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Abstract

Cross domain image matching between image collec-
tions from different source and target domains is challeng-
ing in times of deep learning due to i) limited variation of
image conditions in a training set, ii) lack of paired-image
labels during training, iii) the existing of outliers that makes
image matching domains not fully overlap. To this end, we
propose an end-to-end architecture that can match cross do-
main images without labels in the target domain and handle
non-overlapping domains by outlier detection. We leverage
domain adaptation and triplet constraints for training a net-
work capable of learning domain invariant and identity dis-
tinguishable representations, and iteratively detecting the
outliers with an entropy loss and our proposed weighted
MK-MMD. Extensive experimental evidence on Office [17]
dataset and our proposed datasets Shape, Pitts-CycleGAN
shows that the proposed approach yields state-of-the-art
cross domain image matching and outlier detection perfor-
mance on different benchmarks. The code will be made pub-
licly available.

1. Introduction
Cross domain image matching is about matching two im-

ages that are collected from different sources (e.g. photos of
the same location but captured in different illuminations,
seasons or era). It has wide application value in different
areas, with research in location recognition over large time
lags [3], e-commerce product image retrieval [8], urban en-
vironment image matching for geo-localization [20], etc.

Even using deep feature representation learning, the au-
tomated cross domain image matching task remains chal-
lenging mainly due to the following difficulties. First, it
is difficult to match varying observations of the same loca-
tion or object, in general. Second, often the paired-image
examples from two domains are not available for training
neural networks. Third, the image samples in two domains
may not fully overlap due to the existing of outlier images,
which affects the matching performance if such outliers are
not detected.
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Figure 1: Domain adaptation (DA) and image matching applied
on a 2D toy dataset generated with domain shift between source
and target domains. (a) Original distribution, (b) no outliers, (c)
with outliers, (d) our method. The result of (b) and (c) shows that
outliers affect the alignment of source samples and inlier target
samples. (c) and (d) show that our outlier detection helps separat-
ing the outliers from the aligned source samples and inlier target
samples.

In this work, we address the problem of domain adap-
tation for feature learning in a cross domain matching task
when outliers are present. As is common in domain adap-
tation, we only have labeled image pairs from the source
domain, but no labels from the target domain. To re-
solve the domain disparity between the train and the test
data, we are inspired from Siamese network [2] for image
matching and domain adaptation used in image classifica-
tion [13, 18, 22, 23, 26]. We propose a triplet constraints
network to learn the domain invariant and identity distin-
guishable representations of the samples. This is made pos-
sible by utilizing the paired-image information from the
source domain, a weighted multi-kernel maximum mean
discrepancy (weighted MK-MMD) method and an entropy
loss. The setting of the problem and experiment results of
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our method are depicted on a 2D toy dataset in Figure 1.
To verify our method, we introduce two new synthetic

datasets as there are no publicly available datasets for our
problem setting. Moreover, we believe outlier-aware algo-
rithms are essential to design practical domain adaptation
algorithms as many real data repositories contain irrelevant
samples w.r.t. the source domain. In summary, our main
contribution is two-fold:

• Joint domain adaptation and outlier detection.

• Two new datasets, Pits-CycleGAN dataset and Shape
dataset, for cross domain image matching.

2. Related work
2.1. Image matching

Feature learning based matching methods become popu-
lar due to its improved performance over hand-crafted fea-
tures (e.g. SIFT [15]). Siamese network architectures [2]
are among the most popular feature learning networks, es-
pecially for pairs comparison tasks. We also adopt Siamese
network as part of our framework. The purpose is to
learn feature representations to distinguish matching and
unmatching pairs in the source domain, which assists the
network in learning to match cross domain images. In the
cross-domain image matching context, Lin et al. [11] inves-
tigated a deep Siamese network to learn feature embedding
for cross-view image geo-localization. Kong et al. [9] ap-
plied Siamese architecture to cross domain footprint match-
ing. Tian et al. [20] utilized Siamese network for matching
the building images from street view and bird’s eye view.
Unlike the existing works on cross-domain image match-
ing, we consider labeled paired-image information is only
available in the source domain.

2.2. Domain adaptation

Domain adaptation have been researched over recent
years in diverse domain classification tasks, in which adver-
sarial learning and statistic methods are main approaches.
Ganin et al. [4] proposed domain-adversarial training of
neural networks with input of labeled source domain data
and unlabeled target domain data for classification. In [26],
the authors proposed a deep transfer network (DTN), which
achieved domain transfer by simultaneously matching both
the marginal and the conditional distributions with adopt-
ing the empirical maximum mean discrepancy (MMD) [5],
which is a nonparametric metric. Venkateswara et al. [23]
applied MK-MMD [6] to a deep learning framework that
can learn hash codes for domain adaptive classification. In
this setting MK-MMD loss promotes nonlinear alignment
of data, which generates a nonparametric distance in Re-
producing Kernel Hilbert Space (RKHS). The distance be-
tween two distributions is the distance between their means

in a RKHS. When two data sets belong to the same distri-
bution, their MK-MMD is zero. Based on the successful
performance of MK-MMD loss, we also adopt it to adapt
different domains, this time for image matching task. This
requires the marriage of Siamese network with MK-MMD
loss, as we do later in our paper.

2.3. Outlier detection

Much work exists on outlier detection [1, 12, 16, 25].
Chalapathy et al. [1] proposed an one-class neural net-
work (OC-NN) encoder-decoder model to detect anomalies.
Sabokrou et al. [16] also applied the encoder-decoder archi-
tecture as part of their network for novelty detection. Zhang
et al. [25] proposed an adversarial network for partial do-
main adaptation to deal with outlier classes in the source
domain. Their network is for classification task, and they
do not have the assumption that outliers originate from low-
density distribution. Instead, we are inspired by the work of
Liu et al. [12] which uses a kernel-based method to learn,
jointly, a large margin one-class classifier and a soft la-
bel assignment for inliers and outliers. Using the soft la-
bel assignment, we implement outlier detection with cross
domain image matching in an iterative sample reweighting
way.

3. Domain adaptive image matching
3.1. Siamese loss

We introduce our proposal for domain adaptation for im-
age matching task once labeled data is not available in the
target domain. Let Xs denote the source domain image set.
A pair of images xi, xj ∈ Xs are used as input to part of
our network, as shown in Figure 2. xi, xj can be a matching
pair or an unmatching pair. The objective is to automatically
learn a feature representation, f(·), that effectively maps the
input xi, xj to a feature space, in which matching pairs are
close to each other and unmatching pairs are far apart. We
employ the contrastive loss as introduced in [7]:

L(xi, xj , y) =
1

2
yD2+

1

2
(1− y){max(0,m−D)}2, (1)

where y ∈ {0, 1} indicates unmatching pairs with y = 0
and matching pairs with y = 1, D is the Euclidean distance
between the two feature vectors f(xi) and f(xj), and m is
the margin parameter acting as threshold to separate match-
ing and unmatching pairs.

3.2. Domain adaptation loss

It is known that in deep CNNs, the feature representa-
tions transition from generic to task-specific as one goes up
from bottom layers to other layers [24]. Compared to the
convolution layers conv1 to conv5, the fully connected lay-
ers are more task-specific and need to be adapted before
they can be transferred [23].
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Figure 2: The network for cross domain image matching and outlier detection. The contrastive loss makes the network to learn paired-
image information from the source. The weighted MK-MMD loss trains the network to learn transferable features between the source and
the inliers of the target. The entropy loss helps distinguish inliers and outliers in the target domain.

Accordingly, our approach attempts to minimize the
MK-MMD loss to reduce the domain disparity between the
source and target feature representations for fully connected
layers, F = {fc6, fc7, fc8}. The multi-layer MK-MMD
loss is given by,

M(us, ut) =
∑
l∈F

d2k(u
l
s, u

l
t), (2)

where, uls = {us,li }
ns
i=1 and ult = {ut,li }

nt
i=1 are the set of

output representations for the source and target data at layer
l, u∗,li is the output representation of inuput image x∗,li for
the lth layer. The MK-MMD measure d2k(·) is the multi-
kernel maximum mean discrepancy between the source and
target representations [6]. For a nonlinear mapping φ(·) as-
sociated with a reproducing kernel Hilbert space Hk and
kernel k(·), where k(x,y) = 〈φ(x,y)〉, the MK-MMD is
defined as,

d2k(u
l
s, u

l
t) = ||E[φ(us,l)]− E[φ(ut,l)]||Hk

. (3)

The characteristic kernel k(·), is determined as a convex
combination of κ PSD kernels, {km}κm=1, K := {k : k =∑κ
m=1 βmkm,

∑κ
m=1 βm = 1, βm ≥ 0,∀m}. In particu-

lar, we follow [14] and set the kernel weights as βm = 1/κ
.

4. Proposed method: Outlier-aware domain
adaptive matching

The task is to match images with the same content but
from different domains where the outliers are present in the
target domain. We assume that in the source domain there
are sufficient labeled image pairs and in the target domain
low-density outliers are present. As in conventional domain
adaptation setting labeled data is not available in the target
domain. We propose a deep triplet network which is com-
prised of three instances of the same feed-forward network
with shared parameters, as shown in Figure 2.

4.1. Importance weighted domain adaptation

In our implementation, the MK-MMD loss in subsec-
tion 3.2 is calculated over every batch of data points dur-
ing the back-propagation. Let n (even) be the number
of source data points us := {usi}ni=1 and the number of
target data points ut := {uti}ni=1 in the batch. Then,
the MK-MMD can be defined over a set of 4 data points
zi = [us2i−1,u

s
2i,u

t
2i−1,u

t
2i], ∀i ∈ {1, 2, ..., n/2}. Thus,

the MK-MMD is given by,

d2k(us, ut) =

κ∑
m=1

βm
1

n/2

n/2∑
i=1

hm(zi), (4)

where, κ is the number of kernels and βm = 1/κ is the
weight for each kernel. And we can expand hm(·) as,

hm(zi) = km(us2i−1,u
s
2i) + km(ut2i−1,u

t
2i)

− km(us2i−1,u
t
2i)− km(us2i,u

t
2i−1), (5)

in which, the kernel is km(x,y) = exp(− ||x−y||
2
2

σm
).

With equations 4 and 5, we can interpret that in the min-
imum calculation unit (hm(zi)), two target domain images
contribute to MK-MMD loss calculation. When there are
outliers in the target domain, we only want the inliers to
contribute to the calculation, but not the outliers. There-
fore, we could assign the target samples with weights wi as
1 for inliers, and 0 for outliers. Because we have no ground
truth labels, we can only treat the weights as the probability
of the target samples to be inliers. Hence, we can introduce
the weighted MK-MMD as,

d2wk
(us, ut) =

κ∑
m=1

βm
1

n/2

n/2∑
i=1

w2i−1w2ihm(zi), (6)

where, w2i−1 and w2i are the weights of the target
data points ut2i−1 and ut2i in hm(zi) respectively, and
w2i−1, w2i ∈ [0, 1]. We will explain how to obtain the
weight for each target domain sample in next subsection.



4.2. Outlier detection

Since the inlier-outlier label is not available, we imple-
ment an entropy loss to iteratively reassign target domain
sample probability of being an inlier, which provides the
weights for the weighted MK-MMD.

We use the similarity measure 〈ui,uj〉 to learn discrim-
inative inlier-outlier information for the target domain data.
We define three classes of reference data ur for similarity
measure, the source domain class u1, the pseudo inlier class
u2 and the pseudo outlier class u3. An ideal target output
uti needs to be similar to many of the outputs from one of
the classes, {uck}Kk=1. We assume K data points for every
class c, where c ∈ {1, 2, 3} and uck is the kth output from
class c. Then the probability measure for each target sample
can be outlined as,

pic =

∑K
k=1 exp(u

t
i
ᵀ
uck)∑C

c=1

∑K
k=1 exp(u

t
i
ᵀ
uck)

, (7)

where, pic is the probability that a target domain sample
xti is assigned to category c. When the sample output is
similar to one category only, the probability vector pi =
[pi1, ..., pic]

> tends to be a one-hot vector. A one-hot vector
can be viewed as a low entropy realization of pi. Thus, we
introduce a loss to capture the entropy of the probability
vectors. The entropy loss can be given by,

S(ur, ut) = −
1

nt

nt∑
i=1

C∑
c=1

piclog(pic). (8)

In subsection 4.1, we discussed the weighted MK-MMD
loss with weightsw2i−1 andw2i. With the sample probabil-
ities of target domain data calculated from equation 7, the
weights are calculated as,

wi =

{
pi1+pi2

pi1+pi2+pi3
if xti is classified as source

pi2
pi1+pi2+pi3

if xti is classified as others
. (9)

If a target domain sample is classified as ”source”, then
it has a high probability of being an inlier, and therefore
should contribute more to reducing the domain disparity.
So we calculate the weight of such a target domain sample
with the sum of pi1 and pi2.

Algorithm We iteratively update the target domain data
weights after each epoch during training, which works to-
gether with domain adaptation for guiding and correcting
the detection of outliers and inliers.

The proposed algorithm for outlier detection is showed
in the following. The proposed method is built upon the
intuitive assumption that outliers originate from low-density
distribution. Thus, we can assume that the ratio of outliers
to all the target domain data is no more than 50%.

Algorithm 1
Input: source domain and target domain training data
Output: target domain training data probabilities

1: Initialization i = 0, calculate the average Euclidean
distance of each target domain training sample between
all the source domain training samples, sort the dis-
tances in ascending order and initialize target domain
training samples’ weights according to the sorted dis-
tances, xi ∈ first half: wi = 0.7 (pseudo inlier class),
xi ∈ second half: wi = 0.3 (pseudo outlier class). In-
lier class consists of source domain training data, which
has the same number of samples with pseudo inlier and
pseudo outlier classes.

2: Repeat:
3: i = i+ 1
4: make new mini batches
5: minimize the overall loss function objective (10)
6: update the samples’ weights by equation 7 and 9
7: update the sets of pseudo inlier class and pseudo outlier

class
8: Until target samples’ probabilities are unchanged or

training time ends

4.3. Overall objective

We propose a model for cross domain image matching
and outlier detection, which incorporates learning image
matching information from source domain (1), weighted
domain adaptation between the source and the target (6) and
outlier detection (8) in a deep CNN. The overall objective
is given by:

minuJ = L(us) + γMw(us, ut) + ηS(ur, ut), (10)

where, u := {us
⋃
ut} and (γ, η) control the importance of

domain adaptation (6) and entropy loss (8) respectively.

5. Experiments
5.1. Datasets

There are no publicly available datasets for our task.
Therefore, we propose two datasets for evaluation. Sam-
ple images from the three datasets are shown in Figure 3.

Shape is one of the synthetic datasets we generate. It
contains 60k source domain images, 30k target domain im-
ages (including 2800 outliers). The outlier images are made
up of single alphabets or digits. The source domain and
inlier images are combinations of two geometric shapes,
drawn with black solid lines and colored dot lines, respec-
tively. We define two images are a matching pair if the com-
bination of shapes is the same.

Pitts-CycleGAN is the other synthetic dataset, which
contains 204k Pittsburgh Google Street View images from
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Figure 3: Examples from Shape, Pitts-CycleGAN and Office sets.

Pittsburgh dataset [21] as the source domain, and 157k tar-
get domain images (including 52k outliers) generated by
applying CycleGAN [27] to the Pittsburgh images. So the
target domain images are in a painting style. The outliers
are sky images or city views not containing any useful land-
mark information.

Office [17] consists of 3 domains, Amazon, Dslr, We-
bcam. We choose Dslr as source domain and Amazon as
target domain. We make pairs with images from the same
category. The outliers come from two randomly chosen cat-
egories (’speaker’, ’scissors’) out of the 31 categories.

5.2. Implementation details

For our triplet network, the three sub-networks share the
same architecture and weights. Pre-trained AlexNet [10] is
used for the sub-networks. We finetune the weights of conv4
- conv5, fc6, fc7, fc8. For the weighted MK-MMD, we use
a Gaussian kernel with a bandwidth σ given by the median
of the pairwise distances in the training data. To incorporate
the multi-kernel, we vary the bandwidth σm ∈ [2−8σ, 28σ]
with multiplicative factor of 2 [23]. For performance evalu-
ation, we sort the Euclidean distance between the query and
all the gallery features (L2-normalized) to obtain the rank-
ing result. Moreover, we employ the standard metric mean
average precision (MAP).

5.3. Baseline methods

There are no available baselines to directly compare with
our method, thus, we separate our experiments to research
on domain adaptive image matching 5.4 and effectiveness
of outlier detection 5.5.

In the experiment on domain adaptive image matching,
we assume no outliers exist in the target domain. Our
method is to jointly learn the contrastive loss L(us) and
MK-MMD loss M(us, ut). It is trained with pairs from the
source domain and images from the target domain, we call
it SiameseDA.

For evaluating the effectiveness of outlier detection, the
target domain contains outliers. Our method is called
DA+OutlierDetection, which learns on the objective 10.

The baselines for each experiment are shown in Table 1.

Baseline Experiment

Domain adaptive image matching
SIFT + Fisher Vector [15, 19] trained on the source domain data
Siamese network [2] trained on the source domain image pairs

Effectiveness of outlier detection
SiameseDA (upper bound) trained without outliers
SiameseDAOut (lower bound) SiameseDA trained with outliers

Table 1: Baseline methods for our experiments.

5.4. Domain adaptive image matching

In this section, we assume the target domain does not
contain outliers. We explore if applying domain adaptation
improves the performance of cross domain image matching.
In this case, the learning objective is

minuJ = L(us) + γM(us, ut), (11)

where, the MK-MMD loss term M(us, ut) is the un-
weighted version as explained in subsection 3.2.

The MAP results are given in Table 2. Our method con-
sistently outperforms the baselines across all the datasets.
With applying MK-MMD loss for domain adaptation, the
performance of matching S → S decreases comparing to
that of Siamese method. This is within our expectation since
the network may need to learn less from the source domain
to be domain adaptive. Moreover, it is worth to notice that
our method also improves the in-domain image matching
(T → T ) of the target domain.

5.5. Effectiveness of outlier detection

Here we assume the target domain contains outliers,
which is to show if the presence of outliers reduces the ac-
curacy of cross domain image matching, and our method
could improve it.

The performance of our method (DA+OutlierDetection),
upper bound (SiameseDA) and lower bound
(SiameseDAOut) are given in Table 3. In terms of
testing, we only take the classified inliers in the query set in
calculation. From Table 3 we can see, our method outper-
forms the lower bound for all the three datasets, but is not
better than the upper bound (except for Pitts-CycleGAN) as
expected. It shows that the presence of outliers reduces the
accuracy of cross domain image matching, and our method
helps improve the performance in this case.

In Figure 4, we also show the retrieval performance in
terms of the trade-off between precision and recall at differ-
ent thresholds on our three datasets. The interpolated aver-
age precision is used for the precision-recall curves. We can
see that our method gains over the lower bound method.

Impact of outlier proportion We also report the F1-
score to measure the performance of outlier detection of



Method Shape Office Pitts-CycleGAN
T → S S → S T → T T → S S → S T → T T → S S → S T → T

SIFT + Fisher Vector 2.5± 0.4 3.6± 0.3 3.4± 0.3 3.5± 0.2 12.0± 0.5 3.5± 0.1 0.04 0.8± 0.05 0.3± 0.03
Siamese 8.3± 0.1 95.0± 0.2 31.7± 0.6 10.7± 0.5 99.2± 0.2 77.2± 0.3 0.2± 0.01 81.3± 0.3 60.6± 0.5

SiameseDA 26.4± 0.2 53.1± 0.1 46.2± 0.1 29.1± 0.1 99.7± 0.1 77.5± 0.2 0.4± 0.01 80.4± 0.1 59.5± 0.1

Table 2: MAP performance for cross domain image matching and in-domain image matching experiments on three datasets. T means
target domain, S means source domain. T → S implies matching target domain images to source domain images, similar for S → S,
T → T . Our method SiameseDA outperforms the baselines across all the datasets.
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Figure 4: Precision-Recall results of our method DA+OutlierDetection, SiameseDA and SiameseDAOut for the experiment of cross
domain image matching with outlier detection on the three datasets. Our method gains over the lower bound method.

Method (T → S) Shape Office Pitts-CycleGAN

SiameseDA 26.4± 0.2 29.1± 0.1 0.4± 0.01
DA+OutlierDetection 11.9± 0.1 15.9± 0.2 1.1± 0.03
SiameseDAOut 5.4± 0.1 6.8± 0.1 0.2± 0.01

Table 3: MAP performance for cross domain image matching with
outlier detection on our three datasets. The proportion of outliers
is 10%. Our method DA+OutlierDetection outperforms the lower
bound, but does not surpass the upper bound.

our method. Figure 5 shows the F1-score of our method
as a function of the portion of outlier samples for the three
datasets. As can be seen, with the increase in the number of
outliers, our method operates consistently robust.

It is important to notice the limitation of our method,
which classifies some inlier samples as outliers during train-
ing. This is mainly caused by the way of initializing the
probabilities of the target domain training data.

6. Conclusion

We have proposed a network that is trained for cross
domain image matching with outlier detection in an end-
to-end manner. The two main parts of our approach are
(i) domain adaptive image matching subnetwork with con-
trastive loss and weighted MK-MMD loss, (ii) outlier de-
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Figure 5: F1-scores for outlier detection on three datasets with
different outlier proportion in the target domain. Our method is
consistently robust.

tection with entropy loss by updating the probability of tar-
get domain data during training. The results on several
datasets demonstrate that the proposed method is capable of
detecting outlier samples and achieving cross domain image
matching at the same time. But our method still needs im-
provement to overcome the problem of wrongly classifying
inliers as outliers.
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