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Abstract

With the recent trend for ultra high definition displays,
the demand for high quality and efficient video super-
resolution (VSR) has become more important than ever.
Previous methods adopt complex motion compensation
strategies to exploit temporal information when estimating
the missing high frequency details. However, as the motion
estimation problem is a highly challenging problem, inac-
curate motion compensation may affect the performance of
VSR algorithms. Furthermore, the complex motion com-
pensation module may also introduce a heavy computa-
tional burden, which limits the application of these meth-
ods in real systems. In this paper, we propose an efficient
recurrent latent space propagation (RLSP) algorithm for
fast VSR. RLSP introduces high-dimensional latent states to
propagate temporal information between frames in an im-
plicit manner. Our experimental results show that RLSP is
a highly efficient and effective method to deal with the VSR
problem. We outperform current state-of-the-art method
[15] with over 70× speed-up.

1. Introduction
Super-resolution aims to obtain high-resolution (HR) im-

ages from its low-resolution (LR) observations. It provides
a practical solution to enhance existing images as well as al-
leviating the pressure of data transportation. One category
of methods [6, 17, 21, 23, 20, 11] takes a single LR image
as input. The single image super-resolution (SISR) problem
has been intensively studied for many years and is still an
active topic in the area of computer vision. Another cate-
gory of approaches [14, 31, 15, 7, 2, 36], i.e. video super-
resolution (VSR), takes LR video as input. In contrast to
SISR methods, which can only rely on natural image priors
for estimation of high resolution details, VSR exploits tem-
poral information for improved recovery of image details.

A key issue to the success of VSR algorithms, is how
to take full advantage from temporal information [28]. In
the early years, different methods have been suggested to
model the subpixel-level motion between LR observations,
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Figure 1. Quantitative comparison of PSNR values on Vid4 and
computation times to produce a single Full HD (1920x1080) frame
with other state-of-the-art methods FRVSR [31] and DUF [15].

including the Bilateral prior [8] and Bayesian estimation
model [24] have been adopted to solve the VSR problem.
In recent years, the success of deep learning in other vi-
sion tasks inspired the research to apply convolutional neu-
ral networks (CNN) also to VSR. Following a similar strat-
egy, already adopted in conventional VSR algorithms, most
of existing deep learning based VSR methods divide the
task into two sub-problems: motion estimation and the fol-
lowing compensation procedure. In the last several years,
a large number of elaborately designed models have been
proposed to capture the subpixel motion between input LR
frames. However, as subpixel-level alignment of images is a
highly challenging problem, these types of approaches may
generate blurred estimations, when the motion compensa-
tion module fails to generate accurate motion estimation.
Furthermore, the complex motion estimation and compen-
sation modules are often computationally expensive, which
makes these methods unable to handle HR video in real
time.

To address the accuracy issue, Jo et al. [15] proposed
dynamic upsampling filters (DUF) to perform VSR without
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explicit motion compensation. In their solution, motion in-
formation is implicitly captured with dynamic upsampling
filters and the HR frame is directly constructed by local fil-
tering of the center input frame. Such an implicit formula-
tion avoids conducting motion compensation in the image
space and helps DUF to obtain state-of-the-art VSR results.
However, as DUF needs to estimate dynamic filters in each
location, the algorithm suffers from heavy computation as
well as putting a burden on memory for processing large
size images.

In this paper, we propose a recurrent latent space prop-
agation (RLSP) method for efficient VSR. RLSP follows a
similar strategy as FRVSR [31], which utilizes a recurrent
architecture to avoid processing LR input frames multiple
times. In contrast to FRVSR, which adopts explicit motion
estimation and warping operations to exploit temporal in-
formation, RLSP introduces high dimensional latent states
to propagate temporal information in an implicit way.

In Fig. 1, we present the trade-off between runtime
and accuracy (average PSNR) for state-of-the-art VSR ap-
proaches on the Vid4 dataset [24]. The proposed RLSP ap-
proach achieves a better balance between speed and perfor-
mance than the competing methods. RLSP achieves about
10× and 70× speed-up over the methods FRVSR and DUF,
respectively, while maintaining similar accuracy. Further-
more, despite its efficiency, by utilizing more filters in our
model, RLSP can also be pushed to pursue state-of-the-art
VSR accuracy. Our model RLSP 7-256 achieves the highest
PSNR on the Vid4 benchmark.

2. Related Work
Single Image Super-Resolution
With the rise of deep learning, especially convolutional neu-
ral networks (CNN) [19], learning based super-resolution
models have shown to be superior in terms of accuracy
compared to classical interpolation methods, such as bi-
linear and bicubic interpolation and similar approaches.
One of the earliest methods to apply convolution for super-
resolution is SRCNN, proposed by [6]. SRCNN uses a
shallow network of only 3 convolutional layers. VDSR [17]
shows substantial improvements by using a much deeper
network of 20 layers combined with residual learning. In or-
der to get visually more pleasing images, photorealistic and
natural looking, the accuracy to the ground truth is traded
off by method such as SRGAN [21], EnhanceNet [30],
and [29, 4, 26] that introduce alternative loss functions [10]
to super-resolution. An overview of recent methods in the
field of SISR is provided by [34].
Video Super-Resolution
Super-resolution can be generalized from images to videos.
Videos additionally provide temporal information among
frames, which can be exploited to improve interpolation
quality. Non-deep learning video super-resolution problems

are often solved by formulating demanding optimization
problems, leading to slow evaluation times [1, 8, 24].

Many deep learning based VSR methods are composed
of multiple independent processing pipelines, motivated by
prior knowledge and inspired by traditional computer vision
tools. To leverage temporal information, a natural exten-
sion to SISR is combining multiple low-resolution frames
to produce a single high-resolution estimate [22, 27, 5].
Kappeler et al. [16] combine several adjacent frames. Non-
center frames are motion compensated by calculating op-
tical flow and warping towards the center frame. All
frames are then concatenated and followed by 3 convolu-
tion layers. Tao et al. [33] produce a single high-resolution
frame yt from up to 7 low-resolution input frames xt−3:t+3.
First, motion is estimated in low resolution and a prelim-
inary high-resolution frame is computed through a sub-
pixel motion compensation layer. The final output is com-
puted by applying an encoder-decoder style network with
an intermediate convolutional LSTM [12] layer. Liu et
al. [25] calculate multiple high-resolution estimates in par-
allel branches, each processing an increasing number of
low-resolution frames. Additionally, a temporal modulation
branch computes weights according to which the respective
high-resolution estimates are aggregated, forming the final
high-resolution output. Caballero et al. [3] extract motion
flow maps between adjacent frames and center frame xt.
The frames are warped according to the flow maps towards
frame xt. These frames are then processed with a spatio-
temporal network, by either direct concatenation and con-
volution, gradually applying several convolution and con-
catenation steps or applying 3D convolutions [35]. Jo et
al. [15] propose DUF, a network without explicit motion
estimation. Dynamic upsampling filters and residuals are
calculated from a batch of adjacent input frames. The cen-
ter frame is filtered and added with the residuals to get the
final output.

A more powerful approach to process sequential data
like video, is to use recurrent connections between time
steps. Methods using a fixed number of input frames are in-
herently limited by the information content in those frames.
Recurrent models however, are able to leverage information
from a potentially unlimited number of frames. Sajjadi et
al. [31] use an optical flow network, followed by a super-
resolution network. Optical flow is calculated between xt−1

and xt to warp the previous output yt−1 towards t. The fi-
nal output yt is calculated from the warped previous output
and the current low-resolution input frame xt. The two net-
works are trained jointly. Huang et al. [13] propose a bidi-
rectional recurrent network using 2D and 3D convolutions
with recurrent connections between time steps. A forward
pass and a backward pass are combined to produce the final
output frames. Because of its nature, this method can not be
applied online.
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Figure 2. RLSP Architecture. The recurrent cell is shown at time t, ⊗ denotes concatenation along the channel dimension, ⊕ denotes
element-wise addition. Information is propagated over time through hidden state h and feedback.

RLSP does not rely on a dedicated motion compensation
module and instead introduces a recurrent hidden state, to
efficiently leverage temporal information implicitly.

3. Method
Video super-resolution (VSR) maps a LR video x to a

HR video y by a given scaling factor r. At time t, a single
frame yt ∈ RrH×rW×C represents the reconstructed HR
frame of xt ∈ RH×W×C , where H and W are spatial di-
mensions andC is the number of color channels. In contrast
to SISR, the temporal dimension provides additional infor-
mation, which can be leveraged when generating a single
frame yt. As a natural choice for sequential data, we there-
fore propose a recurrent neural network (RNN). The model
is fully defined by its cell, illustrated in Fig. 2.

As done in many non-recurrent methods, we feed several
adjacent LR frames xt−1:t+1 to produce yt. These frames
are concatenated along the channel axis, together with the
recurrent inputs ht−1 and yt−1. To concatenate and align
the previous HR output yt−1 with the LR tensors, yt−1 is
shuffled down by the scaling factor r, see Sec. 3.1. The
combined input is then fed to n convolution layers with
ReLU activation function. In the last stage, the hidden state
ht for the next iteration and the HR output’s residuals in LR
space are produced. The residuals are added with the near-
est neighbor interpolated frame x∗t represented in LR space
and shuffled up by scaling factor r, to finally generate the
output yt (see Sec. 3.2). All input frames are in RGB color
space, while the output represents the brightness channel Y
of YCbCr color space. Chroma channels are upscaled sepa-
rately with bicubic interpolation. All our models are trained
with a scaling factor of r = 4.

The model is a recurrent, fully convolutional network. It
is therefore not limited to a fixed input size and can accom-
modate video data of any dimensions. With the exception

of higher level contextual information (along the spatial and
temporal axes), super-resolution is a highly locality based
interpolation problem. Thus, a convolutional neural net-
work is a sensible choice. Since the receptive field grows
with the number of convolution layers, the network is still
able to detect complex structure across an extended neigh-
borhood. In order to optimize information flow, much care
is taken to keep local alignment throughout the network and
is achieved by using operations which keep local integrity,
also see Sec. 3.1 and Sec. 3.2. We aim for efficiency and
therefore use a fixed number of n = 7 layers, the filter’s
spatial dimensions are set to 3× 3 for all models. The num-
ber of filters f is adapted per model.

In the following sections, the model’s core elements are
discussed in more detail.

3.1. Shuffling

To realize the mapping from LR to HR, the spatial di-
mensions need to be transformed at some point in the
model. The most relevant processing is kept in LR and spa-
tial expansion is executed at the last stage of the processing
chain. Because the output is fed back, an inverse transfor-
mation from HR to LR is applied. Shuffling performs these
transformations by reducing the channel dimension Z of a
tensor t with factor r2 and extending both spatial dimen-
sions H and W with factor r and vice versa for the inverse
transformation. Since shuffling is a bijective transformation
these operations are reversible:

tLR ∈ RH×W×Z ×r−−→ tHR ∈ RrH×rW×Z/r2 (1)

tHR ∈ RH×W×Z /r−→ tLR ∈ RH/r×W/r×r2Z (2)

To get a single channel HR output image with upscaling
factor r = 4, the LR tensor’s channel dimension needs to
be Z = 16. Therefore, the last layer has 16 filters. A very
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Figure 3. Shuffling: tLR ∈ R2×2×4 ×2−−→ tHR ∈ R4×4×1.

important characteristic of this transformation is that it re-
tains local integrity. All pixels along the channel dimension
in LR are rearranged in their corresponding local HR inter-
polation area. This enables a smooth localized information
flow from LR input to HR output. The shuffling operation
has been adopted in previous works [32, 31] to change the
spatial resolution of image/feature maps.

3.2. Residual Learning

Reducing the sample rate inherently leads to loss of fre-
quency components above the Nyquist frequency. Due to
the lower Nyquist frequency in LR space, the main informa-
tion loss occurs in the spatial high-frequency components.
Low-frequency components below the Nyquist frequency
can be fully retained when downsampling. This a priori
knowledge is used by introducing a residual connection di-
rectly from the LR input frame xt to the output frame yt.
First, xt is converted from RGB color space to the bright-
ness channel Y (from YCbCr color space) and replicated 16
times to match the residual’s dimension. This procedure is
effectively nearest-neighbor interpolation. No information
is altered during this process, which means the network in
parallel does not need to allocate complexity to learn this
transformation, as it would be the case with other meth-
ods, e.g. bicubic interpolation. In contrast to FRVSR, which
does not adopt this strategy, all complexity can be used to
reconstruct only the missing high-frequency components.
All LR inputs and nearest-neighbor interpolated HR output
(represented in LR space) are properly aligned.

3.3. Feedback

Feeding back the output naturally helps to improve con-
tinuity between frames and reduces flickering, which can
occur in models with limited temporal connectivity. Be-
cause of high correlation between adjacent frames, having
a reference of the previous output yt−1 also supplies addi-
tional, already processed HR information when producing
the HR estimate yt.

3.4. Hidden State

In order to propagate complex, abstract information
across time, a hidden state ht is added to the processing
chain. The hidden state is realized by carrying forward the
feature maps from the previous iteration and feeding them
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Figure 4. Locality based hidden state. Entries along the channel
dimension represent vectors v ∈ Rf .

back to the input through concatenation. This keeps the net-
work structure in line with the prior on locality. Since the
whole network is fully convolutional, the hidden state’s spa-
tial dimensions are dynamically adjusted according to the
input size of x. The hidden state can be seen as a set of
vectors in a locality based latent space Rf , characterized
by vectors v ∈ Rf with entries along the channel axis, see
Fig. 4. Since every instance in a feature map is calculated
by the same convolution kernel, each feature map represents
a dimension in the latent space Rf . In contrast to using just
feedback as done in [31], which is bound to pass HR in-
formation from yt−1 only, the hidden state is not limited in
the type of information that can be propagated. It is theo-
retically possible to propagate past information across the
whole time axis.

Because at time instance t, the next frame xt+1 is fed to
the input already, the hidden state also allows every frame
xt to be processed twice before estimating yt. This essen-
tially increases the receptive field and the number of pro-
cessing layers for a single frame, even though both process-
ing steps share their weights. Because of recurrence, these
two steps can be efficiently distributed over two time steps.

3.5. Loss

The loss function is defined as the pixel-wise mean-
squared-error (MSE) between all k pixels in the ground
truth frames y∗ and the network’s output y:

L =
1

k
‖y∗ − y‖22 (3)

4. Experimental Setup
4.1. Dataset

We adhere to the experimental setup from [31] and use
the same dataset. Originally, it contained 40 high resolution
videos (720p, 1080p, 4k), downloaded from vimeo.com,
but 3 videos were not online anymore, so we train on the
available 37 videos instead. Following the same proce-
dure as in [31] we produce 40,000 random crops of size
20 × 256 × 256 × 3, which serve as HR ground truth se-
quences y∗ ∈ RT×H×W×C . To get the corresponding LR



sequences x, Gaussian blur with σ = 1.5 is applied and ev-
ery 4-th pixel in both spatial dimensions is sampled as done
in both methods [31, 15] that we use for comparison.
To monitor training progress and generalization, we
downloaded 10 additional high resolution videos from
youtube.com and generated validation sequences with the
same procedure as used for generating the training data.

4.2. Training

To train our RNN, the cell is unrolled along the time axis
to accommodate for a training clip length of 10 frames. For
training, we randomly sample 12 consecutive frames from
the training clips, which contain 20 frames. The 2 additional
frames are used to feed xt−1 at the beginning and xt+1 at
the end. The weights are initialized with Xavier initializa-
tion [9] and the network is trained with batches of size 4
with Adam optimizer [18]. Because of the network’s recur-
rent structure, the hidden state ht−1, and the previous esti-
mate yt−1 need to be initialized. Both tensors are initialized
with zeros. In our experimental setup, our fastest model has
7 layers with 48 filters per layer, denoted as RLSP 7-48,
while our most accurate model is implemented with 7 lay-
ers and 256 filters (RLSP 7-256). The networks are trained
with decreasing learning rate, starting at 10−4. For RLSP
7-48 the learning rate is divided by 10 after 2M and 3M it-
erations. For all other models, the learning rate is divided
by 10 after 2M and 4M steps. The models are selected ac-
cording to the lowest moving average on the validation loss
at convergence.

5. Results and Discussion
We investigate our models in terms of runtime, accuracy,

temporal consistency, information flow and provide images
for qualitative comparison. We compare our models with
state-of-the-art video super-resolution methods DUF [15]
and FRVSR [31] on Vid4 [24] benchmark. To the best of
our knowledge DUF achieves the highest accuracy while
FRVSR is very efficient with the best tradeoff between ac-
curacy and runtime to date.

5.1. Ablation

We compare different configurations found in other VSR
methods by applying them to our architecture and assess the
impact of each part in terms of accuracy and runtimes. A
SISR implementation of our network serves as a baseline.
For that matter, all recurrent connections are removed and
only the current frame xt is fed to produce yt. As an ex-
tension to SISR, a batch of 3 consecutive frames xt−1:t+1

is fed to the network. This approach is further expanded by
introducing a recurrent feedback connection yt−1. Finally,
our proposed locality based hidden state is added. All con-
figurations are trained on the same data with the settings,
described in Sec. 4.2. The experiments are conducted with

n = 7 layers and f = 64 filters. The PSNR values on Vid4
and Full HD runtimes are shown in Tab. 1.

Adding adjacent frames already improves PSNR sub-
stantially compared to the SISR implementation by 1.3dB.
Feeding back the previous output improves PSNR by
0.23dB. Our proposed locality based hidden state further
improves the PSNR score substantially by 0.55dB. The ex-
periments show, that adjacent frames and our locality based
hidden state, have the strongest impact on the video perfor-
mance. As expected, the runtime increases for more com-
plex configurations. The models without recurrence need
12ms to produce a single Full HD frame. Adding feedback
(yt−1) and the hidden state (ht−1) to the network increases
runtime by 2ms and another 5ms, respectively. The com-
plete configuration RLSP 7-64 achieves a PSNR value com-
parable to recent state-of-the-art by gaining 1.98dB com-
pared to the SISR implementation. RLSP 7-64 can generate
50fps Full HD in real time.

Inputs PSNR [dB] Runtime [ms]
xt 24.91 12
xt−1:t+1 26.20 12
xt−1:t+1 + yt−1 26.43 14
xt−1:t+1 + yt−1 + ht−1 26.89 19

Table 1. Results for different network configurations on Vid4.

5.2. Temporal Consistency

An important aspect in VSR is temporal consistency be-
tween consecutive frames. Methods with limited tempo-
ral connectivity often expose flickering and other artefacts
along the time domain. This property can not be analyzed
by per frame PSNR values. Therefore, we provide tem-
poral profiles to visually assess the temporal continuity of
our RLSP method compared to others. For that matter, a
single pixel line (red line in Fig. 5) is recorded along the
whole sequence and stacked vertically. Temporal profiles
of high quality videos with smooth temporal transitions ex-
pose sharp detailed images. DUF-52 is the most limited
method in terms of exploiting temporal information, as it
only uses adjacent frames without any recurrent connec-
tions. FRVSR 10-128 uses feedback to leverage tempo-
ral information. Our method additionally propagates a la-
tent state, which increases temporal connectivity even fur-
ther. These properties are also reflected in the temporal pro-
files in Fig. 5. The vertical stripes in DUF-52’s profile are
blurred out, which indicates discontinuities between con-
secutive frames. FRVSR 10-128 shows increased perfor-
mance, while our method RLSP 7-128 exhibits the sharpest
stripes among all methods. Our method can therefore pro-
duce better temporal consistency overall.



Figure 5. Temporal profiles for calendar. The profiles are produced from the red line, shown on the left
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Figure 6. Information flow over time for model RLSP 7-128 on a validation video. Top: Absolute PSNR values, Bottom: Difference in
PSNR per frame.

5.3. Information Flow over Time

Unlike many existing methods, our model is not limited
by the number of LR input frames to extract information
over time. To investigate the range of information flow, the
same model (RLSP 7-128) is evaluated on a Full HD se-
quence from the validation set, but initialized at different
instances in time. The first run is started 100 frames ahead
of the second run. Therefore, the first run has already accu-
mulated information over 100 frames, when the second run
is initialized at frame 0. The respective PSNR values per
frame and the difference between the two runs are plotted
for 200 frames in Fig. 6. The experiment shows that the
model can propagate information over almost 175 frames
until the two runs finally converge. Accumulated informa-
tion from the first 100 frames can be leveraged to get up
to 0.2dB higher PSNR values over a long period of 150
frames. Interestingly, the two runs collapse at the begin-
ning, but quickly separate again, which leads to the conclu-
sion, that the model saves information, based on consider-
ing a large horizon.

5.4. Initialization

Due to the recurrent nature, our method is dependent on
previously processed information. Because the available in-
formation content is at its lowest at the beginning, it takes a
couple of frames to gather temporal information. This phe-
nomenon can be observed in Fig. 7, where the first 6 frames
of sequence city are shown. We compare our method RLSP
7-128 with DUF-52, which suffers from initialization until
frame 2 as well. The fine structure of the building in the
first frame can not be fully reconstructed, but as more infor-
mation is processed, the quality increases quickly until the
correct structure is revealed after frame 4. This behaviour is
also represented in the PSNR values in Fig. 8. Our models
start with lower PSNR at the beginning, but quickly catch
up with DUF to then surpass it. Unfortunately, the first 2
and the last two frames of FRVSR 10-128 are not provided
by the authors, probably, because these frames are not con-
sidered for PSNR evaluation.

5.5. Accuracy and Runtimes

To compare performance of the proposed network with
other methods we calculate the average PSNR over all se-



Figure 7. Initialization artefacts for DUF-52 and RLSP 7-128. The first 6 frames of city are shown. DUF-52 is fully initialized at frame 2,
when all input frames xt−2:t+2 are available. RLSP 7-128 reconstructs the full structure starting from frame 4, while DUF-52 still exhibits
artefacts.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Frame

25.5

26.0

26.5

27.0

27.5

28.0

PS
N

R

Vid4 Average

RLSP 7-64
RLSP 7-128
FRVSR 10-128
DUF-52

Figure 8. Average PSNR values over all 4 videos in Vid4 for the top models of FRVSR [31], DUF [15] and our models RLSP 7-64 and
RLSP 7-128. The full average is calculated for the first 34 frames, constrained by the shortest sequence city. The first and last two frames
of FRVSR 10-128 are not provided by the authors.

quences from Vid4 and measure runtimes to produce a sin-
gle Full HD (1920x1080) frame. The ideal method attains
fast runtimes and high PSNR. Video PSNR is calculated
from the MSE over the total number of pixels in a single
video sequence. The final reported value is the average
of each sequence’s PSNR value. Sometimes, methods use
encoder-decoder parts in their architectures and therefore
need to restrict input sizes. It is therefore common to crop
the spatial dimensions on test sets to accommodate for this
drawback. Our method can process any input dimension
and cropping would not be required. However, to objec-
tively compare our method to others, we follow the eval-
uation strategy described in [15] and directly include the
reported values from that paper. The values for FRVSR 10-
128 [31] are recalculated in the same way from the provided
output images. Because the outputs for model FRVSR 3-
64 are not provided, we simply add the same difference in
PSNR on top of the reported value in the paper, which was
gained, when calculating the new PSNR value for FRVSR
10-128. Our runtimes are measured on a NVIDIA TITAN
Xp with our unoptimized code. DUF and FRVSR runtimes
are taken from the respective papers. The results are listed

in Tab. 2 and displayed in Fig. 1.
RLSP 7-64 shows comparable PSNR to FRVSR 10-

128 and DUF-16, but is 10× and 20× faster, respectively.
RLSP 7-128 achieves a good trade-off between accuracy
and speed. It reaches state-of-the-art accuracy, while re-
ducing runtimes by two orders of magnitude compared to
DUF-52. Our direct implementation without any optimiza-
tion can produce 25fps of Full HD video in real-time. Be-
cause the focus in this work is on performance, we keep
the layer count constant at 7 and instead vary the number
of filters. Due to the high parallelizability, this allows to
increase complexity without putting too much burden on
computation time. By further increasing the number of fil-
ters, RLSP 7-256 achieves the highest reported PSNR to
date on Vid4, improving 0.65dB over FRVSR 10-128 and
0.21dB over DUF 52 while still being more than 2× faster
than FRVSR and 30× faster than DUF, respectively.

To investigate evolution of accuracy across time, aver-
age PSNR per frame over all sequences in vid4 is computed
and plotted in Fig. 8. All methods have to deal with in-
complete initialization. Since our RLSP approach profits
greatly from past information, PSNR values are lower at
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Figure 9. Visual comparison on Vid4. From top to bottom: calendar, foliage, city, walk.

Method Bicubic
FRVSR

3-64
FRVSR
10-128

DUF
16

DUF
28

DUF
52

RLSP
7-48

RLSP
7-64

RLSP
7-128

RLSP
7-256

PSNR [dB] 23.79 26.38 26.90 26.81 26.99 27.34 26.65 26.89 27.46 27.55
Runtime [ms] - 74 191 403 838 2819 15 19 38 92

Table 2. Comparison of PSNR values on Vid4 and runtimes between methods FRVSR [31], DUF [15] and ours. Bicubic interpolation is
included as a baseline. All runtimes are computed on Full HD.

the beginning compared to DUF-52. However, RLSP 7-128
improves quickly and is able to surpass all other methods
from frame 6 until the end.

We also provide images for visual comparison in Fig. 9
for each sequence in Vid4.

6. Conclusion
We introduced RLSP, a new end-to-end trainable recur-

rent video super-resolution architecture with locality based
latent space propagation, without relying on a dedicated
motion estimation module. Due to the ability of effectively
leveraging temporal information over long periods of time,
RLSP reduces runtimes drastically, while still maintaining

state-of-the-art accuracy. Because our network is shallow
and wide, a large amount of computation can be run in par-
allel, which is also responsible for its efficiency and could
enable even faster runtimes for dedicated hardware imple-
mentations. Even though the network structure is designed
to be highly efficient, we could show, that it is still possible
to improve accuracy by increasing complexity, e.g. adding
more filters. Our RLSP achieves the best accuracy on Vid4
benchmark while being more than 70× faster than DUF,
the former state-of-the-art. Accuracy could also be further
improved by investigating different configurations of kernel
sizes, alternative convolution types or numbers of layers.
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