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Abstract

The performance of mobile AI accelerators has been evolv-
ing rapidly in the past two years, nearly doubling with each
new generation of SoCs. The current 4th generation of mo-
bile NPUs is already approaching the results of CUDA-
compatible Nvidia graphics cards presented not long ago,
which together with the increased capabilities of mobile
deep learning frameworks makes it possible to run com-
plex and deep AI models on mobile devices. In this pa-
per, we evaluate the performance and compare the results of
all chipsets from Qualcomm, HiSilicon, Samsung, MediaTek
and Unisoc that are providing hardware acceleration for AI
inference. We also discuss the recent changes in the Android
ML pipeline and provide an overview of the deployment of
deep learning models on mobile devices. All numerical re-
sults provided in this paper can be found and are regularly
updated on the official project website 1.

1. Introduction

Over the past years, deep learning and AI became one of
the key trends in the mobile industry. This was a natural
fit, as from the end of the 90s mobile devices were get-
ting equipped with more and more software for intelligent
data processing – face and eyes detection [20], eye track-
ing [53], voice recognition [51], barcode scanning [84],
accelerometer-based gesture recognition [48, 57], predic-
tive text recognition [74], handwritten text recognition [4],
OCR [36], etc. At the beginning, all proposed methods
were mainly based on manually designed features and very

∗We also thank Oli Gaymond (ogaymond@google.com), Google Inc.,
for writing and editing section 3.1 of this paper.

1http://ai-benchmark.com

compact models as they were running at best on devices
with a single-core 600 MHz Arm CPU and 8-128 MB of
RAM. The situation changed after 2010, when mobile de-
vices started to get multi-core processors, as well as power-
ful GPUs, DSPs and NPUs, well suitable for machine and
deep learning tasks. At the same time, there was a fast de-
velopment of the deep learning field, with numerous novel
approaches and models that were achieving a fundamentally
new level of performance for many practical tasks, such as
image classification, photo and speech processing, neural
language understanding, etc. Since then, the previously used
hand-crafted solutions were gradually replaced by consider-
ably more powerful and efficient deep learning techniques,
bringing us to the current state of AI applications on smart-
phones.

Nowadays, various deep learning models can be found in
nearly any mobile device. Among the most popular tasks
are different computer vision problems like image classi-
fication [38, 82, 23], image enhancement [27, 28, 32, 30],
image super-resolution [17, 42, 83], bokeh simulation [85],
object tracking [87, 25], optical character recognition [56],
face detection and recognition [44, 70], augmented real-
ity [3, 16], etc. Another important group of tasks running
on mobile devices is related to various NLP (Natural Lan-
guage Processing) problems, such as natural language trans-
lation [80, 7], sentence completion [52, 24], sentence senti-
ment analysis [77, 72, 33], voice assistants [18] and interac-
tive chatbots [71]. Additionally, many tasks deal with time
series processing, e.g., human activity recognition [39, 26],
gesture recognition [60], sleep monitoring [69], adaptive
power management [50, 47], music tracking [86] and classi-
fication [73]. Lots of machine and deep learning algorithms
are also integrated directly into smartphones firmware and
used as auxiliary methods for estimating various parameters
and for intelligent data processing.
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Figure 1: Performance evolution of mobile AI accelerators: image throughput for the float Inception-V3 model. Mobile devices were run-
ning the FP16 model using TensorFlow Lite and NNAPI. Acceleration on Intel CPUs was achieved using the Intel MKL-DNN library [45],
on Nvidia GPUs – with CUDA [10] and cuDNN [8]. The results on Intel and Nvidia hardware were obtained using the standard TensorFlow
library [2] running the FP32 model with a batch size of 20 (the FP16 format is currently not supported by these CPUs / GPUs). Note that
the Inception-V3 is a relatively small network, and for bigger models the advantage of Nvidia GPUs over other silicon might be larger.

While running many state-of-the-art deep learning models
on smartphones was initially a challenge as they are usually
not optimized for mobile inference, the last few years have
radically changed this situation. Presented back in 2015,
TensorFlow Mobile [79] was the first official library allow-
ing to run standard AI models on mobile devices without any
special modification or conversion, though also without any
hardware acceleration, i.e. on CPU only. In 2017, the latter
limitation was lifted by the TensorFlow Lite (TFLite) [46]
framework that dropped support for many vital deep learn-
ing operations, but offered a significantly reduced binary
size and kernels optimized for on-device inference. This li-
brary also got support for the Android Neural Networks API
(NNAPI) [5], introduced the same year and allowing for the
access to the device’s AI hardware acceleration resources di-
rectly through the Android operating system. This was an
important milestone as a full-fledged mobile ML pipeline
was finally established: training, exporting and running the
resulting models on mobile devices became possible within
one standard deep learning library, without using special-
ized vendors tools or SDKs. At first, however, this approach
had also numerous flaws related to NNAPI and TensorFlow
Lite themselves, thus making it impractical for many use
cases. The most notable issues were the lack of valid NNAPI
drivers in the majority of Android devices (only 4 commer-
cial models featured them as of September 2018 [19]), and
the lack of support for many popular ML models by TFLite.
These two issues were largely resolved during the past year.
Since the spring of 2019, nearly all new devices with Qual-
comm, HiSilicon, Samsung and MediaTek systems on a chip
(SoCs) and with dedicated AI hardware are shipped with
NNAPI drivers allowing to run ML workloads on embed-
ded AI accelerators. In Android 10, the Neural Networks
API was upgraded to version 1.2 that implements 60 new
ops [1] and extends the range of supported models. Many of
these ops were also added to TensorFlow Lite starting from
builds 1.14 and 1.15. Another important change was the in-

troduction of TFLite delegates [12]. These delegates can be
written directly by hardware vendors and then used for ac-
celerating AI inference on devices with outdated or absent
NNAPI drivers. A universal delegate for accelerating deep
learning models on mobile GPUs (based on OpenGL ES,
OpenCL or Metal) was already released by Google earlier
this year [43]. All these changes build the foundation for
a new mobile AI infrastructure tightly connected with the
standard machine learning (ML) environment, thus making
the deployment of machine learning models on smartphones
easy and convenient. The above changes will be described
in detail in Section 3.

The latest generation of mid-range and high-end mobile
SoCs comes with AI hardware, the performance of which is
getting close to the results of desktop CUDA-enabled Nvidia
GPUs released in the past years. In this paper, we present
and analyze performance results of all generations of mo-
bile AI accelerators from Qualcomm, HiSilicon, Samsung,
MediaTek and Unisoc, starting from the first mobile NPUs
released back in 2017. We compare against the results ob-
tained with desktop GPUs and CPUs, thus assessing perfor-
mance of mobile vs. conventional machine learning silicon.
To do this, we use a professional AI Benchmark applica-
tion [31] consisting of 21 deep learning tests and measuring
more than 50 different aspects of AI performance, including
the speed, accuracy, initialization time, stability, etc. The
benchmark was significantly updated since previous year to
reflect the latest changes in the ML ecosystem. These up-
dates are described in Section 4. Finally, we provide an
overview of the performance, functionality and usage of An-
droid ML inference tools and libraries, and show the perfor-
mance of more than 200 Android devices and 100 mobile
SoCs collected in-the-wild with the AI Benchmark applica-
tion.

The rest of the paper is arranged as follows. In Section 2
we describe the hardware acceleration resources available
on the main chipset platforms and programming interfaces
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to access them. Section 3 gives an overview of the latest
changes in the mobile machine learning ecosystem. Sec-
tion 4 provides a detailed description of the recent modifi-
cations in our AI Benchmark architecture, its programming
implementation and deep learning tests. Section 5 shows the
experimental performance results for various mobile devices
and chipsets, and compares them to the performance of desk-
top CPUs and GPUs. Section 6 analyzes the results. Finally,
Section 7 concludes the paper.

2. Hardware Acceleration

Though many deep learning algorithms were presented back
in the 1990s [40, 41, 22], the lack of appropriate (and afford-
able) hardware to train such models prevented them from
being extensively used by the research community till 2009,
when it became possible to effectively accelerate their train-
ing with general-purpose consumer GPUs [65]. With the in-
troduction of Max-Pooling CNNs [9, 55] and AlexNet [38]
in 2011-2012 and the subsequent success of deep learning
in many practical tasks, it was only a matter of time be-
fore deep neural networks would be run on mobile devices.
Compared to simple statistical methods previously deployed
on smartphones, deep learning models required huge com-
putational resources and thus running them on Arm CPUs
was nearly infeasible from both the performance and power
efficiency perspective. The first attempts to accelerate AI
models on mobile GPUs and DSPs were made in 2015 by
Qualcomm [89], Arm [58] and other SoC vendors, though
at the beginning mainly by adapting deep learning models to
the existing hardware. Specialized AI silicon started to ap-
pear in mobile SoCs with the release of the Snapdragon 820
/ 835 with the Hexagon V6 68x DSP series optimized for AI
inference, the Kirin 970 with a dedicated NPU unit designed
by Cambricon, the Exynos 8895 with a separate Vision Pro-
cessing Unit, MediaTek Helio P60 with AI Processing Unit,
and the Google Pixel 2 with a standalone Pixel Visual Core.
The performance of mobile AI accelerators has been evolv-
ing extremely rapidly in the past three years (Fig. 1), coming
ever closer to the results of desktop hardware. We can now
distinguish four generations of mobile SoCs based on their
AI performance, capabilities and release date:

Generation 1: All legacy chipsets that can not provide
AI acceleration through the Android operating system, but
still can be used to accelerate machine learning inference
with special SDKs or GPU-based libraries. All Qualcomm
SoCs with Hexagon 682 DSP and below, and the majority of
chipsets from HiSilicon, Samsung and MediaTek belong to
this category. It is worth mentioning that nearly all computer
vision models are largely based on vector and matrix multi-
plications, and thus can technically run on almost any mobile
GPU supporting OpenGL ES or OpenCL. Yet, this approach
might actually lead to notable performance degradation on
many SoCs with low-end or old-gen GPUs.

Figure 2: The overall architecture of the Exynos 9820 NPU [78].

Generation 2: Mobile SoCs supporting Android NNAPI
and released after 2017. They might provide acceleration for
only one type of models (float or quantized) and are typical
for the AI performance in 2018.

• Qualcomm: Snapdragon 845 (Hex. 685 + Adreno 630);
Snapdragon 710 (Hexagon 685);
Snapdragon 670 (Hexagon 685);

• HiSilicon: Kirin 970 (NPU, Cambricon);

• Samsung: Exynos 9810 (Mali-G72 MP18);
Exynos 9610 (Mali-G72 MP3);
Exynos 9609 (Mali-G72 MP3);

• MediaTek: Helio P70 (APU 1.0 + Mali-G72 MP3);
Helio P60 (APU 1.0 + Mali-G72 MP3);
Helio P65 (Mali-G52 MP2).

Generation 3. Mobile SoCs supporting Android NNAPI
and released after 2018. They provide hardware acceleration
for all model types and their AI performance is typical for
the corresponding SoC segment in 2019.

• Qualcomm: Snapdragon 855+ (Hex. 690 + Adreno 640);
Snapdragon 855 (Hex. 690 + Adreno 640);
Snapdragon 730 (Hex. 688 + Adreno 618);
Snapdragon 675 (Hex. 685 + Adreno 612);
Snapdragon 665 (Hex. 686 + Adreno 610);

• HiSilicon: Kirin 980 (NPU×2, Cambricon);

• Samsung: Exynos 9825 (NPU + Mali-G76 MP12);
Exynos 9820 (NPU + Mali-G76 MP12);

• MediaTek: Helio P90 (APU 2.0);
Helio G90 (APU 1.0 + Mali-G76 MP4).

Generation 4: Recently presented chipsets with next-
generation AI accelerators (Fig. 1). Right now, only the
HiSilicon Kirin 990, HiSilicon Kirin 810 and Unisoc Tiger
T710 SoCs belong to this category. Many more chipsets
from other vendors will come by the end of this year.
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Figure 3: A general architecture of the Huawei’s DaVinci Core.

Below, we provide a detailed description of the mobile
platforms and related SDKs released in the past year. More
information about SoCs with AI acceleration support that
were introduced earlier, can be found in our previous pa-
per [31].

2.1. Samsung chipsets / EDEN SDK
The Exynos 9820 was the first Samsung SoC to get an NPU
technically compatible with Android NNAPI, its drivers will
be released after Android Q upgrade. This chipset con-
tains two custom Mongoose M4 CPU cores, two Cortex-
A75, four Cortex-A55 cores and Mali-G76 MP12 graphics.
The NPU of the Exynos 9820 supports only quantized in-
ference and consists of the controller and two cores (Fig. 2)
having 1024 multiply-accumulate (MAC) units [78]. The
NPU controller has a CPU, a direct memory access (DMA)
unit, code SRAM and a network controller. The CPU is
communicating with the host system of the SoC and defines
the network scale for the network controller. The controller
automatically configures all modules in the two cores and
traverses the network. To use the external memory band-
width and the scratchpads efficiently, the weights of the net-
work are compressed, and the network compiler addition-
ally partitions the network into sub-networks and performs
the traversal over multiple network layers. The DMA unit
manages the compressed weights and feature maps in each
of the 512KB scratchpads of the cores. When running the
computations, the NPU can also skip weights that are zero
to improve convolution efficiency. A much more detailed
description of the Exynos NPU can be found in [78]. We
strongly recommend reading this article for everyone inter-
ested in the general functioning of NPUs as it provides an
excellent overview on all network / data processing stages
and possible bottlenecks.

The Exynos 9820’s NPU occupies 5.5mm2, is fabricated
in 8nm CMOS technology and operates at 67-933 MHz
clock frequency. The performance of the NPU heavily de-
pends on the kernel sizes and the fraction of zero weights.
For kernels of size 5×5, it achieves the performance of
2.1 TOPS and 6.9 TOPS for 0% and 75% zero-weights,
respectively; the energy efficiency in these two cases is
3.6 TOPS/W and 11.5 TOPS/W. For the Inception-V3

Figure 4: SoC components integrated into the Kirin 990 chips.

model, the energy efficiency lies between 2 TOPS/W and
3.4 TOPS/W depending on network sparsity [78].

The other two Samsung SoCs that support Android
NNAPI are the Exynos 9609 / 9610, though they are relying
on the Mali-G72 MP3 GPU and Arm NN drivers [6] to accel-
erate AI models. As to the Exynos 9825 presented together
with the latest Note10 smartphone series, this is a slightly
overclocked version of the Exynos 9820 produced in 7nm
technology, with the same NPU design.

This year, Samsung announced the Exynos Deep Neural
Network (EDEN) SDK that provides the NPU, GPU and
CPU acceleration for deep learning models and exploits the
data and model parallelism. It consists of the model con-
version tool, the NPU compiler and the customized TFLite
generator and is available as a desktop tool plus runtimes for
Android and Linux. The EDEN runtime provides APIs for
initialization, opening / closing the model and its execution
with various configurations. Unfortunately, it is not publicly
available yet.

2.2. HiSilicon chipsets / HiAI SDK

While the Kirin 970 / 980 SoCs were using NPUs originally
designed by Cambricon, this year Huawei switched to its in-
house developed Da Vinci architecture (Fig. 3), powering
the Ascend series of AI accelerators and using a 3D Cube
computing engine to accelerate matrix computations. The
first SoC with Da Vinci NPU was a mid-range Kirin 810 in-
corporating two Cortex-A76 and six Cortex-A55 CPU cores
with Mali-G52 MP6 GPU. A significantly enlarged AI ac-
celerator appeared later in the Kirin 990 5G chip having four
Cortex-A76, four Cortex-A55 CPUs and Mali-G76 MP16
graphics. This SoC features a triple-core Da Vinci NPU con-
taining two large (Da Vinci Lite) cores for heavy computing
scenarios and one little (Da Vinci Tiny) core for low-power
AI computations. According to Huawei, the little core is up
to 24 times more power efficient than the large one when run-
ning face recognition models. Besides that, a simplified ver-
sion of the Kirin 990 (without “5G” prefix) with a dual-core
NPU (one large + one small core) was also presented and
should not be confused with the standard version (Fig. 4).
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Figure 5: Qualcomm Snapdragon 855 (left) and MediaTek Helio
P90 (right) block diagrams.

In the late 2018, Huawei launched the HiAI 2.0 SDK with
added support for the Kirin 980 chipset and new deep learn-
ing ops. Huawei has also released the IDE tool and Android
Studio plug-in, providing development toolsets for running
deep learning models with the HiAI Engine. With the recent
update of HiAI, it supports more than 300 deep learning ops
and the latest Kirin 810 / 990 (5G) SoCs.

2.3. Qualcomm chipsets / SNPE SDK
As before, Qualcomm is relying on its AI Engine (consist-
ing of the Hexagon DSP, Adreno GPU and Kryo CPU cores)
for the acceleration of AI inference. In all Qualcomm SoCs
supporting Android NNAPI, the Adreno GPU is used for
floating-point deep learning models, while the Hexagon DSP
is responsible for quantized inference. It should be noted
that though the Hexagon 68x/69x chips are still marketed
as DSPs, their architecture was optimized for deep learning
workloads and they include dedicated AI silicon such as ten-
sor accelerator units, thus not being that different from NPUs
and TPUs proposed by other vendors. The only major weak-
ness of the Hexagon DSPs is the lack of support for floating-
point models (same as in the Google Pixel TPU, MediaTek
APU 1.0 and Exynos NPU), thus the latter are delegated to
Adreno GPUs.

At the end of 2018, Qualcomm announced its flagship
SoC, the Snapdragon 855, containing eight custom Kryo
485 CPU cores (three clusters functioning at different fre-
quencies, Cortex-A76 derived), an Adreno 640 GPU and
Hexagon 690 DSP (Fig. 5). Compared to the Hexagon 685
used in the SDM845, the new DSP got a 1024-bit SIMD with
double the number of pipelines and an additional tensor ac-
celerator unit. Its GPU was also upgraded from the previ-
ous generation, getting twice more ALUs and an expected
performance increase of 20% compared to the Adreno 630.
The Snapdragon 855 Plus, released in July 2019, is an over-
clocked version of the standard SDM855 SoC, with the same
DSP and GPU working at higher frequencies. The other
three mid-range SoCs introduced in the past year (Snap-
dragon 730, 665 and 675) include the Hexagon 688, 686
and 685 DSPs, respectively (the first two are derivatives of
the Hexagon 685). All the above mentioned SoCs support

Figure 6: Schematic representation of MediaTek NeuroPilot SDK.

Android NNAPI 1.1 and provide acceleration for both float
and quantized models. According to Qualcomm, all NNAPI-
compliant chipsets (Snapdragon 855, 845, 730, 710, 675,
670 and 665) will get support for NNAPI 1.2 in Android Q.

Qualcomm’s Neural Processing SDK (SNPE) [76] also
went through several updates in the past year. It currently of-
fers Android and Linux runtimes for neural network model
execution, APIs for controlling loading / execution / schedul-
ing on the runtimes, desktop tools for model conversion and
a performance benchmark for bottleneck identification. It
currently supports the Caffe, Caffe2, ONNX and Tensor-
Flow machine learning frameworks.

2.4. MediaTek chipsets / NeuroPilot SDK

One of the key releases from MediaTek in the past year was
the Helio P90 with a new AI Processing Unit (APU 2.0) that
can generate a computational power of up to 1.1 TMACs /
second (4 times higher than the previous Helio P60 / P70
series). The SoC, manufactured with a 12nm process, com-
bines a pair of Arm Cortex-A75 and six Cortex-A55 CPU
cores with the IMG PowerVR GM 9446 GPU and dual-
Channel LPDDR4x RAM up to 1866MHz. The design of
the APU was optimized for operations intensively used in
deep neural networks. First of all, its parallel processing
engines are capable of accelerating heavy computing oper-
ations, such as convolutions, fully connected layers, activa-
tion functions, 2D operations (e.g., pooling or bilinear inter-
polation) and other tensor manipulations. The task control
system and data buffer were designed to minimize memory
bandwidth usage and to maximize data reuse and the utiliza-
tion rate of processing engines. Finally, the APU is support-
ing all popular inference modes, including FP16, INT16 and
INT8, allowing to run all common AI models with hardware
acceleration. Taking face detection as an example, the APU
can run up to 20 times faster and reduce the power consump-
tion by 55 times compared to the Helio’s CPU.

As to other MediaTek chipsets presented this year, the He-
lio G90 and the Helio P65 are also providing hardware accel-
eration for float and quantized AI models. The former uses
a separate APU (1st gen.) with a similar architecture as the
one in the Helio P60 / P70 chipsets [31]. The Helio P65 does
not have a dedicated APU module and is running all models
on a Mali-G52 MP2 GPU.

Together with the Helio P90, MediaTek has also launched
the NeuroPilot v2.0 SDK (Fig. 6). In its second ver-
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sion, NeuroPilot supports automatic network quantiza-
tion and pruning. The SDK’s APU drivers support
FP16/INT16/INT8 data types, while CPU and GPU drivers
can be used for some custom ops and FP32/FP16 models.
The NeuroPilot SDK was designed to take advantage of Me-
diaTek’s heterogeneous hardware, by assigning the work-
loads to the most suitable processor and concurrently uti-
lizing all available computing resources for the best perfor-
mance and energy efficiency. The SDK is supporting only
MediaTek NeuroPilot-compatible chipsets across products
such as smartphones and TVs. At its presentation of the He-
lio P90, MediaTek demonstrated that NeuroPilot v2.0 allows
for the real-time implementation of many AI applications
(e.g. multi-person pose tracking, 3D pose tracking, multi-
ple object identification, AR / MR, semantic segmentation,
scene identification and image enhancement).

2.5. Unisoc chipsets / UNIAI SDK

Unisoc is a Chinese fabless semiconductor company (for-
merly known as Spreadtrum) founded in 2001. The com-
pany originally produced chips for GSM handsets and was
mainly known in China, though starting from 2010-2011 it
began to expand its business to the global market. Unisoc’s
first smartphone SoCs (SC8805G and SC6810) appeared in
entry-level Android devices in 2011 and were featuring an
ARM-9 600MHz processor and 2D graphics. With the intro-
duction of the quad-core Cortex-A7 based SC773x, SC883x
and SC983x SoC series, Unisoc chipsets became used in
many low-end, globally shipped Android devices. The per-
formance of Unisoc’s budget chips was notably improved
in the SC9863 SoC and in the Tiger T310 platform released
earlier this year. To target the mid-range segment, Unisoc in-
troduced the Tiger T710 SoC platform with four Cortex-A75
+ four Cortex-A55 CPU cores and IMG PowerVR GM 9446
graphics. This is the first chipset from Unisoc to feature a
dedicated NPU module for the acceleration of AI computa-
tions. The NPU of the T710 consists of two different com-
puting accelerator cores: one for integer models supporting
the INT4, INT8 and INT16 formats and providing a peak
performance of 3.2 TOPS for INT8, and the other for FP16
models with 0.5 TFLOPS performance. The two cores can
either accelerate different AI tasks at the same time, or accel-
erate the task with one of them, while the second core can be
completely shut down to reduce the overall power consump-
tion of the SoC. The Tiger T710 supports Android NNAPI
and implements Android NN Unosic HIDL services support-
ing INT8 / FP16 models. The overall energy efficiency of the
T710’s NPU is greater than or equal to 2.5 TOPS/W depend-
ing on the scenario.

Unisoc has also developed the UNIAI SDK 7 that con-
sists of two parts: the off-line model conversion tool that can
compile the trained model into a file that can be executed
on NPU; and the off-line model API and runtime used to

Figure 7: Schematic representation of Unisoc UNIAI SDK.

load and execute the compiled model. The off-line model
conversion tool supports several neural network framework
formats, including Tensorflow, Tensorflow Lite, Caffe and
ONNX. To improve the flexibility, the NPU Core also in-
cludes units that can be programmed to support user defined
ops, making it possible to run the entire model with such ops
on NPU and thus significantly decreasing runtime.

2.6. Google Pixel 3 / Pixel Visual Core
As for the Pixel 2 series, the third generation of Google
phones contains a separate tensor processing unit (Pixel Vi-
sual Core) capable of accelerating deep learning ops. This
TPU did not undergo significant design changes compared to
the previous version. Despite Google’s initial statement [66],
neither SDK nor NNAPI drivers were or will be released
for this TPU series, making it inaccessible to anyone except
Google. Therefore, its importance for deep learning devel-
opers is limited. In the Pixel phones, it is used for a few
tasks related to HDR photography and real-time sensor data
processing.

3. Deep Learning on Smartphones

In a preceding paper ([31], Section 3), we described the
state of the deep learning mobile ecosystem as of Septem-
ber 2018. The changes in the past year were along the line
of expectations. The TensorFlow Mobile [79] framework
was completely deprecated by Google in favor of Tensor-
Flow Lite that got a significantly improved CPU backend
and support for many new ops. Yet, TFLite is still lacking
some vital deep learning operators, especially those used in
many NLP models. Therefore, TensorFlow Mobile remains
relevant for complex architectures. Another recently added
option for unsupported models is to use the TensorFlow Lite
plugin containing standard TensorFlow operators [63] that
are not yet added to TFLite. That said, the size of this plu-
gin (40MB) is even larger than the size of the TensorFlow
Mobile library (20MB). As to the Caffe2 / PyTorch libraries,
while some unofficial Android ports appeared in the past 12
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months [64, 13], there is still no official support for An-
droid (except for 2 two-year old camera demos [15, 14]),
thus making it not that interesting for regular developers.

Though some TensorFlow Lite issues mentioned last
year [31] were solved in its current releases, we still rec-
ommend using it with great precaution. For instance, in its
latest official build (1.14), the interaction with NNAPI was
completely broken, leading to enormous losses and random
outputs during the first two inferences. This issue can be
solved by replacing the setUseNNAPI method with a stand-
alone NNAPI delegate present in the TFLite-GPU delegate
library [11]. Another problem present in the nightly builds is
a significantly increased RAM consumption for some mod-
els (e.g., SRCNN, Inception-ResNet-V1, VGG-19), making
them crashing even on devices with 4GB+ of RAM. While
these issues should be solved in the next official TFLite re-
lease (1.15), we suggest developers to extensively test their
models on all available devices with each change of TFLite
build. Another recommended option is to move to custom
TensorFlow Lite delegates from SoC vendors that allow to
omit such problems and potentially achieve even better re-
sults on their hardware.

The other two major changes in the Android deep learn-
ing ecosystem were the introduction of TensorFlow Lite del-
egates and Neural Networks API 1.2. We describe them in
detail below.

3.1. Android NNAPI 1.2

The latest version of NN API provides access to 56 new op-
erators, significantly expanding the range of models that can
be supported for hardware acceleration. In addition the range
of supported data types has increased, bringing support for
per-axis quantization for weights and IEEE Float 16. This
broader support for data types enables developers and hard-
ware makers to determine the most performant options for
their specific model needs.

A significant addition to the API surface is the ability to
query the underlying hardware accelerators at runtime and
specify explicitly where to run the model. This enables
use cases where the developer wants to limit contention be-
tween resources, for example an Augmented Reality devel-
oper may choose to ensure the GPU is free for visual pro-
cessing requirements by directing their ML workloads to an
alternative accelerator if available.

Neural Networks API 1.2 introduces the concept of burst
executions. Burst executions are a sequence of executions of
the same prepared model that occur in rapid succession, such
as those operating on frames of a camera capture or succes-
sive audio samples. A burst object is used to control a set
of burst executions, and to preserve resources between exe-
cutions, enabling executions to have lower overhead. From
Android 10, NNAPI provides functions to support caching of
compilation artifacts, which reduces the time used for com-

pilation when an application starts. Using this caching func-
tionality, the driver does not need to manage or clean up the
cached files. Neural Networks API (NNAPI) vendor exten-
sions, introduced in Android 10, are collections of vendor-
defined operations and data types. On devices running NN
HAL 1.2 or higher, drivers can provide custom hardware-
accelerated operations by supporting corresponding vendor
extensions. Vendor extensions do not modify the behavior of
existing operations. Vendor extensions provide a more struc-
tured alternative to OEM operation and data types, which
were deprecated in Android 10.

3.2. TensorFlow Lite Delegates

In the latest releases, TensorFlow Lite provides APIs for del-
egating the execution of neural network sub-graphs to ex-
ternal libraries (called delegates) [12]. Given a neural net-
work model, TFLite first checks what operators in the model
can be executed with the provided delegate. Then TFLite
partitions the graph into several sub-graphs, substituting the
supported by the delegate sub-graphs with virtual “delegate
nodes” [43]. From that point, the delegate is responsible for
executing all sub-graphs in the corresponding nodes. Un-
supported operators are by default computed by the CPU,
though this might significantly increase the inference time
as there is an overhead for passing the results from the sub-
graph to the main graph. The above logic is already used
by the TensorFlow Lite GPU backend described in the next
section.

3.3. TensorFlow Lite GPU Delegate

While many different NPUs were already released by all ma-
jor players, they are still very fragmented due to a missing
common interface or API. While NNAPI was designed to
tackle this problem, it suffers from its own design flaws that
slow down NNAPI adoption and usage growth:

• Long update cycle: NNAPI update is still bundled with
the OS update. Thus, it may take up to a year to get new
drivers.

• Custom operations support: When a model has an op
that is not yet supported by NNAPI, it is nearly impos-
sible to run it with NNAPI. In the worst case, two parts
of a graph are accelerated through NNAPI, while a sin-
gle op implemented out of the context is computed by
the CPU, which ruins the performance.

There is another attempt by the Vulkan ML group to in-
troduce common programming language to be implemented
by vendors. The language resembles a model graph repre-
sentation similar to one found in the TensorFlow or ONNX
libraries. The proposal is still in its early stage and, if ac-
cepted, will take a few years to reach consumer devices.
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Besides the above issues, there also exists a huge fragmen-
tation of mobile hardware platforms. For instance, the most
popular 30 SoC designs are now representing only 51% of
the market share, while 225 SoCs are still covering just 95%
of the market with a long tail of a few thousand designs. The
majority of these SoCs will never get NNAPI drivers, though
one should mention that around 23% of them have GPUs at
least 2 times more performant than the corresponding CPUs,
and thus they can be used for accelerating ML inference.
This number is significantly bigger than the current market
share of chipsets with NPUs or valid NNAPI drivers. To use
the GPU acceleration on such platforms, TensorFlow GPU
delegate was introduced.

The inference phase of the GPU delegate consists of the
following steps. The input tensors are first reshaped to the
PHWC4 format if their tensor shape has channel size not
equal to 4. For each operator, shader programs are linked by
binding resources such the operators input / output tensors,
weights, etc. and dispatched, i.e. inserted into the command
queue. The GPU driver then takes care of scheduling and ex-
ecuting all shader programs in the queue, and makes the re-
sult available to the CPU by the CPU / GPU synchronization.
In the GPU inference engine, operators exist in the form of
shader programs. The shader programs eventually get com-
piled and inserted into the command queue and the GPU
executes programs from this queue without synchronization
with the CPU. After the source code for each program is
generated, each shader gets compiled. This compilation step
can take awhile, from several milliseconds to seconds. Typi-
cally, app developers can hide this latency while loading the
model or starting the app for the first time. Once all shader
programs are compiled, the GPU backend is ready for infer-
ence. A much more detailed description of the TFlite GPU
delegate can be found in [43].

3.4. Floating-point vs. Quantized Inference
One of the most controversial topics related to the deploy-
ment of deep learning models on smartphones is the suit-
ability of floating-point and quantized models for mobile
devices. There has been a lot of confusion with these two
types in the mobile industry, including a number of incorrect
statements and invalid comparisons. We therefore decided
to devote a separate section to them and describe and com-
pare their benefits and disadvantages. We divided the dis-
cussion into three sections: the first two are describing each
inference type separately, while the last one compares them
directly and makes suggestions regarding their application.

3.4.1. Floating-point Inference

Advantages: The model is running on mobile devices in
the same format as it was originally trained on the server or
desktop with standard machine learning libraries. No spe-
cial conversion, changes or re-training is needed; thus one

gets the same accuracy and performance as on the desktop
or server environment.

Disadvantages: Many recent state-of-the-art deep learn-
ing models, especially those that are working with high-
resolution image transformations, require more than 6-8 gi-
gabytes of RAM and enormous computational resources for
data processing that are not available even in the latest high-
end smartphones. Thus, running such models in their origi-
nal format is infeasible, and they should be first modified to
meet the hardware resources available on mobile devices.

3.4.2. Quantized Inference

Advantages: The model is first converted from a 16-bit
floating point type to int-8 format. This reduces its size and
RAM consumption by a factor of 4 and potentially speeds
up its execution by 2-3 times. Since integer computations
consume less energy on many platforms, this also makes the
inference more power efficient, which is critical in the case
of smartphones and other portable electronics.

Disadvantages: Reducing the bit-width of the network
weights (from 16 to 8 bits) leads to accuracy loss: in some
cases, the converted model might show only a small perfor-
mance degradation, while for some other tasks the result-
ing accuracy will be close to zero. Although a number of
research papers dealing with network quantization were pre-
sented by Qualcomm [49, 54] and Google [34, 37], all show-
ing decent accuracy results for many image classification
models, there is no general recipe for quantizing arbitrary
deep learning architectures. Thus, quantization is still more
of a research topic, without working solutions for many AI-
related tasks (e.g., image-to-image mapping or various NLP
problems). Besides that, many quantization approaches re-
quire the model to be retrained from scratch, preventing the
developers from using available pre-trained models provided
together with all major research papers.

3.4.3. Comparison

As one can see, there is always a trade-off between using one
model type or another: floating-point models will always
show better accuracy (since they can be simply initialized
with the weights of the quantized model and further trained
for higher accuracy), while integer models yield faster in-
ference. The progress here comes from both sides: AI ac-
celerators for floating-point models are becoming faster and
are reducing the difference between the speed of INT-8 and
FP16 inference, while the accuracy of various network quan-
tization approaches is also rising rapidly. Thus, the applica-
bility of each approach will depend on the particular task
and the corresponding hardware / energy consumption lim-
itations: for complex models and high-performance devices
float models are preferable (due to the convenience of de-
ployment and better accuracy), while quantized inference is
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Figure 8: Sample result visualizations displayed to the user in deep learning tests.

clearly beneficial in the case of low-power and low-RAM de-
vices and quantization-friendly models that can be converted
from the original float format to INT-8 with a minimal per-
formance degradation.

When comparing float and quantized inference, one good
analogy would be the use of FullHD vs. 4K videos on mo-
bile devices. All other things being equal, the latter always
have better quality due to their higher resolution, but also
demand considerably more disc space or internet bandwidth
and hardware resources for decoding them. Besides that, on
some screens the difference between 1080P and 4K might
not be visible. But this does not mean that one of the two
resolutions should be discarded altogether. Rather, the most
suitable solution should be used in each case.

Last but not least, one should definitely avoid comparing
the performance of two different devices by running floating-
point models on one and quantized models on the other. As
they have different properties and show different accuracy
results, the obtained numbers will make no sense (same as
measuring the FPS in a video game running on two devices
with different resolutions). This, however, does not refer to
the situation when this is done to demonstrate the compara-
tive performance of two inference types, if accompanied by
the corresponding accuracy results.

4. AI Benchmark 3.0

The AI Benchmark application was first released in May
2018, with the goal of measuring the AI performance of vari-
ous mobile devices. The first version (1.0.0) included a num-
ber of typical AI tasks and deep learning architectures, and
was measuring the execution time and memory consumption
of the corresponding AI models. In total, 12 public versions
of the AI Benchmark application were released since the be-
ginning of the project. The second generation (2.0.0) was
described in detail in the preceding paper [31]. Below we
briefly summarize the key changes introduced in the subse-
quent benchmark releases:

– 2.1.0 (release date: 13.10.2018) — this version brought a
number of major changes to AI Benchmark. The total num-
ber of tests was increased from 9 to 11. In test 1, MobileNet-
V1 was changed to MobileNet-V2 running in three sub-

tests with different inference types: float model on CPU,
float model with NNAPI and quantized model with NNAPI.
Inception-ResNet-V1 and VGG-19 models from tests 3 and
5, respectively, were quantized and executed with NNAPI. In
test 7, ICNet model was running in parallel in two separate
threads on CPU. A more stable and reliable category-based
scoring system was introduced. Required Android 4.1 and
above.
– 2.1.1 (release date: 15.11.2018) — normalization coeffi-
cients used in the scoring system were updated to be based
on the best results from the actual SoCs generation (Snap-
dragon 845, Kirin 970, Helio P60 and Exynos 9810). This
version also introduced several bug fixes and an updated
ranking table. Required Android 4.1 and above.
– 2.1.2 (release date: 08.01.2019) — contained a bug fix

for the last memory test (on some devices, it was terminated
before the actual RAM exhaustion).
– 3.0.0 (release date: 27.03.2019) — the third version of

AI Benchmark with a new modular-based architecture and a
number of major updates. The number of tests was increased
from 11 to 21. Introduced accuracy checks, new tasks and
networks, PRO mode and updated scoring system that are
described further in this section.
– 3.0.1 (release date: 21.05.2019) and 3.0.2 (release date:
13.06.2019) — fixed several bugs and introduced new fea-
tures in the PRO mode.

Since a detailed technical description of AI Benchmark
2.0 was provided in [31], we here mainly focus on the up-
dates and changes introduced by the latest release.

4.1. Deep Learning Tests
The actual benchmark version (3.0.2) consists of 11 test sec-
tions and 21 tests. The networks running in these tests rep-
resent the most popular and commonly used deep learning
architectures that can be currently deployed on smartphones.
The description of test configs is provided below.

Test Section 1: Image Classification
Model: MobileNet-V2 [68],
Inference modes: CPU (FP16/32) and NNAPI (INT8 + FP16)
Image resolution: 224×224 px, Test time limit: 20 seconds
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Test 1 2 3 4 5 6 7 8 9 10

Task Classification Classification Face Recognition Playing Atari Deblurring Super-Resolution Super-Resolution Bokeh Simulation Segmentation Enhancement
Architecure MobileNet-V2 Inception-V3 Inc-ResNet-V1 LSTM RNN SRCNN VGG-19 SRGAN (ResNet-16) U-Net ICNet DPED (ResNet-4)
Resolution, px 224×224 346×346 512×512 84×84 384×384 256×256 512×512 128×128 768×1152 128×192
Parameters 3.5M 27.1M 22.8M 3.4M 69K 665K 1.5M 6.6M 6.7M 400K
Size (float), MB 14 95 91 14 0.3 2.7 6.1 27 27 1.6
NNAPI support yes yes yes yes (1.2+) yes yes yes (1.2+) yes (1.2+) yes yes
CPU-Float yes yes no yes no no yes yes no no
CPU-Quant no no yes no no no yes no no no
NNAPI-Float yes yes yes no yes yes no no yes yes
NNAPI-Quant yes yes yes no yes yes no no no no

Table 1: Summary of deep learning models used in the AI Benchmark.

Test Section 2: Image Classification
Model: Inception-V3 [82]
Inference modes: CPU (FP16/32) and NNAPI (INT8 + FP16)
Image resolution: 346×346 px, Test time limit: 30 seconds

Test Section 3: Face Recognition
Model: Inception-ResNet-V1 [81]
Inference modes: CPU (INT8) and NNAPI (INT8 + FP16)
Image resolution: 512×512 px, Test time limit: 30 seconds

Test Section 4: Playing Atari
Model: LSTM [22]
Inference modes: CPU (FP16/32)
Image resolution: 84×84 px, Test time limit: 20 seconds

Test Section 5: Image Deblurring
Model: SRCNN 9-5-5 [17]
Inference modes: NNAPI (INT8 + FP16)
Image resolution: 384×384 px, Test time limit: 30 seconds

Test Section 6: Image Super-Resolution
Model: VGG-19 (VDSR) [35]
Inference modes: NNAPI (INT8 + FP16)
Image resolution: 256×256 px, Test time limit: 30 seconds

Test Section 7: Image Super-Resolution
Model: SRGAN [42]
Inference modes: CPU (INT8 + FP16/32)
Image resolution: 512×512 px, Test time limit: 40 seconds

Test Section 8: Bokeh Simulation
Model: U-Net [67]
Inference modes: CPU (FP16/32)
Image resolution: 128×128 px, Test time limit: 20 seconds

Test Section 9: Image Segmentation
Model: ICNet [90]
Inference modes: NNAPI (2 × FP32 models in parallel)
Image resolution: 768×1152 px, Test time limit: 20 seconds

Test Section 10: Image Enhancement
Model: DPED-ResNet [27, 29]
Inference modes: NNAPI (FP16 + FP32)
Image resolution: 128×192 px, Test time limit: 20 seconds

Test Section 11: Memory Test
Model: SRCNN 9-5-5 [17]
Inference modes: NNAPI (FP16)
Image resolution: from 200×200 px to 2000×2000 px

Figure 9: Benchmark results displayed after the end of the tests.

Table 1 summarizes the details of all the deep learning
architectures included in the benchmark. When more than
one inference mode is used, each image is processed sequen-
tially with all the corresponding modes. In the last memory
test, images are processed until the Out-Of-Memory-Error is
thrown or all resolutions are processed successfully. In the
image segmentation test (Section 9), two TFLite ICNet mod-
els are initialized in two separate threads and process images
in parallel (asynchronously) in these two threads. The run-
ning time for each test is computed as an average over the set
of images processed within the specified time. When more
than two images are processed, the first two results are dis-
carded to avoid taking into account initialization time (es-
timated separately), and the average over the rest results is
calculated. If less than three images are processed (which
happens only on low-end devices), the last inference time is
used. The benchmark’s visualization of network outputs is
shown in Fig. 8.

Starting from version 3.0.0, AI Benchmark is checking
the accuracy of the outputs for float and quantized models
running with acceleration (NNAPI) in Test Sections 1, 2, 3,
5 and 6. For each corresponding test, the L1 loss is computed
between the target and actual outputs produced by the deep
learning models. The accuracy is estimated separately for
both float and quantized models.

10



4.2. Scoring System
AI Benchmark is measuring the performance of several test
categories, including int-8, float-16, float-32, parallel, CPU
(int-8 and float-16/32), memory tests, and tests measuring
model initialization time. The scoring system used in ver-
sions 3.0.0 – 3.0.2 is identical. The contribution of the test
categories is as follows:

• 48% - float-16 tests;

• 24% - int-8 tests;

• 12% - CPU, float-16/32 tests;

• 6% - CPU, int-8 tests;

• 4% - float-32 tests;

• 3% - parallel execution of the models;

• 2% - initialization time, float models;

• 1% - initialization time, quantized models;

The scores of each category are computed as a geomet-
ric mean of the test results belonging to this category. The
computed L1 error is used to penalize the runtime of the cor-
responding networks running with NNAPI (an exponential
penalty with exponent 1.5 is applied). The result of the mem-
ory test introduces a multiplicative contribution to the final
score, displayed at the end of the tests (Fig. 9). The normal-
ization coefficients for each test are computed based on the
best results of the current SoC generation (Snapdragon 855,
Kirin 980, Exynos 9820 and Helio P90).

4.3. PRO Mode
The PRO Mode (Fig. 10) was introduced in AI Benchmark
3.0.0 to provide developers and experienced users with the
ability to get more detailed and accurate results for tests
running with acceleration, and to compare the results of
CPU- and NNAPI-based execution for all inference types.
It is available only for tasks where both the float and quan-
tized models are compatible with NNAPI (Test Sections 1,
2, 3, 5, 6). In this mode, one can run each of the five in-
ference types (CPU-float, CPU-quantized, float-16-NNAPI,
float-32-NNAPI and int-8-NNAPI) to get the following re-
sults:

• Average inference time for a single-image inference;

• Average inference time for a throughput inference;

• Standard deviation of the results;

• The accuracy of the produced outputs (L1 error);

• Model’s initialization time.

Some additional options were added to the PRO Mode in
version 3.0.1 that are available under the “Settings” tab:

1. All PRO Mode tests can be run in automatic mode;

Figure 10: Tests, results and options displayed in the PRO Mode.

2. Benchmark results can be exported to a JSON / TXT
file stored in the device’s internal memory;

3. TensorFlow Lite CPU backend can be enabled in all
tests for debugging purposes;

4. Sustained performance mode can be used in all tests.

4.4. AI Benchmark for Desktops
Besides the Android version, a separate open source AI
Benchmark build for desktops 2 was released in June 2019.
It is targeted at evaluating AI performance of the common
hardware platforms, including CPUs, GPUs and TPUs, and
measures the inference and training speed for several key
deep learning models. The benchmark is relying on the Ten-
sorFlow [2] machine learning library and is distributed as a
Python pip package 3 that can be installed on any system run-
ning Windows, Linux or macOS. The current release 0.1.1
consists of 42 tests and 19 sections provided below:

1. MobileNet-V2 [68] [classification]

2. Inception-V3 [82] [classification]

3. Inception-V4 [81] [classification]

4. Inception-ResNet-V2 [21] [classification]

5. ResNet-V2-50 [21] [classification]

6. ResNet-V2-152 [21] [classification]

7. VGG-16 [75] [classification]

8. SRCNN 9-5-5 [17] [image-to-image mapping]

9. VGG-19 [35] [image-to-image mapping]

10. ResNet-SRGAN [42] [image-to-image mapping]

11. ResNet-DPED [27, 29] [image-to-image mapping]

12. U-Net [67] [image-to-image mapping]

13. Nvidia-SPADE [62] [image-to-image mapping]

14. ICNet [90] [image segmentation]

2http://ai-benchmark.com/alpha
3https://pypi.org/project/ai-benchmark
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SoC AI Accelerator MobileNet Inception Inc-ResNet SRCNN, VGG-19, DPED, Relative
v2, ms v3, ms v1, ms ms ms ms Perf.

HiSilicon Kirin 990 NPU (Da Vinci family) 6 18 37 36 42 19 100%
HiSilicon Kirin 810 NPU (Da Vinci family) 10 34 82 72 122 42 47%
Unisoc Tiger T710 NPU 13 35 80 76 135 43 43%
Snapdragon 855 Plus GPU (Adreno 640) 15 56 142 66 182 67 32%
HiSilicon Kirin 980 NPU (Cambricon family) 25 58 117 100 163 71 28%
Exynos 9825 Octa GPU (Mali-G76 MP12, S.LSI OpenCL) 17 65 151 124 158 67 28%
MediaTek Helio P90 APU 2.0 8.3 101 263 75 309 66 26%
Exynos 9820 Octa GPU (Mali-G76 MP12, S.LSI OpenCL) 19 69 162 137 170 74 26%
Snapdragon 855 GPU (Adreno 640) 24 70 170 87 211 82 25%
Snapdragon 845 GPU (Adreno 630) 27 80 205 98 263 94 21%
HiSilicon Kirin 970 NPU (Cambricon family) 43 69 1514 141 235 83 14%
Snapdragon 730 GPU (Adreno 618) 31 150 391 185 553 175 12%
MediaTek Helio G90T GPU (Mali-G76 MP4) 37 223 584 459 977 665 6%
Exynos 9820 Octa GPU (Mali-G76 MP12, Arm NN OpenCL) 40 186 442 889 837 836 6%
Snapdragon 675 GPU (Adreno 612) 39 312 887 523 1238 347 6%
Exynos 9810 Octa GPU (Mali-G72 MP18) 72 209 488 1574 843 787 4%
Exynos 8895 Octa GPU (Mali-G71 MP20) 63 216 497 1785 969 909 4%
MediaTek Helio P70 GPU (Mali-G72 MP3) 66 374 932 1096 865 764 4%
MediaTek Helio P65 GPU (Mali-G52 MP2) 51 340 930 752 1675 926 4%
Snapdragon 665 GPU (Adreno 610) 50 483 1292 678 2174 553 4%
MediaTek Helio P60 GPU (Mali-G72 MP3) 68 353 948 1896 889 1439 3%
Exynos 9609 GPU (Mali-G72 MP3) 61 444 1230 1661 1448 731 3%
Exynos 9610 GPU (Mali-G72 MP3) 77 459 1244 1651 1461 773 3%
Exynos 8890 Octa GPU (Mali-T880 MP12) 98 447 1012 2592 1062 855 3%
Snapdragon 835 None 181 786 1515 1722 3754 1317 1%
GeForce GTX 1080 Ti CUDA (3584 cores, 1.58 - 1.60 GHz) 1.5 4.5 9.5 4.7 10 4.6 449%
GeForce GTX 950 CUDA (768 cores, 1.02 - 1.19 GHz) 3.9 15 38 23 47 20 115%
Nvidia Tesla K40c CUDA (2880 cores, 0.75 - 0.88 GHz) 3.7 16 38 22 60 20 111%
Quadro M2000M CUDA (640 cores, 1.04 - 1.20 GHz) 5 22 54 33 84 30 78%
GeForce GT 1030 CUDA (384 cores, 1.23 - 1.47 GHz) 9.3 31 81 44 97 47 53%
GeForce GT 740 CUDA (384 cores, 0.993 GHz) 12 89 254 238 673 269 14%
GeForce GT 710 CUDA (192 cores, 0.954 GHz) 33 159 395 240 779 249 10%
Intel Core i7-9700K 8/8 @ 3.6 - 4.9 GHz, Intel MKL 4.8 23 72 49 133 72 55%
Intel Core i7-7700K 4/8 @ 4.2 - 4.5 GHz, Intel MKL 7.4 42 121 75 229 100 34%
Intel Core i7-4790K 4/8 @ 4.0 - 4.4 GHz, Intel MKL 8.3 45 133 91 267 124 30%
Intel Core i7-3770K 4/8 @ 3.5 - 3.9 GHz, Intel MKL 12 125 345 209 729 242 13%
Intel Core i7-2600K 4/8 @ 3.4 - 3.8 GHz, Intel MKL 14 143 391 234 816 290 11%
Intel Core i7-950 4/8 @ 3.1 - 3.3 GHz, Intel MKL 36 287 728 448 1219 515 6%

Table 2: Inference time (per one image) for floating-point networks obtained on mobile SoCs providing hardware accelera-
tion for fp-16 models. The results of the Snapdragon 835, Intel CPUs and Nvidia GPUs are provided for reference. Accelera-
tion on Intel CPUs was achieved using the Intel MKL-DNN library [45], on Nvidia GPUs – with CUDA [10] and cuDNN [8].
The results on Intel and Nvidia hardware were obtained using the standard TensorFlow library [2] running floating-point
models with a batch size of 10. A full list is available at: http://ai-benchmark.com/ranking_processors

15. PSPNet [91] [image segmentation]
16. DeepLab [61] [image segmentation]
17. Pixel-RNN [59] [inpainting]
18. LSTM [22] [sentence sentiment analysis]
19. GNMT [88] [text translation]

The results obtained with this benchmark version are
available on the project webpage 4. Upcoming releases will
provide a unified ranking system that allows for a direct com-
parison of results on mobile devices (obtained with Android
AI Benchmark) with those on desktops. The current con-
straints and particularities of mobile inference do not allow
us to merge these two AI Benchmark versions right now,
however, they will be gradually consolidated into a single AI
Benchmark Suite with a global ranking table. The numbers
for desktop GPUs and CPUs shown in the next section were
obtained with a modified version of the desktop AI Bench-
mark build.

4http://ai-benchmark.com/ranking_deeplearning

5. Benchmark Results

As the performance of mobile AI accelerators has grown sig-
nificantly in the past year, we decided to add desktop CPUs
and GPUs used for training / running deep learning models
to the comparison as well. This will help us to understand
how far mobile AI silicon has progressed thus far. It also
will help developers to estimate the relation between the run-
time of their models on smartphones and desktops. In this
section, we present quantitative benchmark results obtained
from over 20,000 mobile devices tested in the wild (includ-
ing a number of prototypes) and discuss in detail the perfor-
mance of all available mobile chipsets providing hardware
acceleration for floating-point or quantized models. The re-
sults for floating-point and quantized inference obtained on
mobile SoCs are presented in tables 2 and 3, respectively.
The detailed performance results for smartphones are shown
in table 4.
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SoC AI Accelerator MobileNet Inception Inc-ResNet SRCNN, VGG-19, Relative
v2, ms v3, ms v1, ms ms ms Perf.

Snapdragon 855 Plus DSP (Hexagon 690) 4.9 16 40 24 45 100%
Unisoc Tiger T710 NPU 5 17 38 20 53 99%
HiSilicon Kirin 990 NPU (Da Vinci family) 6.5 20 37 38 39 86%
Snapdragon 855 DSP (Hexagon 690) 8.2 18 46 30 48 80%
MediaTek Helio P90 APU 2.0 4 23 38 22 147 78%
Snapdragon 675 DSP (Hexagon 685) 10 34 73 53 103 47%
Snapdragon 730 DSP (Hexagon 688) 13 47 90 69 111 38%
Snapdragon 670 DSP (Hexagon 685) 12 48 97 153 116 32%
Snapdragon 665 DSP (Hexagon 686) 13 52 118 94 192 29%
Snapdragon 845 DSP (Hexagon 685) 11 45 91 71 608 28%
Exynos 9825 Octa GPU (Mali-G76 MP12, S.LSI OpenCL) 19 63 128 75 199 27%
Snapdragon 710 DSP (Hexagon 685) 12 48 95 70 607 27%
MediaTek Helio G90T APU 1.0 15 64 139 107 308 23%
Exynos 9820 Octa GPU (Mali-G76 MP12, S.LSI OpenCL) 21 73 199 87 262 21%
HiSilicon Kirin 810 NPU (Da Vinci family) 25 98 160 116 172 21%
MediaTek Helio P70 APU 1.0 26 89 181 163 474 15%
MediaTek Helio P60 APU 1.0 27 89 181 164 475 15%
Exynos 9820 Octa GPU (Mali-G76 MP12, Arm NN OpenCL) 27 96 201 407 446 12%
Exynos 8895 Octa GPU (Mali-G71 MP20) 44 118 228 416 596 10%
Exynos 9810 Octa GPU (Mali-G72 MP18) 45 166 360 539 852 7%
MediaTek Helio P65 GPU (Mali-G52 MP2) 43 228 492 591 1167 6%
Snapdragon 835 None 136 384 801 563 1525 3%
Exynos 9609 GPU (Mali-G72 MP3) 50 383 937 1027 2325 3%
Exynos 9610 GPU (Mali-G72 MP3) 52 380 927 1024 2322 3%
Exynos 8890 Octa GPU (Mali-T880 MP12) 70 378 866 1200 2016 3%

Table 3: Inference time for quantized networks obtained on mobile SoCs providing hardware acceleration for int-8 models.
The results of the Snapdragon 835 are provided for reference. A full list is available at: http://ai-benchmark.com/
ranking_processors

5.1. Floating-point performance

At the end of September 2018, the best publicly available re-
sults for floating-point inference were exhibited by the Kirin
970 [31]. The increase in the performance of mobile chips
that happened here since that time is dramatic: even with-
out taking into account various software optimizations, the
speed of the floating-point execution has increased by more
than 7.5 times (from 14% to 100%, table 2). The Snap-
dragon 855, HiSilicon Kirin 980, MediaTek Helio P90 and
Exynos 9820 launched last autumn have significantly im-
proved the inference runtime for float models and already ap-
proached the results of several octa-core Intel CPUs (e.g. In-
tel Core i7-7700K / i7-4790K) and entry-level Nvidia GPUs,
while an even higher performance increase was introduced
by the 4th generation of AI accelerators released this sum-
mer (present in the Unisoc Tiger T710, HiSilicon Kirin 810
and 990). With such hardware, the Kirin 990 managed to get
close to the performance of the GeForce GTX 950 – a mid-
range desktop graphics card from Nvidia launched in 2015,
and significantly outperformed one of the current Intel flag-
ships – an octa-core Intel Core i7-9700K CPU (Coffee Lake
family, working frequencies from 3.60 GHz to 4.90 GHz).
This is an important milestone as mobile devices are begin-
ning to offer the performance that is sufficient for running
many standard deep learning models, even without any spe-
cial adaptations or modifications. And while this might not
be that noticeable in the case of simple image classification
networks (MobileNet-V2 can demonstrate 10+ FPS even on

Exynos 8890), it is especially important for various image
and video processing models that are usually consuming ex-
cessive computational resources.

An interesting topic is to compare the results of GPU- and
NPU-based approaches. As one can see, in the third gen-
eration of deep learning accelerators (present in the Snap-
dragon 855, HiSilicon Kirin 980, MediaTek Helio P90 and
Exynos 9820 SoCs), they are showing roughly the same
performance, while the Snapdragon 855 Plus with an over-
clocked Adreno 640 GPU is able to outperform the rest of
the chipsets by around 10-15%. However, it is unclear if the
same situation will persist in the future: to reach the perfor-
mance level of the 4th generation NPUs, the speed of AI in-
ference on GPUs should be increased by 2-3 times. This can-
not be easily done without introducing some major changes
to their micro-architecture, which will also affect the entire
graphics pipeline. It therefore is likely that all major chip
vendors will switch to dedicated neural processing units in
the next SoC generations.

Accelerating deep learning inference with the mid-range
(e.g., , Mali-G72 / G52, Adreno 610 / 612) or old-generation
(e.g., , Mali-T880) GPUs is not very efficient in terms of the
resulting speed. Even worse results will be obtained on the
entry-level GPUs since they come with additional computa-
tional constraints. One should, however, note that the power
consumption of GPU inference is usually 2 to 4 times lower
than the same on the CPU. Hence this approach might still
be advantageous in terms of overall energy efficiency.
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Phone Model SoC 1c-f, 1q, 1q, 1f, 1f, 2c-f, 2q, 2q, 2f, 2f, 3c-f, 3q, 3q, 3f, 3f, 4c-f, 5q, 5q, 5f, 5f, 6q, 6q, 6f, 6f, 7c-q, 7c-f, 8c-fq, 9f-p, 10f, 10f32, 11-m, AI-Score
ms ms error ms error ms ms error ms error ms ms error ms error ms ms error ms error ms error ms error ms ms ms ms ms ms px

Huawei Mate 30 Pro 5G HiSilicon Kirin 990 38 6.5 7.7 6 7.78 538 20 5.36 18 5.59 961 37 13.9 37 7.33 86 38 4.36 36 3.23 39 3.82 42 3.06 717 1627 1196 234 19 218 2000 76206
Honor 9X Pro HiSilicon Kirin 810 38 25 6.99 10 6.84 966 98 5.36 34 5.59 1162 160 13.9 83 7.33 165 116 4.36 72 3.23 171 3.82 122 3.06 1246 2770 1570 418 42 340 1600 34495
Huawei Nova 5 HiSilicon Kirin 810 39 25 6.99 10 6.84 923 98 5.36 34 5.59 1163 160 13.9 82 7.33 226 115 4.36 72 3.23 170 3.82 122 3.06 1278 2818 1586 423 42 339 1600 34432
Asus ROG Phone II Snapdragon 855 Plus 42 4.9 11.65 16 7.34 354 16 31.88 57 26.43 393 40 16.66 142 21.66 82 24 10.02 66 39.65 45 5.34 183 4.11 585 1583 1215 142 67 115 1000 32727
Asus Zenfone 6 Snapdragon 855 64 8.3 11.44 25 6.88 414 18 31.59 70 23.65 379 47 14.62 169 12.87 88 30 5.8 87 37.92 48 3.61 210 3.07 653 1673 1361 214 83 135 1000 27410
Samsung Galaxy Note10 Snapdragon 855 50 8.2 11.65 25 7.34 402 19 31.87 70 26.43 443 45 16.66 164 21.66 87 29 10.02 84 39.65 47 5.34 215 4.11 587 1636 1332 165 88 133 1000 27151
Oppo Reno Z MediaTek Helio P90 71 4 6.77 8.3 6.72 774 23 5.33 101 4.87 962 38 6 263 5.91 169 22 3.78 75 4.31 147 3.45 309 3.06 1321 3489 2080 2187 66 1236 1000 26738
Sony Xperia 1 Snapdragon 855 90 9.3 11.44 24 6.88 428 20 31.57 74 23.65 407 46 14.62 177 12.87 87 29 5.8 86 37.92 48 3.61 212 3.07 594 1669 1374 182 88 143 1000 26672
LG G8S ThinQ Snapdragon 855 91 8.7 11.44 24 6.88 445 19 31.57 73 23.65 441 45 14.62 175 12.87 88 28 5.8 86 37.92 47 3.61 211 3.07 671 1789 1488 221 86 143 1000 26493
Xiaomi Mi 9T Pro Snapdragon 855 85 7.5 11.65 21 7.34 474 18 31.8 68 26.43 438 44 16.66 165 21.66 87 28 10.02 83 39.65 47 5.34 208 4.11 583 1618 1399 272 89 158 1000 26257
Oppo Reno 10x zoom Snapdragon 855 88 9 11.44 23 6.88 563 19 31.61 70 23.65 576 44 14.62 166 12.87 99 29 5.8 83 37.92 48 3.61 232 3.07 691 1717 1550 189 81 146 1000 26144
Xiaomi Redmi K20 Pro Snapdragon 855 94 7.5 11.65 22 7.34 526 18 31.84 67 26.43 487 44 16.66 164 21.66 98 28 10.02 82 39.65 47 5.34 204 4.11 759 1681 1713 187 87 138 1000 25867
OnePlus 7 Snapdragon 855 91 8.4 11.65 22 7.34 429 18 31.86 70 26.43 443 44 16.66 166 21.66 87 29 10.02 84 39.65 47 5.34 210 4.11 920 1920 1362 215 84 138 1000 25804
OnePlus 7 Pro Snapdragon 855 91 8.8 11.65 23 7.34 426 19 31.88 72 26.43 415 44 16.66 172 21.66 88 28 10.02 85 39.65 47 5.34 212 4.11 771 1889 1374 202 85 145 1000 25720
Samsung Galaxy Note10 Exynos 9825 Octa 32 19 6.99 17 7.02 458 63 11.11 65 27.14 784 128 9.42 151 15.9 278 75 7.97 124 9.79 199 5.47 158 4.1 820 1775 1240 203 67 200 2000 25470
Lenovo Z6 Pro Snapdragon 855 94 9.4 11.44 25 6.88 451 19 31.46 73 23.65 447 45 14.62 182 12.87 87 30 5.8 88 37.92 47 3.61 214 3.07 878 1887 1384 243 89 175 1000 25268
Samsung Galaxy S10+ Snapdragon 855 51 8.5 11.44 25 6.88 450 19 31.62 69 23.65 445 44 14.62 164 12.87 87 33 5.8 84 37.92 451 3.58 213 3.07 618 1652 1392 171 84 134 1000 25087
Samsung Galaxy S10 Snapdragon 855 52 8.9 11.44 26 6.88 458 20 31.61 69 23.65 446 45 14.62 167 12.87 87 33 5.8 85 37.92 452 3.58 216 3.07 641 1687 1396 177 88 134 1000 24646
Samsung Galaxy S10e Snapdragon 855 51 8.8 11.44 27 6.88 451 20 31.47 70 23.65 446 45 14.62 166 12.87 87 33 5.8 84 37.92 451 3.58 214 3.07 647 1685 1396 199 87 135 1000 24518
Xiaomi Mi 9 Explorer Snapdragon 855 80 8.1 11.65 21 7.34 473 19 31.89 60 26.43 513 45 16.66 156 21.66 99 32 10.02 75 39.65 450 5.33 187 4.11 781 1967 1673 208 79 138 1000 24241
Huawei P30 Pro HiSilicon Kirin 980 51 79 6.73 26 6.61 523 297 5.19 59 6.24 494 707 628 118 17.52 82 395 3.57 102 3.14 1114 3.45 164 2.97 814 1771 1330 2430 77 1109 2000 23874
LG G8 ThinQ Snapdragon 855 96 9.5 11.44 24 6.88 414 19 31.5 73 23.65 384 47 14.62 186 12.87 89 33 5.8 87 37.92 454 3.58 215 3.07 591 1642 1389 210 89 156 1000 23499
Xiaomi Mi 9 Snapdragon 855 92 8.8 11.65 23 7.34 439 19 31.85 70 26.43 431 45 16.66 166 21.66 90 34 10.02 86 39.65 453 5.33 211 4.11 587 1643 1402 231 89 142 1000 23199
Huawei Mate 20 Pro HiSilicon Kirin 980 52 90 6.73 21 6.6 553 299 5.19 55 8.77 519 743 628 114 29.45 85 380 3.57 83 3.14 1084 3.45 12 484 802 1795 1327 2380 56 1150 2000 21125
Huawei Mate 20 HiSilicon Kirin 980 52 88 6.73 21 6.6 540 307 5.19 53 8.77 491 744 628 114 29.45 86 378 3.57 90 3.14 1085 3.45 12 484 800 1798 1331 2311 58 1178 2000 20973
Huawei Mate 20 X HiSilicon Kirin 980 52 90 6.73 21 6.6 554 295 5.19 53 8.77 505 734 628 114 29.45 83 381 3.57 88 3.14 1086 3.45 13 484 798 1799 1330 1999 56 1173 2000 20959
Honor View 20 HiSilicon Kirin 980 52 85 6.73 22 6.6 518 308 5.19 53 8.77 505 720 628 113 29.45 90 397 3.57 86 3.14 1102 3.45 14 484 800 1798 1343 2297 57 1177 2000 20674
Samsung Galaxy S9+ Snapdragon 845 108 11 11.44 25 6.8 524 44 19.37 81 24.95 452 91 14.62 202 12.07 165 70 5.8 98 37.92 610 3.58 262 3.07 918 2495 1759 213 93 169 1000 18885
vivo NEX Dual Display Snapdragon 845 122 11 11.44 28 6.8 534 45 19.37 80 24.95 453 92 14.62 203 12.07 161 70 5.8 96 37.92 621 3.58 261 3.07 772 2297 1751 232 93 167 1000 18710
Samsung Galaxy S9 Snapdragon 845 101 11 11.44 24 6.8 573 46 19.37 80 24.95 535 92 14.62 207 12.07 165 71 5.8 100 37.92 611 3.58 264 3.07 927 2452 1782 217 95 169 1000 18591
Samsung Galaxy Note9 Snapdragon 845 109 11 11.44 27 6.8 538 45 19.37 81 24.95 493 91 14.62 204 12.07 165 71 5.8 100 37.92 610 3.58 265 3.07 973 2566 1759 209 93 168 1000 18509
LG G7 ThinQ Snapdragon 845 124 11 11.44 28 6.8 533 44 19.37 81 24.95 474 90 14.62 203 12.07 168 70 5.8 96 37.92 609 3.58 262 3.07 988 2812 1865 232 94 168 1000 18306
Asus Zenfone 5z Snapdragon 845 65 8.5 11.65 16 6.62 523 45 17.97 147 11.13 465 88 16.66 330 15.32 159 77 10.02 236 9.76 742 5.33 657 4.16 822 2393 1715 208 186 186 1000 16450
OnePlus 6 Snapdragon 845 118 11 11.65 28 6.62 537 70 17.85 159 11.13 457 90 16.66 348 15.32 166 96 10.02 312 9.76 692 5.33 692 4.16 819 2341 1735 252 220 213 1000 14113
OnePlus 6T Snapdragon 845 119 12 11.65 28 6.62 538 71 17.85 160 11.13 457 90 16.66 348 15.32 167 97 10.02 314 9.76 693 5.33 693 4.16 817 2322 1717 258 220 214 1000 14054
Xiaomi Mi 9T Snapdragon 730 81 11 11.44 29 6.88 814 44 19.37 160 23.65 1069 89 14.62 428 12.87 123 66 5.8 198 37.92 110 3.61 619 3.07 1396 3074 1658 445 187 378 1000 13977
Xiaomi Redmi K20 Snapdragon 730 74 11 11.44 28 6.88 876 44 19.37 160 23.65 1099 88 14.62 424 12.87 127 66 5.8 195 37.92 110 3.61 618 3.07 1439 3188 1722 435 184 391 1000 13947
Samsung Galaxy A80 Snapdragon 730 90 13 11.44 31 6.88 846 47 19.37 150 23.65 1108 90 14.62 391 12.87 126 69 5.8 185 37.92 111 3.61 553 3.07 1453 3093 1645 406 175 347 1000 13940
Lenovo Z6 Snapdragon 730 90 11 11.44 29 6.88 808 45 19.37 163 23.65 1057 91 14.62 426 12.87 127 66 5.8 199 37.92 111 3.61 617 3.07 1809 3651 1643 427 181 378 1000 13571
Xiaomi Red. Note 8 Pro MediaTek G90T 41 15 6.77 37 6.92 607 64 5.31 223 20.13 947 139 5.91 584 10.55 92 107 3.78 459 4.35 308 3.45 977 3.08 1276 2796 1672 482 665 1057 1400 12574
Meizu 16Xs Snapdragon 675 83 11 11.44 40 6.88 852 34 31.54 314 25.83 1130 74 14.62 898 12.87 125 54 5.8 526 38.02 102 3.61 1253 3.07 1514 3219 1788 844 351 729 1000 11394
Samsung Galaxy S10+ Exynos 9820 Octa 36 28 6.73 41 6.6 490 96 5.19 186 5.31 501 197 6.4 431 6.27 284 410 3.57 897 3.22 445 3.45 831 3.11 799 1856 1283 1063 838 841 500 10315
Samsung Galaxy S10e Exynos 9820 Octa 35 26 6.73 38 6.6 486 97 5.19 185 5.31 479 211 6.4 471 6.27 288 403 3.57 876 3.22 446 3.45 861 3.11 818 1891 1305 1059 831 834 500 10296
Samsung Galaxy A70 Snapdragon 675 88 13 11.44 43 6.88 836 41 31.52 342 25.83 1137 90 14.62 967 12.87 130 67 5.8 649 38.02 134 3.61 1368 3.07 1506 3180 1783 878 376 779 1000 10246
Samsung Galaxy S10 Exynos 9820 Octa 35 27 6.73 38 6.6 484 96 5.19 187 5.31 494 209 6.4 462 6.27 294 401 3.57 875 3.22 447 3.45 849 3.11 822 1902 1387 1081 833 843 500 10221
Huawei Mate 10 Pro HiSilicon Kirin 970 93 157 6.73 43 172 732 371 5.19 69 58.21 587 762 628 1457 6.27 174 506 3.57 138 3.2 1509 3.45 231 2.98 992 3037 2494 2766 79 1181 600 9064
Huawei P20 Pro HiSilicon Kirin 970 93 133 6.73 44 172 730 382 5.19 69 58.21 585 757 628 1403 6.27 174 512 3.57 147 3.2 1505 3.45 238 2.98 965 2987 2496 3069 83 1130 600 9005
Honor Play HiSilicon Kirin 970 93 148 6.73 43 172 731 383 5.19 68 58.21 595 802 628 1636 6.27 175 536 3.57 138 3.2 1534 3.45 230 2.98 1068 3128 2495 3083 78 1239 600 8919
Huawei Honor 10 HiSilicon Kirin 970 94 142 6.73 43 172 736 417 5.19 67 58.21 601 775 628 1603 6.27 175 536 3.57 130 3.2 1529 3.45 227 2.98 1120 3218 2494 2904 80 1258 600 8906
Huawei P20 HiSilicon Kirin 970 94 135 6.73 43 172 728 360 5.19 68 58.21 593 779 628 1409 6.27 173 550 3.57 151 3.2 1523 3.45 246 2.98 983 2978 2496 3276 92 1160 600 8892
Huawei Honor View 10 HiSilicon Kirin 970 94 127 6.73 43 172 730 402 5.19 72 58.21 587 825 628 1799 6.27 175 499 3.57 132 3.2 1498 3.45 224 2.98 1081 3186 2493 2362 93 1246 600 8732
Xiaomi Mi A3 Snapdragon 665 138 13 11.44 50 6.88 894 52 31.53 483 25.83 708 118 14.62 1292 12.87 212 94 5.8 678 38.02 192 3.61 2174 3.07 1165 3630 3095 1292 553 1149 1000 8187
Google Pixel 3 XL Snapdragon 845 84 10 11.44 159 6.6 542 70 19.37 731 5.31 422 92 14.62 1384 6.27 185 94 5.8 1514 3.22 692 3.58 3479 3.11 828 2897 2084 3173 1223 1203 400 7999
Google Pixel 3 Snapdragon 845 87 11 11.44 139 6.6 535 69 19.37 695 5.31 421 93 14.62 1373 6.27 186 94 5.8 1541 3.22 692 3.58 3524 3.11 793 2753 2180 3322 1246 1220 400 7977
Samsung Galaxy Note9 Exynos 9810 Octa 99 45 6.73 72 6.6 604 166 5.19 209 5.31 688 360 6.4 488 6.27 220 539 3.57 1574 3.22 852 3.45 843 3.11 1083 1753 1476 1490 787 779 500 7937
Xiaomi Mi CC9e Snapdragon 665 137 14 11.65 49 7.34 902 53 31.81 482 27.45 709 119 16.66 1272 21.66 213 94 10.02 674 39.74 192 5.34 2169 4.11 1183 3643 3101 1289 550 1135 1000 7935
Xiaomi Mi 8 Snapdragon 845 113 11 11.65 125 6.62 566 68 17.85 725 11.13 493 90 16.66 1428 15.32 172 94 10.02 1532 9.76 690 5.33 3269 4.16 976 2814 2024 2944 1323 1220 500 7695
Xiaomi Pocophone F1 Snapdragon 845 122 11 11.65 119 6.62 566 67 17.85 727 11.13 502 90 16.66 1416 15.32 175 92 10.02 1523 9.76 687 5.33 3220 4.16 1077 2934 2021 3037 1282 1216 500 7557
vivo V15 MediaTek Helio P70 106 26 6.77 66 6.99 805 89 5.31 374 19.98 667 181 5.91 932 9.81 191 163 3.78 1096 4.42 474 3.45 865 3.09 1158 3547 2782 759 764 1202 500 7512
Xiaomi Mi Mix 3 Snapdragon 845 113 12 11.65 118 6.62 577 72 17.85 685 11.13 526 90 16.66 1354 15.32 185 96 10.02 1613 9.76 691 5.33 3190 4.16 982 2865 2326 3104 1346 1174 500 7402
Xiaomi Mi Mix 2S Snapdragon 845 118 11 11.65 137 6.62 590 67 17.85 810 11.13 515 89 16.66 1587 15.32 181 92 10.02 1570 9.76 686 5.33 3335 4.16 1060 2913 2238 2964 1399 1319 500 7365
Lenovo Z6 Youth Snapdragon 710 132 11 11.44 155 6.6 1083 48 19.37 924 5.31 1300 89 14.62 1849 6.27 218 66 5.8 1994 3.22 110 3.61 4632 3.11 1895 4666 2638 3499 1696 1604 500 7331
Meizu Note 9 Snapdragon 675 93 11 6.87 134 6.6 857 62 5.42 769 5.31 1123 147 7.09 1741 6.27 133 90 4.92 1834 3.22 830 3.58 4742 3.11 1521 3248 1798 3449 1486 1441 500 7075
Samsung Galaxy S9+ Exynos 9810 Octa 119 46 6.73 75 6.6 1080 198 5.19 241 5.31 722 395 6.4 531 6.27 253 593 3.57 1636 3.22 885 3.45 871 3.11 1138 2233 1860 1515 792 791 500 6914
Samsung Galaxy S9 Exynos 9810 Octa 121 47 6.73 74 6.6 926 179 5.19 217 5.31 741 376 6.4 504 6.27 262 600 3.57 1646 3.22 898 3.45 885 3.11 1160 2202 1871 1530 794 802 400 6825
Xiaomi Red. Note 7 Pro Snapdragon 675 79 11 7.12 405 6.62 893 62 9.75 908 11.13 1167 146 9.66 1693 15.32 130 89 7.97 1871 9.76 833 5.34 4731 4.16 1588 3448 1858 3159 1487 1450 500 6702
vivo V15 Pro Snapdragon 675 72 12 6.87 151 6.6 934 62 5.42 1239 5.31 1644 154 7.09 2928 6.27 128 89 4.92 2227 3.22 834 3.58 6485 3.11 1613 3599 1762 3107 1925 1904 500 6687
vivo S1 MediaTek Helio P65 79 43 6.77 54 6.92 934 254 6.2 347 20.13 1169 529 5.91 921 10.55 190 654 3.78 748 4.35 1167 3.45 1672 3.08 1466 3969 2309 960 954 1439 1000 6643
Xiaomi Mi 9 SE Snapdragon 712 132 12 11.44 193 6.6 990 47 19.37 838 5.31 1266 95 14.62 1604 6.27 205 69 5.8 1838 3.22 608 3.58 3922 3.11 1609 3905 2298 3383 1446 1451 500 6556
vivo X27 Snapdragon 710 131 12 11.44 154 6.6 1011 46 19.37 838 5.31 1269 97 14.62 1828 6.27 205 68 5.8 2018 3.22 607 3.58 4416 3.11 1633 4011 2344 3247 1594 1412 500 6505
vivo X27 Pro Snapdragon 710 133 12 11.44 143 6.6 1010 47 19.37 876 5.31 1289 96 14.62 1880 6.27 205 71 5.8 1960 3.22 607 3.58 4471 3.11 1701 4021 2354 3869 1503 1491 500 6474
Google Pixel 3a XL Snapdragon 670 87 13 11.44 31 6.88 854 47 19.37 149 23.65 1105 92 14.62 390 12.87 126 69 5.8 184 37.92 111 3.61 554 3.07 1475 4125 1665 407 173 341 400 6444
Xiaomi Mi 8 SE Snapdragon 710 132 12 11.44 179 6.6 1037 46 19.37 866 5.31 1283 96 14.62 2088 6.27 210 70 5.8 1914 3.22 608 3.58 4180 3.11 1706 4120 2504 4481 1683 1590 500 6355
Oppo Reno Snapdragon 710 133 12 11.44 211 6.6 1103 48 19.37 838 5.31 1302 95 14.62 1598 6.27 239 70 5.8 1844 3.22 603 3.58 3812 3.11 1589 4052 2926 3486 1493 1380 500 6354
Realme 3 MediaTek Helio P70 111 28 6.77 69 6.99 864 92 5.31 504 19.98 731 185 5.91 1172 9.81 211 165 3.78 1466 4.42 484 3.45 1249 3.09 1246 3649 2809 1261 1405 1832 400 6330
Oppo F11 Pro MediaTek Helio P70 109 32 6.77 66 6.99 840 143 5.31 479 19.98 715 320 5.91 966 9.81 191 314 3.78 1778 4.31 778 3.45 1080 3.09 1118 3368 2791 1945 1303 1257 500 6301
Realme 3 Pro Snapdragon 710 134 12 11.44 215 6.6 1099 47 19.37 897 5.31 1294 94 14.62 1706 6.27 242 68 5.8 1926 3.22 608 3.58 4015 3.11 1660 4036 2908 3567 1623 1401 500 6269
Oppo K3 Snapdragon 710 131 13 11.44 215 6.6 1099 47 19.37 891 5.31 1300 94 14.62 1649 6.27 244 69 5.8 1971 3.22 602 3.58 3966 3.11 1642 4044 2920 3392 1567 1405 500 6241
Nokia X7 Snapdragon 710 132 11 11.65 148 6.62 1020 49 17.97 904 11.13 1233 95 16.66 1914 15.32 205 80 10.02 2030 9.76 737 5.33 4679 4.16 1484 3942 2358 3135 1644 1570 500 6119
Lenovo Z5s Snapdragon 710 132 10 11.44 143 6.6 1006 47 19.33 1005 5.31 1351 95 14.62 1943 6.27 211 80 5.8 2148 3.22 737 3.58 5570 3.11 2225 4680 2314 3422 2127 1749 500 6060
Oppo F7 Youth MediaTek Helio P60 113 31 6.77 66 6.99 855 143 5.31 461 19.98 738 319 5.91 1036 9.81 201 314 3.78 1806 4.31 785 3.45 2927 3.1 1153 3543 2957 2472 1290 1322 500 5921
Oppo F11 MediaTek Helio P70 108 32 6.77 69 6.99 836 144 5.31 489 19.98 728 321 5.91 1051 9.81 190 309 3.78 1784 4.31 786 3.45 1172 3.09 1101 3372 2812 7102 1293 1340 300 5763
Motorola One Action Exynos 9609 131 49 6.73 64 6.6 862 388 5.19 445 5.31 674 942 6.4 1233 6.27 197 1024 3.57 1660 3.22 2330 3.45 1490 3.11 1136 3930 2841 1738 732 762 500 5730
Motorola One Vision Exynos 9609 129 50 6.73 61 6.6 870 383 5.19 444 5.31 672 937 6.4 1230 6.27 201 1027 3.57 1661 3.22 2325 3.45 1448 3.11 1136 4269 2912 1828 731 735 400 5669
Sony Xperia XZ3 Snapdragon 845 121 94 6.99 159 6.62 538 398 10.57 712 11.13 474 920 629 1462 15.32 167 416 7.97 1557 9.76 1605 5.47 3736 4.16 1339 3097 1850 3493 1274 1095 400 5503
Samsung Galaxy A50 Exynos 9610 157 53 6.73 78 6.6 1116 382 5.19 460 5.31 665 931 6.4 1238 6.27 187 1023 3.57 1661 3.22 2323 3.45 1456 3.11 1216 4091 2837 1869 769 713 500 5399
Nokia 9 PureView Snapdragon 845 123 381 6.99 452 6.62 543 1233 10.57 5987 11.13 501 2125 629 7087 15.32 166 538 7.97 1888 9.76 1771 5.47 4975 4.16 891 2462 1839 4838 1735 1703 500 5223
Samsung Galaxy Note8 Snapdragon 835 136 101 6.73 154 6.6 804 378 5.19 792 5.31 636 770 628 1534 6.27 187 515 3.57 1665 3.22 1363 3.45 3732 3.11 1037 3409 2922 2851 1387 1377 500 5059
HTC U11 Snapdragon 835 138 102 6.73 154 6.6 767 373 5.19 768 5.31 628 790 628 1500 6.27 186 583 3.57 1673 3.22 1656 3.45 3968 3.11 1130 3479 2904 3194 1329 1289 500 5039
Essential Phone Snapdragon 835 140 102 6.73 149 6.6 820 358 5.19 749 5.31 638 738 628 1495 6.27 184 551 3.57 1782 3.22 1413 3.45 3727 3.11 1032 3326 2827 2871 1362 1295 500 5009
Google Pixel 2 Snapdragon 835 130 193 6.73 204 6.6 746 467 5.19 891 5.31 651 835 628 1473 6.27 215 632 3.57 1700 3.22 1659 3.45 3665 3.11 1117 3470 2570 3157 1290 1156 400 4859
Google Pixel 2 XL Snapdragon 835 130 202 6.73 208 6.6 742 426 5.19 875 5.31 653 848 628 1499 6.27 216 639 3.57 1704 3.22 1696 3.45 3743 3.11 1194 3585 2567 3147 1289 1173 500 4851
Google Pixel XL Snapdragon 821 109 105 6.73 125 6.6 761 506 5.19 956 5.31 981 1042 628 1656 6.27 157 793 3.57 1925 3.22 2135 3.45 4279 3.11 1427 3294 2215 3401 2539 3915 400 4627
Xiaomi Mi 6 Snapdragon 835 133 95 6.99 148 6.62 825 351 10.57 767 11.12 680 793 629 1485 15.32 205 523 7.97 1746 9.76 1506 5.47 4456 4.16 1074 3661 3106 3114 1683 1936 500 4621
Samsung Galaxy Note8 Exynos 8895 Octa 148 84 6.73 173 6.6 727 467 5.19 1056 5.31 655 1028 628 1952 6.27 714 489 3.57 1839 3.22 1386 3.45 4575 3.11 992 2557 2129 2996 1572 1522 500 4555
Samsung Galaxy S8+ Exynos 8895 Octa 168 69 6.73 156 6.6 719 408 5.19 866 5.31 666 1055 628 1873 6.27 705 470 3.57 1781 3.22 1378 3.45 4457 3.11 973 2497 2025 3020 1477 1432 400 4539
Google Pixel Snapdragon 821 110 120 6.73 163 6.6 790 552 5.19 912 5.31 1228 1259 628 2181 6.27 166 874 3.57 2213 3.22 2417 3.45 4663 3.11 1663 3865 2146 2148 1593 1464 500 4538
Samsung Galaxy S8 Exynos 8895 Octa 153 74 6.73 165 6.6 704 433 5.19 970 5.31 649 1084 628 2078 6.27 703 477 3.57 1897 3.22 1394 3.45 4827 3.11 987 2560 2108 3275 1628 1617 500 4480
OnePlus 5T Snapdragon 835 134 421 6.73 434 6.6 974 1280 5.19 3108 5.31 611 2458 628 5814 6.27 183 655 3.57 2017 3.22 1722 3.45 6028 3.11 1020 3338 2647 5251 2182 1825 500 4280
OnePlus 3T Snapdragon 821 117 76 6.99 97 6.62 902 509 10.57 922 11.13 1188 1285 629 2139 15.32 187 1092 7.97 2177 9.76 2731 5.47 5336 4.16 1887 4157 2785 2706 1820 1755 500 4122
Sony Xperia XZ1 Snapdragon 835 137 397 6.99 621 6.62 772 1338 10.57 7138 11.13 649 2610 629 8164 15.32 190 683 7.97 2002 9.76 1763 5.47 5862 4.16 1067 3490 2810 4476 2203 1845 400 4020
Sony Xperia XZ Premium Snapdragon 835 127 480 6.99 892 6.62 793 1475 10.57 7865 11.13 663 2458 629 9751 15.32 189 717 7.97 1969 9.76 1750 5.47 5818 4.16 1355 3742 2786 3836 1644 1555 500 4013
Motorola One Power Snapdragon 636 190 100 6.73 176 6.6 983 411 5.19 941 5.31 798 893 628 1910 6.27 231 721 3.57 2134 3.22 2088 3.45 4798 3.11 1266 4030 3394 3140 1599 1614 400 3962
Motorola G7 Plus Snapdragon 636 190 110 6.73 183 6.6 977 423 5.19 943 5.31 827 920 628 1949 6.27 232 723 3.57 2064 3.22 2152 3.45 5208 3.11 1314 4141 3465 3359 1670 1616 400 3942
Huawei Honor 8X Hisilicon Kirin 710 163 128 6.73 202 6.6 1711 475 5.19 962 5.31 766 1008 628 1998 6.27 224 690 3.57 2008 3.22 2148 3.45 4730 3.11 1358 4338 3136 3422 1615 1417 400 3858
Huawei P smart Hisilicon Kirin 710 164 119 6.73 185 6.6 1735 467 5.19 946 5.31 775 1016 628 2163 6.27 226 713 3.57 2137 3.22 2094 3.45 4646 3.11 1305 4267 3190 3157 1615 1367 400 3813
Honor 10 Lite Hisilicon Kirin 710 164 126 6.73 190 6.6 1701 456 5.19 946 5.31 771 1020 628 1970 6.27 229 673 3.57 1980 3.22 2097 3.45 4682 3.11 1310 4269 3239 3189 1631 1527 400 3811
Xiaomi Redmi Note 7 Snapdragon 660 190 252 6.99 393 6.62 904 770 10.57 2481 11.13 822 1485 629 4084 15.32 213 658 7.97 2038 9.76 1794 5.47 5170 4.16 1715 3700 3116 4795 1980 1783 400 3769
Xiaomi Mi 8 Lite Snapdragon 660 187 445 6.99 884 6.62 863 1291 10.57 6247 11.13 700 2324 629 8084 15.32 207 722 7.97 2208 9.76 1981 5.47 6074 4.16 1052 3377 3088 4898 2135 2059 500 3767
Nokia 7 plus Snapdragon 660 188 338 6.99 635 6.62 865 1339 10.57 5035 11.13 731 2478 629 6891 15.32 208 765 7.97 2328 9.76 2227 5.47 6119 4.16 1075 3411 3187 5481 1982 2072 500 3746
Samsung Galaxy A9 Snapdragon 660 170 466 6.73 699 6.6 891 1326 5.19 6055 5.31 790 2516 628 8895 6.27 244 880 3.57 2465 3.22 2251 3.45 6017 3.11 1052 3354 3108 5539 2121 2000 500 3695
Asus Zenfone 5 Snapdragon 636 133 417 6.99 802 6.62 860 1514 10.57 6953 11.13 720 2376 629 8755 15.32 199 801 7.97 2214 9.76 2207 5.47 6087 4.16 1350 4239 2836 5374 2254 2133 500 3686
Nokia X71 Snapdragon 660 188 474 6.99 773 6.62 939 1308 10.57 6643 11.13 779 2407 629 9100 15.32 220 843 7.97 2298 9.76 2351 5.47 6254 4.16 1180 3732 3340 5894 2196 1998 500 3537
Xiaomi Mi A2 Snapdragon 660 187 326 6.99 440 6.62 1214 1065 10.57 1068 11.13 1217 1933 629 2359 15.32 208 749 7.97 2187 9.76 2136 5.47 6248 4.16 2107 4076 3061 3919 1838 1882 500 3399
Asus Zen. Max Pro M2 Snapdragon 660 188 494 6.73 794 6.6 960 1381 5.19 5218 5.31 820 2364 628 8245 6.27 227 905 3.57 2574 3.22 2217 3.45 6892 3.11 1351 4349 3544 5582 2440 2181 500 3377
Samsung Galaxy A7 Exynos 7885 Octa 168 123 6.73 231 6.6 1702 535 5.19 1253 5.31 1494 1176 628 2407 6.27 227 788 3.57 2000 3.22 1966 3.45 5332 3.11 1919 4938 3470 4150 1803 1740 500 3282
Sony Xperia 10 Plus Snapdragon 636 187 447 6.99 805 6.62 984 1439 10.57 6274 11.13 821 2496 629 8640 15.32 234 944 7.97 2630 9.76 2447 5.47 7305 4.16 1251 3977 3593 5864 2721 2624 400 3189
Samsung Galaxy A8 Exynos 7885 Octa 167 117 6.73 214 6.6 1716 519 5.19 1288 5.31 1455 1218 628 3637 6.27 227 715 3.57 2294 3.22 2031 3.45 5920 3.11 1916 5073 3439 3395 1752 1763 400 3178
Samsung Galaxy A40 Exynos 7904 167 106 6.73 183 6.6 1727 559 5.19 1152 5.31 1480 1206 628 2867 6.27 247 800 3.57 2112 3.22 2077 3.45 5636 3.11 2187 5756 3969 4022 2127 1943 500 3127
Samsung Galaxy A30 Exynos 7904 171 122 6.73 219 6.6 1771 497 5.19 1175 5.31 1494 1158 628 2637 6.27 258 837 3.57 2269 3.22 2071 3.45 5544 3.11 2219 5113 4161 4078 1925 1847 500 3043
Samsung Galaxy M20 Exynos 7904 170 97 6.99 190 6.62 1685 474 10.57 1165 11.13 1475 1077 629 2150 15.32 249 836 7.97 2164 9.76 2056 5.47 5497 4.16 2238 5917 4302 4334 1836 1874 400 2957
Samsung Galaxy A20 Exynos 7884 161 110 6.73 199 6.6 1787 514 5.19 1203 5.31 1665 1174 628 2335 6.27 267 842 3.57 2225 3.22 2244 3.45 5688 3.11 2372 6194 4396 4059 2040 2199 400 2892
Huawei P20 lite HiSilicon Kirin 659 209 90 6.73 163 6.6 1706 575 5.19 1138 5.31 1045 1073 628 2150 6.27 497 709 3.57 2645 3.22 1875 3.45 5110 3.11 1564 5705 5374 4237 2583 2688 400 2871
Xiaomi Mi A1 Snapdragon 625 230 84 6.99 168 6.62 1696 345 10.57 918 11.13 1225 807 629 1837 15.32 594 709 7.97 2588 9.76 1648 5.47 4828 4.16 1863 6160 5993 2763 1851 1808 500 2827
Xiaomi Mi A2 Lite Snapdragon 625 231 74 6.99 140 6.62 1700 346 10.57 936 11.13 1204 809 629 1883 15.32 606 761 7.97 2613 9.76 1723 5.47 5047 4.16 1842 6164 6026 2813 1878 1941 500 2795
Motorola Moto G6 Plus Snapdragon 630 234 152 6.73 237 6.6 1776 446 5.19 1052 5.31 1146 926 628 2098 6.27 701 828 3.57 2309 3.22 2205 3.45 5374 3.11 1752 5871 5553 3732 1722 1875 500 2790
Motorola P30 Play Snapdragon 625 232 98 6.73 189 6.6 1690 513 5.19 1197 5.31 1240 828 628 1915 6.27 600 724 3.57 2541 3.22 1785 3.45 4662 3.11 1871 6243 6019 2791 1690 1803 400 2774
Xiaomi Redmi Note 4 Snapdragon 625 222 73 6.73 146 6.6 1647 357 5.19 1209 5.31 1245 881 628 2044 6.27 592 795 3.57 2846 3.22 1806 3.45 5228 3.11 1873 6303 6033 3106 2501 2454 400 2755
Motorola Moto X4 Snapdragon 630 234 157 6.73 230 6.6 1799 437 5.19 1038 5.31 1138 951 628 2119 6.27 706 788 3.57 2299 3.22 2208 3.45 5193 3.11 1714 5836 5547 3330 1889 1834 400 2737
Sony Xperia XA2 Snapdragon 630 236 185 6.99 246 6.62 1846 506 10.57 1186 11.13 1242 1038 629 2079 15.32 715 924 7.97 2152 9.76 2154 5.47 5667 4.16 1888 6153 5605 4181 1961 1894 400 2519
HTC Desire 19+ MediaTek Helio P35 450 161 6.77 248 6.6 2049 566 5.31 1146 5.2 1295 1026 628 2399 5.56 828 1052 3.78 2947 4.31 2152 3.45 6344 3.11 1662 5840 6254 3387 2244 2081 500 2437
Nokia 5 Snapdragon 430 326 626 6.73 846 6.6 2753 1933 5.19 3469 5.31 1695 3660 628 5626 6.27 759 1690 3.57 4447 3.22 4136 3.45 10112 3.11 2568 8519 9214 7110 3703 3549 400 1611

Table 4: Benchmark results for several Android devices, a full list is available at: http://ai-benchmark.com/ranking
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One last thing that should be mentioned here is the per-
formance of the default Arm NN OpenCL drivers. Unfortu-
nately, they cannot unleash the full potential of Mali GPUs,
which results in atypically high inference times compared to
GPUs with a similar GFLOPS performance (e.g., the Exynos
9820, 9810 or 8895 with Arm NN OpenCL). By switching
to their custom vendor implementation, one can achieve up
to 10 times speed-up for many deep learning architectures:
e.g., the overall performance of the Exynos 9820 with Mali-
G76 MP12 rose from 6% to 26% when using Samsung’s own
OpenCL drivers. The same also applies to Snapdragon SoCs
which NNAPI drivers are based on Qualcomm’s modified
OpenCL implementation.

5.2. Quantized performance
This year, the performance ranking for quantized inference
(table 3) is led by the Hexagon-powered Qualcomm Snap-
dragon 855 Plus chipset accompanied by the Unisoc Tiger
T710 with a stand-alone NPU. These two SoCs are show-
ing nearly identical results in all int-8 tests, and are slightly
(15-20%) faster than the Kirin 990, Helio P90 and the stan-
dard Snapdragon 855. As claimed by Qualcomm, the per-
formance of the Hexagon 690 DSP has approximately dou-
bled over the previous-generation Hexagon 685. The lat-
ter, together with its derivatives (Hexagon 686 and 688),
is currently present in Qualcomm’s mid-range chipsets.
One should note that there exist multiple revisions of the
Hexagon 685, as well as several versions of its drivers.
Hence, the performance of the end devices and SoCs with
this DSP might vary quite significantly (e.g., , Snapdragon
675 vs. Snapdragon 845).

As mobile GPUs are primarily designed for floating-point
computations, accelerating quantized AI models with them
is not very efficient in many cases. The best results were
achieved by the Exynos 9825 with Mali-G76 MP12 graphics
and custom Samsung OpenCL drivers. It showed an overall
performance similar to that of the Hexagon 685 DSP (in the
Snapdragon 710), though the inference results of both chips
are heavily dependent on the running model. Exynos mid-
range SoCs with Mali-G72 MP3 GPU were not able to out-
perform the CPU of the Snapdragon 835 chipset, similar to
the Exynos 8890 with Mali-T880 MP12 graphics. An even
bigger difference will be observed for the CPUs from the
more recent mobile SoCs. As a result, using GPUs for quan-
tized inference on the mid-range and low-end devices might
be reasonable only to achieve a higher power efficiency.

6. Discussion

The tremendous progress in mobile AI hardware since last
year [31] is undeniable. When compared to the second gen-
eration of NPUs (e.g., the ones in the Snapdragon 845 and
Kirin 970 SoCs), the speed of floating-point and quantized

inference has increased by more than 7.5 and 3.5 times, re-
spectively, bringing the AI capabilities of smartphones to a
substantially higher level. All flagship SoCs presented dur-
ing the past 12 months show a performance equivalent to or
higher than that of entry-level CUDA-enabled desktop GPUs
and high-end CPUs. The 4th generation of mobile AI sili-
con yields even better results. This means that in the next
two-three years all mid-range and high-end chipsets will
get enough power to run the vast majority of standard deep
learning models developed by the research community and
industry. This, in turn, will result in even more AI projects
targeting mobile devices as the main platform for machine
learning model deployment.

When it comes to the software stack required for running
AI algorithms on smartphones, progress here is evolutionary
rather than revolutionary. There is still only one major mo-
bile deep learning library, TensorFlow Lite, providing a rea-
sonably high functionality and ease of deployment of deep
learning models on smartphones, while also having a large
community of developers. This said, the number of criti-
cal bugs and issues introduced in its new versions prevents
us from recommending it for any commercial projects or
projects dealing with non-standard AI models. The recently
presented TensorFlow Lite delegates can be potentially used
to overcome the existing issues, and besides that allow the
SoC vendors to bring AI acceleration support to devices with
outdated or absent NNAPI drivers. We also strongly recom-
mend researchers working on their own AI engines to design
them as TFLite delegates, as this is the easiest way to make
them available for all TensorFlow developers, as well as to
make a direct comparison against the current TFLite’s CPU
and GPU backends. We hope that more working solutions
and mobile libraries will be released in the next year, mak-
ing the deployment of deep learning models on smartphones
a trivial routine.

As before, we plan to publish regular benchmark re-
ports describing the actual state of AI acceleration on mo-
bile devices, as well as changes in the machine learn-
ing field and the corresponding adjustments made in the
benchmark to reflect them. The latest results obtained
with the AI Benchmark and the description of the actual
tests is updated monthly on the project website: http:
//ai-benchmark.com. Additionally, in case of any
technical problems or some additional questions you can al-
ways contact the first two authors of this paper.

7. Conclusions

In this paper, we discussed the latest advances in the area
of machine and deep learning in the Android ecosystem.
First, we presented an overview of recently released mobile
chipsets that can be potentially used for accelerating the exe-
cution of neural networks on smartphones and other portable
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devices, and provided an overview of the latest changes in
the Android machine learning pipeline. We described the
changes introduced in the current AI Benchmark release and
discussed the results of the floating-point and quantized in-
ference obtained from the chipsets produced by Qualcomm,
HiSilicon, Samsung, MediaTek and Unisoc that are pro-
viding hardware acceleration for AI inference. We com-
pared the obtained numbers to the results of desktop CPUs
and GPUs to understand the relation between these hard-
ware platforms. Finally, we discussed future perspectives
of software and hardware development related to this area
and gave our recommendations regarding the deployment of
deep learning models on smartphones.
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