
Quotienting Impertinent Camera Kinematics for 3D Video Stabilization

Thomas W. Mitchel Christian Wülker Jin Seob Kim
tmitchel@jhu.edu christian.wuelker@jhu.edu jkim115@jhu.edu

Sipu Ruan Gregory S. Chirikjian
ruansp@jhu.edu gchirik1@jhu.edu

Laboratory for Computational Sensing and Robotics
Johns Hopkins University

Abstract

With the recent advent of methods that allow for real-
time computation, dense 3D flows have become a viable
basis for fast camera motion estimation. Most importantly,
dense flows are more robust than the sparse feature match-
ing techniques used by existing 3D stabilization methods,
able to better handle large camera displacements and
occlusions similar to those often found in consumer videos.
Here we introduce a framework for 3D video stabilization
that relies on dense scene flow alone. The foundation of
this approach is a novel camera motion model that allows
for real-world camera poses to be recovered directly from
3D motion fields. Moreover, this model can be extended
to describe certain types of non-rigid artifacts that are
commonly found in videos, such as those resulting from
zooms. This framework gives rise to several robust regimes
that produce high-quality stabilization of the kind achieved
by prior full 3D methods while avoiding the fragility
typically present in feature-based approaches. As an added
benefit, our framework is fast: the simplicity of our motion
model and efficient flow calculations combine to enable
stabilization at a high frame rate.

1. Introduction

Video stabilization algorithms depend on some mea-
sure of the original camera motion to remove unwanted
artifacts and produce smooth videos. Most existing 2D
and 3D stabilization techniques recover inter-frame camera
motion by either tracking feature trajectories [1], [2], [3]
or matching image features between frames [4], [5], [6].
Image features are brittle and break down in videos with
fast camera motions or scene occlusions, both of which
are common in consumer videos. In contrast, dense flows
(such as 2D optical flow or 3D scene flow) provide more
robust descriptions of scene motion and remain accurate in
challenging videos where feature-based approaches can fail

(a) Translation (b) Rotation

(c) Zoom (d) Shear-like distortion effect

Figure 1: ‘Signatures’ of different camera motion artifacts
in flows as seen from the image plane

[7], [8], [9], [10]. As seen in Figure 1, flows can contain
information about both rigid camera motion and non-rigid
artifacts, such as those produced by zooms or distortion
effects. Some recent 2D stabilization methods [11], [12],
[13] have incorporated the use of flows into camera motion
estimation. However, each still rely on image features in
some capacity and thus retain the weakness inherent in
feature-based approaches.

Our contribution is a technique for full 3D video
stabilization that relies only on dense scene flow and as a
result, is able to take full advantage of the benefits provided
by dense flows. Our approach is based on a novel motion
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model which allows for the recovery of 3D camera motions
from dense scene flow alone. Camera motion is represented
by global transformations in a Lie group, and we exploit a
powerful geometric relationship between 3D motion fields
and twists to recover camera poses from scene flow via a
closed-form expression. This model gives rise to a natural
formulation of the optimal camera path, and together they
form a robust framework for 3D video stabilization which
we call Quotienting Impertinent Camera Kinematics or
QuICK for short.

QuICK models camera motion by the action of 3D
transformations on the real-world camera pose. These
transformations belong to the Lie groups SE(3) (rigid-body
motion), SIM(3) (similarities), SA(3) (special affine trans-
formations – analogous to homographies and translations),
and GA+(3) (general affine transformations). Fast scene
flow [14] is used to produce the 3D motion field from
which the transformations describing inter-frame motion
are extracted. The transformations are then used to com-
pute an optimal camera path that minimizes inter-frame
camera motion subject to desired end-constraints. This
framework results in robust video stabilization regimes
which achieve high-quality stabilization while avoiding
many of the pitfalls commonly encountered by other 3D
methods. QuICK is quick. The use of fast scene flow
compliments QuICK’s closed-form solution to the camera
motion, enabling stabilization at a high frame-rate. To the
authors knowledge, QuICK is the first 3D video stabiliza-
tion technique that does not rely on image features in any
capacity. This makes QuICK exceptionally flexible, able to
handle challenging camera motions such as rapid rotations
and zooms in videos where other 3D stabilization methods
typically fail.

2. Related work
Existing video stabilization methods can be catego-

rized as 2D, 2.5D, and 3D regimes. Most 2D methods
rely exclusively on matching image features [15] between
consecutive frames. Matsushita et al. [4] represented the
camera path through a series of homographies. Grundmann
et al. [1] constructed cinematographic [16] L1 optimal
camera paths piecewise, utilizing a combination of sim-
ilarity and homography transformations. Liu et al. [6]
introduced a non-linear image warping motion model used
by many recent 2D methods. Recently, a series of 2D
stabilization methods have been developed that utilize 2D
motion fields to recover camera motions. Liu et al. [11]
developed the first such method in which feature tracking
and dense optical flows were used to produce smoothed
motion fields. Liu et al. [12] and Guo et al. [13] then
produced similar regimes for monocular and stereoscopic
stabilization, respectively. Liu et al. also developed a
‘codingflow’ regime, using a 2D motion field comprised of

smoothed motion vectors employed in video coding. With
the exception of ‘codingflow’, all of these methods still
rely on image features to some degree.

Virtually all stabilization methods that incorporate 3D
information use feature-based approaches. Long feature
tracks represent a middle ground between 2D and 3D
scene descriptions. Liu and Gleicher [3] exploited the
partial 3D information contained in smoothed 2D feature
trajectories to develop the first 2.5D method. Subsequently,
both Goldstein and Fattal [17] and Wang et al. [18]
introduced methods based on improving the length and
quality of tracked feature trajectories. Recently, Liu et
al. [19] developed a hybrid 2.5D regime which combines
warping and homography motion models using both 2D
and 3D features.

3D stabilization involves the use of 3D scene infor-
mation to estimate the change in the 3D pose of the
camera between frames. Liu et al. [2] developed the first
full 3D stabilization regime by smoothing trajectories of
3D points recovered using structure-from-motion (SFM)
[20] and guiding ‘content preserving’ image warps with
their projections. Other successful 3D methods rely on
supplemental cameras to avoid the need for brittle scene re-
construction. Smith et al. [21] and Liu et al. [5] used light
field and depth cameras, respectively, to project matched
features into 3D and recover the 3D camera pose. However,
by relying on sparse feature matches these regimes remain
sensitive to occlusions, dynamic scene content, and fast
camera motions under which feature matching can break
down.

In contrast to prior 3D stabilization methods, QuICK
uses dense scene flow alone to recover 3D camera poses.
The result is a framework that produces high-quality
stabilization without the accompanying fragility present in
prior 3D regimes.

3. The QuICK motion model
QuICK is built upon a novel method for recovering 3D

camera motion directly from dense scene flow. To motivate
our approach, we begin by discussing the advantages of
dense flows over image features in the context of video
stabilization. Then we introduce the QuICK motion model
and describe how 3D camera motion can be estimated
from dense flows. Though we demonstrate our method
with RGB-D videos, we are convinced that our motion
model can be applied to any type of videos where 3D scene
structure can be estimated and dense scene flow computed,
such as stereoscopic or light field video.

3.1. Dense scene flow for 3D motion estimation
In contrast to sparse flows, which are calculated by

matching features, dense flows rely on a variational frame-
work to give a complete description of the motion field



Figure 2: The geometry of the induced twist ξij at the
camera frame corresponding to the point xij with velocity
vij .

covering an image. The most important consequence of
this approach is that dense flows are much more robust
than feature matches and by extension, sparse flows. They
remain more accurate over long videos and better handle
large camera displacements and occlusions [7], [8], [9],
[10]. This is of critical importance in video stabilization as
many consumer videos are captured by cameras embedded
in hand-held devices such as smart phones.

Typically, feature matches and sparse flows have been
cheaper to compute than dense flows. However, recent
techniques [22], [23] have made the estimation of complete
motion fields significantly more efficient, making them a
viable basis for fast motion estimation and video stabi-
lization. Modern GPUs have helped to extend this trend
to dense 3D flows, which we consider here. In particular,
we use PD-Flow [14] for fast scene flow calculation from
RGB-D intensity and depth image pairs. These develop-
ments have not been restricted to RGB-D videos, and
other methods exist for fast scene flow calculation with
stereoscopic videos [24].

3.2. Rigid-body motion: SE(3)

3D camera motion can be described by global para-
metric transformations belonging to a matrix Lie group.
We begin by considering camera motion consisting of 3D
translations and rotations, i.e. rigid-body motions. These
motions belong to the Lie group SE(3), which is the
semi-direct product of R3 with the group of orientation-
preserving 3D rotations, SO(3), i.e. SE(3) = R3 o SO(3).

Suppose we are given a sequence of intensity images,
their corresponding depth maps, and that the camera is
in motion throughout the video. Assuming the camera

calibration is known, all pixels in a given frame with valid
depth information can be mapped to their real-world 3D
points as seen from the camera frame, namely x ∈ R3.
Computing the scene flow gives the 3D translational veloc-
ity of each point v ∈ R3. Now, let us consider an individual
point, say the one corresponding to the ijth pixel, xij , and
imagine it to be rigidly fixed to the origin of the camera
frame as shown in Figure 2. Since the two are fixed, the
origin must undergo the same translational displacement.
However, the displacement of the point also produces a
corresponding angular velocity at the origin, given by

ωij =
xij × vij

xT
ijxij

. (1)

Together, they form a twist at the camera frame,

ξij =

[
vij

ωij

]
∈ R6, (2)

which we call the induced twist.
Applying this process to all of the 3D points, the twist

describing the motion of the camera between frames, ξ ∈
R6, minimizes

f(ξ) =
1

2

∑
ij

‖ξ − ξij‖2 , (3)

where the sum is over all pixel indices with valid depth.
Letting D be the number of all such pixel indices, ξ is
simply the average of all induced twists,

ξ =
1

D

∑
ij

ξij =

[
v
ω

]
, (4)

which we call the camera twist.
Regardless of frame rate, we can interpret the camera

twist ξ as the displacement of the camera between frames,
such that v is the translation of the camera and ω is
the axis of rotation in so(3), the Lie algebra of SO(3).
Together, they are the twist coordinates that parameterize
the transformation g ∈ SE(3) representing the camera
motion. Under this observation, we break from the classical
structure of SE(3) and consider translational and rotational
motion to be decoupled. This allows allows for the camera
motion to be expressed by the homogeneous transforma-
tion [25]

g (ξ) =

[
exp(ω̂) v
0T 1

]
, (5)

where ·̂ is defined such that for any a,b ∈ R3,
âb = a × b. We find that only basic filtering of the
flow by excluding points with unnaturally large velocities
is required for robust estimation of the camera motion.

A visualization of the recovery of different camera
motions in shown in Figure 3. It is interesting to note
that due to the position of the scene in front of the
camera, pure translations and rotations are not always



(a) Translational motion (b) Rotational motion: vertical axis (c) Rotational motion: forward axis

Figure 3: Examples of different rigid camera motions recovered from flows.

recovered as such — demonstrated by the small rotations
and translations recovered in 3a and 3b, respectively. Scene
symmetry exists only about and along the forward axis and
corresponding motions can be recovered exactly as seen
in 3c. Regardless, we find this has a negligible effect on
stabilization. If the recovery of exact motions is desired,
the induced twists can be computed at the geometrical
center of the scene then transformed back to the camera
frame.

3.3. Similarities: SIM(3)

Zooms are a common feature in consumer videos.
QuICK’s framework can be extended to model them by
considering camera motion in the Lie group SIM(3),
consisting of rigid motions and isotropic scaling. The
induced twist corresponding to an arbitrary point xij with
displacement vij is of the form

ξij =

vij

ωij

aij

 , (6)

the key insight being that the scaling component is given
by

aij =
xT
ijvij

xT
ijxij

. (7)

Again, the camera twist, ξ =
[
vT , ωT , a

]T
, is simply

the average of all induced twists. Decoupling the trans-
lational component and exponentiating the rotational and
scaling components gives the homogeneous transformation
describing the camera motion,

g (ξ) =

[
ea exp (ω̂) v

0T 1

]
. (8)

To our knowledge, our SIM(3) implementation of QuICK
is the first full 3D video stabilization regime to explicitly
consider the effects of zooms.

3.4. Affine transformations: SA(3) and GA+(3)

Modeling camera motion using higher dimensional Lie
groups requires a general formulation of the QuICK mo-
tion model. In particular, the form of the induced twist
corresponding to an arbitrary point depends on chosen
basis for the Lie algebra.

Let G be an affine matrix Lie group (i.e. the bottom
row of each matrix element is filled with zeros except
for the last element, which is 1) and suppose the matri-
ces E1, . . . , En form a basis for its corresponding Lie
algebra, g. Then, the induced twist at the camera frame
corresponding to a point xij with velocity vij is of the
form

ξij = Λ−Tij [ vij

0 ] ∈ Rn, (9)

where Λij ∈ Rn×n is defined with respect to xij such that

Λij =
[(
hijE1h

−1
ij

)∨
, . . . ,

(
hijEnh

−1
ij

)∨]
, (10)

hij =

[
I xij

xT
ijxij

0T 1

]
. (11)

Here the ∨ operator is defined by an identification of
Lie algebra basis elements, {Ei} with the natural unit
basis vectors in Rn, {ei}, together with the condition of
linearity, e.g. (

n∑
i=0

xiEi

)∨
=

n∑
i=0

xiei. (12)

The camera twist is the average of all induced twists, as
in (4).

The matrix Λij is a particular form of the matrix
representation of the Lie group’s adjoint operator [26],
namely Λij = [Ad (hij)]. To this point, the form of the
induced twist in (9) is similar to the transformation of
a pure force between coordinate frames in the theory
of wrenches [27]. However, normalizing the translational
component hij by dividing by the square of its magnitude



allows us to preserve velocities instead of forces and
torques.

The 3D special affine group, SA(3), is the semi-direct
product of R3 with SL(3), the group of all unit determinant
matrices in R3×3. SL(3) is of interest to the problem of
video stabilization as it can be roughly thought of as
the group of homographies with unit determinant [28].
Therefore, we believe that SA(3) is worth examining in
the context of 3D stabilization.

The Lie algebra of SL(3) is sl(3), which consists of all
zero-trace matrices in R3×3. A possible basis for sl(3) is

Ẽ1 = ê1, Ẽ2 = ê2, Ẽ3 = ê3, (13)

Ẽ4 = |ê1| , Ẽ5 = |ê2| , Ẽ6 = |ê3| , (14)

Ẽ7 =

1 0 0
0 −1 0
0 0 0

 , Ẽ8 =

0 0 0
0 1 0
0 0 −1

 , (15)

where | · | denotes the absolute value of the matrix ele-
ments. We can choose a basis for sa(3) based on sl(3),
namely

Ek =


[
O3 ek
0T 0

]
, 1 ≤ k ≤ 3[

Ẽk−3 0
0T 0

]
, 4 ≤ k ≤ 11

. (16)

Expressed relative to this basis, the induced twist corre-
sponding to an arbitrary point xij with displacement vij

is of the form

ξij =



vij

ωij
1

xT
ijxij

|x̂ij |vij

1
xT
ijxij

xT
ijẼ7vij

1
xT
ijxij

xT
ijẼ8vij

 ∈ R11. (17)

All groups we have considered thus far are subgroups
of the positive general affine group, GA+(3), which is
the semi-direct product of R3 with GL+(3), the group
of all 3 × 3 matrices with positive determinant. As the
most general 3D affine Lie group, it has the potential to
best approximate 3D rigid camera motions and non-rigid
artifacts via a single, global transformation. A possible
basis for the Lie algebra of GL+(3), gl+(3) is given by
the matrices[

Ẽk

]
mn

=

{
1, 3(n− 1) +m = k

0, otherwise
, 1 ≤ k ≤ 9. (18)

We can then define a basis for ga+(3), the Lie algebra of
GA+(3), as in (16). In this basis, the form of the induced

Figure 4: The end-constraint solution process visualized
with respect to the stabilized camera paths.

twist at the camera frame is

ξij =


vij

1
xT
ijxij

xT
ije1vij

1
xT
ijxij

xT
ije2vij

1
xT
ijxij

xT
ije3vij

 ∈ R12. (19)

The standard matrix exponential does not provide a sur-
jective mapping from either the sl(3) or gl+(3) to their
corresponding Lie groups [29]. However, the mapping

φ(U) = exp
(
UT
)

exp
(
U − UT

)
(20)

is surjective for both sl(3) and gl+(3) [30], [31]. Assuming
the general form of the camera twist to be ξ =

[
vT ,uT

]T
,

the camera motion is

g (ξ) =

[
φ (U) v
0T 1

]
, (21)

where U is the element in either sl(3) or gl+(3) with twist
coordinates u.

4. Video stabilization
When depth information is known, the QuICK motion

model can be applied to estimate the 3D inter-frame
camera motion over the course of a video in terms of the
chosen affine Lie group, G. Taking H to be the Lie group
such that G = R3 oH , the result is the camera twist as a
function of time,

ξ(t) =

[
v(t)
u(t)

]
∈ Rn, (22)

where u is a vector of Lie algebra twist coordinates
corresponding to H . As ξ measures relative displacement
between frames, we integrate on the right to recover the



Figure 5: An estimated camera path (red) and the corre-
sponding optimal path (green).

estimated 3D camera path as seen from the initial camera
pose, gc(t) ∈ G, e.g.

gc (0) = I4, (23)
gc (ti+1) = gc (ti) g (ξ(ti)) . (24)

Conversely, g−1c (t) maps the camera back to its initial
pose. When camera travels only a small distance or is
intended to remain static, g−1c can be used to stabilize
the video. However, the applications of this approach are
limited.

4.1. Optimal camera paths

Let σ be the mapping which takes the twist coordinates
u to their corresponding element in the Lie group H ,
such that σ (u(t)) = A(t) ∈ H . To formulate a robust
description of an optimal camera path, we consider the
twists

ζ(t) =

[
−A−1v

σ−1
(
A−1

)] ∈ Rn. (25)

If G = SE(3) or G = SIM(3), σ−1 is computed via the
matrix logarithm, i.e.

σ−1
(
A−1

)
= log∨

(
A−1

)
= −u. (26)

However, if the group is SA(3) or GA+(3), the inverse
of (20) has no closed form expression and σ−1 must be
computed numerically using gradient descent [29]. The
twists ζ(t) correspond to the inverses of the motions
parameterized by the camera twist ξ(t). With this in mind,
we consider the functional

J [ζ] =
1

2

∫ tf

t0

∥∥ζ(t)− ζ(t)
∥∥2
W
dt

=
1

2

∫ tf

t0

[
ζTWζ − 2bT ζ + c

]
dt, (27)

where W = WT ∈ Rn×n and

b = Wζ (28)

c = ζ
T
Wζ. (29)

Subject to desired end-constraints, the twist that minimizes
J , ζ∗(t), parameterizes the transformations that map the
camera to the optimal path. Hence, QuICK gets its name
— imagining S as the space on which videos temporally
evolve, applying these transformations to the video reduces
the ‘problem’ of viewing the video from S to the quotient
space, G\S.

The variational minimization of (27) can be directly
addressed by applying the coordinate-free generalization of
the Euler-Lagrange equation known as the Euler-Poincaré
equation [32], through which the differential equation
describing the minimal solution can be recovered:

ζ̇ = W−1
[
ḃ + [ad (ζ)]

T
[Wζ − b]

]
. (30)

The matrix [ad (ζ)] is defined with respect to the chosen
Lie algebra basis for g, E1, . . . , En, such that

[ad (ζ)] =

[([
ζ̂, E1

])∨
, . . . ,

([
ζ̂, En

])∨]
, (31)

where for any A,B ∈ Rn×n, [A,B] = AB − BA. The
matrix W can be used to set the relative weights of dif-
ferent motions along the path, however, we do not explore
this in detail and set W = In in our implementations.

Videos are stabilized piecewise. Key-frames are selected
and the video is split into segments bounded by adjacent
key-frames. In our implementations, key-frames are set at
30 frame intervals or when large changes in the direction
of the velocity occur along the estimated camera path. The
formulation of (27) means that the chosen end-constraints
for the path are in fact the transformations that map the
estimated camera poses at the bounding key-frames to
their desired, stabilized poses. If no corrections are desired
at the key-frames, then the end-constraints are just the
identity transformation. Since consecutive sequences share
the same final and initial camera poses, the global camera
path is smooth and continuous in the first derivative.

We adapt the method of Kim and Chirikjian [33] to
solve (30) subject to the desired end-constraints. While
Kim and Chirikjian only consider SE(3), we find that
the method easily generalizes to handle the other affine
Lie groups we consider here. An example of the solution
process is shown in Figure 4. The differential equation is
first integrated on the right with respect to an initial guess
for the value of ζ0 = ζ (0). Applying these transformations
to the estimated camera path produces a stabilized path,
shown in dark red. An artificial trajectory is defined
between the distal correction transformation produced by
integrating the guess and the desired correction transfor-
mation given by the end-constraints. In Figure 3, this
is visualized in terms of the camera path: the artificial
trajectory, represented by the dashed line, is between the
camera pose at the end of the initial path and the desired
pose, highlighted in blue. The initial guess is then updated



2D 2.5D 3D

Bundled[6] Steady[11] Mesh[12] Coding[35] Epipolar[17] Hybrid[19] Depth[5] QuICK

Speed (ms) 392 1500 20 18 950 400 926 121

Table 1: Per-frame processing speed of different stabilization regimes.

Figure 6: Quantitative comparisons using real videos from the TUM RGB-D SLAM dataset [36].

to track the trajectory [34] and the process is iterated until
convergence. Figure 5 shows an example of an estimated
camera trajectory (in red) and the corresponding stabilized
path (in green).

The end result of this process is a series of stabilizing
transformations, gs(t) ∈ G, that map the camera to its
stabilized path. We accept a greater degree of global
distortion in exchange for increased local image quality
in and around occluded regions in the depth map and
use ‘content-preserving’ warps [2] to synthesize stabilized
frames. All pixels with valid depth form the control points.
We use a 2 × 2 grid and set the relative weight between
the data and similarity terms in the energy equation,
E = Ed + αEs, to α = 0.1.

5. Experiments

We run QuICK in C++ on a system with a 3.8 GHz
CPU, 32GB of RAM, and an NVIDIA RTX 2080 GPU.
Only scene flow calculations [14] are implemented on
the GPU. For a 30-frame RGB-D sequence at 640 ×
480 resolution, our SE(3) implementation of QuICK takes
approximately 121 ms to process a frame. Specifically,
computing the scene flow, recovering the camera motion,
and computing the optimal path take 16 ms, 0.3 ms, and

4.2 ms, respectively. The main bottleneck is the rendering
of the stabilized frame which takes 103 ms. For a 320 ×
240 resolution sequence, we achieve a processing speed
of 35 ms per frame (29 fps). Table 1 shows the per-frame
processing speed of other recent stabilization methods with
videos of similar resolution. All data are from published
results with the exception of [5], which we measure using
our own implementation. It is important to note that
processing speed is dependent on the system on which a
method is implemented. Generally, QuICK is significantly
faster than existing 2.5D and 3D regimes and its processing
speed is on par with that of successful 2D methods.

5.1. Quantitative evaluation and comparisons
To demonstrate the effectiveness of QuICK, we perform

experiments using publicly available real and synthetic
RGB-D sequences from the TUM RGB-D SLAM [36]
and SceneNet RGB-D [37] datasets, respectively. We
consider four different implementations of QuICK which
model 3D camera motion using the Lie groups SE(3),
SIM(3), SA(3), and GA+(3), respectively. Examples of
stabilized videos produced by each of these implemen-
tations can be found in the supplementary material. To
evaluate the quality of stabilized videos, we adopt three
objective quantitative metrics [6]: cropping, distortion, and



Figure 7: Quantitative comparisons with synthetic videos from the SceneNet RGB-D dataset [37].

stability defined as described in [35]. We are not aware
of any publicly available implementations of prior 3D
stabilization regimes, so we compare QuICK to our own
implementation of the full 3D ‘depth camera’ stabilization
method [5]. Additionally, we compare against the ‘Warp
Stabilizer’ effect in Adobe After Effects CC 16.0 which
is based on the partial 3D ‘subspace’ stabilization method
[3].

To perform comparisons, we selected 12 videos from
the TUM RGB-D dataset and group them into three cate-
gories based on their content: (1) Simple, (2) Fast Camera
Motion, and (3) Dynamic Objects. We then randomly
select 20 different 30 frame subsequences from each video
for evaluation. Similarly, we selected 12 synthetic videos
from the SceneNet RGB-D dataset and selected 20 subse-
quences from each. Videos from this dataset are sampled
at approximately 1 fps and as a result, consist exclusively
of fast camera motions, many of which we consider to be
highly challenging. As such, we limited the length of the
subsequences to 20 frames. We accounted for failure cases
(which we defined as instances in which the stabilizing
transformations map at least one input frame entirely out of
view of the image plane) by setting the values of all metrics
to zero for the subsequence. The average performance of
each method across all subsequences from each dataset is
shown in Figure 6 and Figure 7.

All four implementations of QuICK consistently pro-
duce high-quality stabilization. In particular, videos sta-
bilized via QuICK suffer from less distortion and crop-
ping than those stabilized using either the ‘depth camera’
method or Adobe’s ‘Warp Stabilizer’ while providing com-

parable stability. Moreover, QuICK performs significantly
better than the ‘depth camera’ method on both real and
synthetic videos containing fast camera motions. This is
likely a result QuICK’s reliance on dense scene flow for
motion estimation instead of the feature-based approach
used by the ’depth camera’ method. In particular, many
of the synthetic sequences from the SceneNet dataset
contain rapid rotations that result in too few or non-existent
matches between adjacent frames, causing the ‘depth cam-
era’ method to fail. In contrast, scene flow estimation re-
mains intact in these instances, allowing QuICK to recover
the camera motion. While scene flow estimation becomes
less accurate under large displacements, we find that our
formulation of the optimal camera path is very robust,
enabling QuICK to well-stabilize challenging sequences
as long as the magnitude of the estimated flow remains
relatively consistent.

Our implementations of QuICK do not explicitly handle
dynamic scene content. When large, near-range dynamic
occlusions occur in the scene, such as a when a person
walks directly in front of the camera, the synthesized view
tends to ‘follow’ the dynamic object instead of focusing
on the obvious point of interest in the scene. To minimize
this effect, a technique similar to the one presented in [11]
could be implemented to preprocess the scene flow before
motion estimation by detecting and removing sections of
the flow corresponding to dynamic content.

6. Conclusion
Our pivotal contribution is QuICK — a framework for

robust, full 3D video stabilization that relies only on dense



scene flow to recover 3D camera motion. In particular,
QuICK is based on a novel camera motion model through
which camera poses can be recovered directly from 3D
flows. This model can be generalized to describe non-rigid
video artifacts of the type often found in consumer videos,
such as those produced by zooms. Combined with efficient
flow calculations, its simplicity makes QuICK fast. By
circumventing the use of image features, QuICK is able to
produce the kind of high-quality stabilization achieved by
prior 3D methods without fragility the inherent in feature-
based approaches.

7. Acknowledgements
This work was performed under National Science Foun-

dation grant IIS-1619050 and Office of Naval Research
Award N00014-17-1-2142.

References

[1] M. Grundmann, V. Kwatra, and I. Essa, “Auto-directed
video stabilization with robust L1 optimal camera paths,” in
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. IEEE, 2011, pp. 225–232. 1, 2

[2] F. Liu, M. Gleicher, H. Jin, and A. Agarwala, “Content-
preserving warps for 3d video stabilization,” ACM Trans-
actions on Graphics, vol. 28, no. 3, p. 44, 2009. 1, 2, 7

[3] F. Liu, M. Gleicher, J. Wang, H. Jin, and A. Agar-
wala, “Subspace video stabilization,” ACM Transactions on
Graphics, vol. 30, no. 1, p. 4, 2011. 1, 2, 8

[4] Y. Matsushita, E. Ofek, W. Ge, X. Tang, and H.-Y. Shum,
“Full-frame video stabilization with motion inpainting,”
IEEE Transactions on Pattern Analysis and Machine In-
telligence, vol. 28, no. 7, pp. 1150–1163, 2006. 1, 2

[5] S. Liu, Y. Wang, L. Yuan, J. Bu, P. Tan, and J. Sun,
“Video stabilization with a depth camera,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition. IEEE, 2012, pp. 89–95. 1, 2, 7, 8

[6] S. Liu, L. Yuan, P. Tan, and J. Sun, “Bundled camera paths
for video stabilization,” ACM Transactions on Graphics,
vol. 32, no. 4, p. 78, 2013. 1, 2, 7

[7] P. Sand and S. Teller, “Particle video: Long-range motion
estimation using point trajectories,” International Journal
of Computer Vision, vol. 80, no. 1, p. 72, 2008. 1, 3

[8] T. Brox and J. Malik, “Object segmentation by long term
analysis of point trajectories,” in Proceedings of the Euro-
pean Conference on Computer Vision. Springer, 2010, pp.
282–295. 1, 3

[9] N. Sundaram, T. Brox, and K. Keutzer, “Dense point trajec-
tories by GPU-accelerated large displacement optical flow,”
in Proceedings of the European Conference on Computer
Vision. Springer, 2010, pp. 438–451. 1, 3
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