55.7 64.1 62.6 74.4 44.3 57.8 41.2 67.2 84.7 76.5 54.0 62.7
SSD-6D[8] (*) - - - - - - - - - - - - - 76.3
Brachmann[2] (*) 33.2 64.8 38.4 62.9 42.7 61.9 30.2 49.9 31.2 52.8 80.0 67.0 38.1 50.2

Table 1: The comparison of accuracies of our method and the baseline methods on the LINEMOD dataset using standard
pose evaluation metrics. (*) denotes pose refinement methods. BC refers to bias correction using error modes from train data.

saturation, and exposure of the image by up to a factor of
1.5. We also randomly scale and translate the image by up
to a factor of 20% of the image size. During the training of
CullNet, we double the number of pose proposals for each
image by randomly perturbing the estimated pose from the
keypoint proposal network to avoid overfitting. We choose
corners and the centroid of the cuboid bounding the object
as the 9 keypoints in our experiments (similar to Tekin et al.
[23]).

4.2. Evaluation Metrics

We use two standard metrics to evaluate the 6D pose
accuracy, namely 2D reprojection error, and the AD{D|I}
metric as used in [2, 8, 18].

2D Reprojection measures the mean distance between
the 2D projections of the object’s mesh vertices using the
ground truth pose and the estimated pose, for each object
pose instance. A pose instance is considered correct if the
mean distance is less than 5 pixels.

In contrast, the AD{D|I} metric measures the mean dis-
tance between the transformed coordinates of mesh vertices
using the ground truth pose and the estimated pose for each
object pose instance. A pose instance is considered correct
if the mean distance is less than 10% of the object mesh
model’s diameter. To handle rotationally symmetric ob-
jects, the mean distance is calculated based on the closest
point distance as done in [18].

4.3. LINEMOD Dataset

The LINEMOD dataset [5] is a standard benchmark
dataset for 6D pose estimation. This dataset is comprised of

13 object classes involving many challenges such as back-
ground clutter and textureless objects. Each RGB image has
been annotated with only the central object in the scene. We
use the same data split for each class as Brachmann et al. [2]
used, with around 200 images for each object in the training
set and 1,000 images in the test set. To prevent overfitting,
for training we generated synthetic images by rendering ob-
jects with uniformly sampled viewpoints with backgrounds
randomly selected from the SUN397 dataset [27]. To keep
the distributions of real and synthetic images the same and
also to avoid learning any information from the checker-
board background, we augment the real training images by
using the segmentation mask from real images and chang-
ing the background from images randomly sampled from
the PASCAL-VOC dataset [4].

We show comparisons with competing RGB based ob-
ject pose estimation methods in Table 1. Our approach
outperforms all existing methods comfortably on the 2D-
Reprojection metric. It also performs slightly better than the
state-of-the-art pose refinement methods on this metric. We
want to emphasize the fact that our method, which works
using a two-stage pipeline does not use any pose refinement
method. Pose refinement methods most often require mul-
tiple iterations of refinement along with complete colored
renderings of mesh models. Our approach requires only a
segmentation mask rendering from the top-k confident pose
estimates to calibrate the confidence scores within a single
pass through CullNet.

Our proposed approach also performs better than all ex-

2For this method, results on the 2D Reprojection metric are not avail-
able.
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Figure 3: Percentage of correctly estimated poses at different thresholds of reprojection error (in pixels) for different objects
of the LINEMOD dataset [5].

isting comparable methods when evaluated on the AD{D|I}
metric. However, the DeepIM [11] pose refinement method
outperforms our approach on this metric whereas ours per-
form better on the 2D-Reprojection metric. We investigated
this issue which led to the findings that the LINEMOD
dataset has many instances of noisy pose annotations due
to registration errors between the RGB and the depth image
because the pose annotation process was done using ICP on
the depth images. A similar observation was also made by
Manhardt et al. [15] evaluating their deep pose refinement
method. To partially address this issue, we calculate the er-
ror statistics on the LINEMOD training data using the ADD
metric from the pose estimated by our final trained network
pipeline. We make the histogram plots (using 400 bins) for
the ADD error in z-axis after transforming coordinates of
mesh vertices using the estimated pose for each object pose
instance. Then, we use the modes of training errors along
the z-axis for each class as an offset to correct the bias. The
offset is added to the translation in the z-axis of all the pre-
dicted pose instances by our method, to partially solve the
bias problem arising due to noisy annotations.

4.4. Ablation Studies

We conduct ablation studies to evaluate the effectiveness
of CullNet in comparison to other potential methods for the
culling process on the LINEMOD dataset in Table 2 (a)
and Figure 2 (b). Two such candidate methods are the arg-
max selection of the most confident pose proposal and using
RANSAC on the top-k most confident pose proposals.

We evaluate CullNet on top of multiple keypoint pro-
posal networks, namely YOLOv2 and YOLOv3. Our
method comfortably outperforms argmax based selection
of the most confident pose proposal for both keypoint pro-
posal networks as shown in Table 2 (a). This clearly reflects
the problem of un-calibrated confidence scores in case of
argmax based selection in both YOLOv2 and YOLOv3. We
also show pose accuracies for all classes of the LINEMOD
dataset at varying reprojection error thresholds in the 2D-
Reprojection metric in Figure 3. These results resonate the
effectiveness of CullNet in improving the final pose esti-
mates over a varying range of reprojection error thresholds
for the 2D Reprojection metric.



Culling Methods 2D-Reprojection
Metric

YOLOv2 + argmax 91.6
YOLOv3 + argmax 95.7

YOLOv2 + Top-6 CullNet 93.4
YOLOv3 + Top-6 CullNet 97.7
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(a) Accuracy comparisons on LINEMOD dataset us-
ing different culling methods on multiple keypoint
proposal networks.

(b) Robustness of RANSAC vs. CullNet with varying
number of top-k most confident pose proposals using
YOLOv3 as keypoint proposal network.

Table 2: Ablation studies to show the effectiveness of CullNet on LINEMOD dataset.

2D Reprojection-5px AD{D|I}-10%

Methods BB8 Tekin PoseCNN Jafari OURS Tekin PoseCNN OURS
[18] [23] [26] [7] (with BC) [23] [26] (with BC)

ape 28.5 7.01 34.6 24.2 55.98 2.48 9.6 21.97
can 1.20 11.20 15.1 30.2 39.11 17.48 45.2 24.52
cat 9.60 3.62 10.4 12.3 34.2 0.67 0.93 9.77

driller 0.0 1.40 7.4 - 29.32 7.66 41.4 26.11
duck 6.80 5.07 31.8 12.1 53.46 1.14 19.6 23.62

eggbox - - 1.9 - 0.17 - 22 20.43
glue 4.70 6.53 13.8 25.9 23.48 10.08 38.5 28.02

holepuncher 2.40 8.26 23.1 20.6 72.98 5.45 22.1 41.4
average 7.60 6.16 17.2 20.8 38.59 6.42 24.9 24.48

Table 3: The comparison of accuracies of our method and the baseline methods on the Occlusion LINEMOD dataset. BC
refers to bias correction using error modes from train data.

We also show how robust our method is to variations in
the number of most confident pose proposals chosen for the
culling process in Table 2 (b). CullNet is shown to be ex-
tremely stable to a large number of pose proposals whereas
the accuracy starts degrading as k grows in the case of
RANSAC. This is related to the fact that our method can dif-
ferentiate between falsely detected object regions and cor-
rect object regions. This property specifically helps in cases
where after increasing k, we introduce false object propos-
als such as yellow cup instead of yellow duck.

4.5. Occlusion LINEMOD Dataset

Though this work does not attempt to address the prob-
lem of partial occlusions in RGB based object pose estima-
tion, it is interesting to see how our approach behaves on
such hard examples after training only on the completely
un-occluded pose instances. For this, we evaluated our
approach on the Occlusion LINEMOD dataset [1]. This
dataset was created by annotating 8 objects in a sequence
of 1215 frames from the LINEMOD dataset. This dataset
contains challenging cases of severe partial occlusions. We
use the same trained models for evaluation on the Occlusion

LINEMOD dataset as we use for the LINEMOD dataset.
We show comparisons with state-of-the-art RGB based

pose estimation methods on the Occlusion LINEMOD
dataset in Table 3. Our approach outperforms most of the
state-of-the-art methods with a huge margin on the 2D-
Reprojection metric. It also performs comparably against
state-of-the-art on the AD{D|I} metric. This is an inter-
esting result considering that we do not use any occluded
examples during our training process.

5. Conclusion
We have introduced a new object pose estimation

pipeline based on RGB images only. Our pose estimation
pipeline consists of a keypoint proposal network producing
several object pose proposals and a new culling mechanism
to select the best final pose estimate. We show detailed
experimentation on two challenging benchmark datasets
where it outperforms state-of-the-art methods. We also
show the superiority of our approach to RANSAC and other
culling strategies in terms of pose accuracies and robustness
against variations in the number of pose proposals.



Supplementary Material
CullNet: Calibrated and Pose Aware Confidence Scores for Object Pose

Estimation

In the supplementary material, we show confidence plots to see calibration effect of CullNet on all classes of LINEMOD
[5] dataset. We also show the network architecture of our keypoint proposal network i.e. YOLOv3 [20] in Figure 4.

Confidence Plots We show comparisons of pose proposal confidence output of Keypoint proposal network and CullNet for
all classes3 of LINEMOD dataset in Figure 5.
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Figure 4: Network architecture of Keypoint proposal network (YOLOv3 [20]). N denotes the number of outputs from each
grid cell.

3For ’Duck’ class, we show these plots in the main paper.



Figure 5: Comparisons of pose proposal confidence output of Keypoint proposal network and CullNet for different classes of
LINEMOD dataset.
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