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Abstract
Convolutional neural networks (CNNs) and transfer

learning have recently been used for 6 degrees of freedom
(6-DoF) camera pose estimation. While they do not reach
the same accuracy as visual SLAM-based approaches and
are restricted to a specific environment, they excel in ro-
bustness and can be applied even to a single image. In
this paper, we study PoseNet [1] and investigate modifica-
tions based on datasets’ characteristics to improve the ac-
curacy of the pose estimates. In particular, we emphasize
the importance of field-of-view over image resolution; we
present a data augmentation scheme to reduce overfitting;
we study the effect of Long-Short-Term-Memory (LSTM)
cells. Lastly, we combine these modifications and improve
PoseNet’s performance for monocular CNN based camera
pose regression.

1. Introduction
The performance of many computer vision applications,

such as autonomous vehicle navigation, augmented reality,
and mobile robotics, heavily depends on good localization
of the system with respect to its environment [2, 3, 4]. The
recent success of CNNs in related tasks such as image clas-
sification and object detection [5, 6, 7] has led researchers
to explore learning based solutions for place recognition [8]
and camera pose estimation [9]. This seems promising
given the ability of CNNs to learn high dimensional repre-
sentations of the input data, automatically selecting the op-
timal set of features to accurately regress the camera pose.

One of the main obstacles for training a neural network
for a supervised task such as camera pose estimation is the
need for abundant labeled data. Fortunately, it has been
demonstrated that transfer learning is effective in reducing
the need for large labeled datasets [10], [11]. In particular,
representations learned by a CNN on a large image classi-
fication dataset can be fine-tuned to solve the camera pose
estimation problem with much smaller datasets.

The authors of PoseNet [9] leverage CNNs and transfer
learning and propose a pure neural network based solution
to 6-DoF camera pose estimation (i.e., 3D translation and

3D rotation) for a specific environment, addressing some
limitations of traditional vSLAM algorithms [12]. How-
ever, the accuracy obtained with this architecture is still sig-
nificantly below what can be obtained with vSLAM meth-
ods, especially if the latter are trained on full sequences. In
this study, we investigate how this gap can be reduced. In
particular, we explore three possible causes, namely i) crop-
ping of the input images, ii) overfitting to training data and
iii) neglecting temporal information. Each time, we pro-
pose remedies to alleviate these shortcomings and evaluate
their effectiveness according to each dataset’s characteris-
tics. In particular, we show the importance of the input im-
age’s field-of-view in comparison to its resolution. Second,
we reduce the extent to which overfitting affects the per-
formance by introducing a specific scheme for Data Aug-
mentation (DA). Third, we demonstrate the benefits of using
Long-Short-Term-Memory cells (LSTMs) over Fully Con-
nected layers (FC). Finally, we incorporate all these tech-
niques to improve PoseNet’s performance for camera relo-
calization.

The remainder of this paper is organized as follows. Sec-
tion 2 describes related work. Next, in section 3 we give
more details on the PoseNet architecture, the loss functions
we use and the datasets. Section 4 contains the main contri-
butions of our work. Section 5 concludes the paper.

2. Related Works
Visual SLAM algorithms rely solely on the images com-

ing from a camera, typically with a limited field of view, and
do not use any other input such as GPS or inertial sensors.
This remains an active area of research in the computer vi-
sion community [13], [14]. Although various solutions for
vSLAM have been proposed for different environments and
applications, many of them share a similar structure and
therefore similar limitations [15], [16], [17], [18]: They
often lose track due to motion blur, high speed rotations,
partial occlusions and presence of dynamic objects in the
scene. This makes them unsuitable for demanding appli-
cations such as localization of Unmanned Aerial Vehicles
(UAVs). Besides, most visual SLAM algorithms rely on
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expensive pipelines that require a database of hand-crafted
features, the camera’s intrinsic parameters, a good initial-
ization of the algorithm, selecting and storing key-frames
and finding feature correspondences among images. In ad-
dition, for monocular images, these approaches suffer from
a phenomenon known as scale drift where the scale of the
objects in the environment cannot be accurately inferred,
resulting in inconsistent camera trajectories [19].

To alleviate these problems an end-to-end trainable ar-
chitecture for camera pose estimation called PoseNet is
proposed [9, 20]. The authors of these works modified
GoogleNet [21] and leveraged transfer learning from Im-
ageNet [22] classification task to train a network for pose
prediction using only monocular images. They further im-
proved its performance in [1] by introducing more sophisti-
cated loss functions for optimization.

[23] extends PoseNet using LSTM cells to better exploit
the spatial information in each image. To this end, the last
layer’s features from GoogleNet are reshaped in 2D and the
rows/columns of the corresponding matrix are fed to LSTM
cells, one at each timestep. Finally, the cell’s output for the
last timestep is used to predict the 6-DoF pose.

LSTMs have also been used in [24] to exploit the tem-
poral information between consecutive frames for a better
localization accuracy. In this case, a bi-directional LSTM is
fed with the features and pose information of the frames be-
fore and after the current frame to predict the current pose.
One limitation of this approach is that using bi-directional
LSTMs requires access to future frames at each timestep,
which is is not possible in real-time online applications.
Furthermore, the performance is evaluated only for regress-
ing the position and not the orientation.

Although PoseNet and its family of algorithms are not
as accurate as vSLAM algorithms mentioned before, they
work on monocular images and are shown to be more ro-
bust to motion blur and changes in the lighting conditions.
Furthermore, unlike traditional vSLAM solutions, they do
no require access to camera parameters, good initialization
and hand-crafted features.

Posenet’s successor architectures improve its perfor-
mance by making its architecture more complex while ne-
glecting the effect of the data on the final performance. In
this paper, we try to improve the performance for PoseNet
family of algorithms by targeting the information that can
still be gained according to datasets’ attributes without im-
posing a more complex CNN architecture. Such modifica-
tions can be applied to the above mentioned works as well
as those proposed in [25, 26, 27] to further improve their
performance.

3. Background
In this section, we provide some background information

on the architecture we used as the baseline for our experi-

Figure 1. The inception module.

ments, largely building on [1]. We modify this baseline in
the next sections to improve the localization accuracy.

3.1. GoogleNet and Posenet

Originally designed for object classification and detec-
tion, GoogleNet [21] is a 22 layer deep neural network
based on a module known as Inception. An illustration of
the inception module can be found in Figure 1. GoogleNet
takes as input an image of 224× 224 pixels and propagates
it through 9 inception modules stacked on top of each other
using Rectified Linear Units (ReLu) as the activation func-
tion. Each layer in such a network learns a further abstrac-
tion of the input data. The highest level abstraction - which
resides on the last layer of the network - along with two in-
termediate abstractions are fed to fully connected and soft-
max layers to predict the objects’ classes.

Posenet replaces these softmax classification layers with
two parallel fully connected layers with 3 and 4 units re-
spectively. These regress to pose (represented by (x, y, z)
coordinates) and orientation (represented as a quaternion).
Furthermore, a 2048 units fully connected layer is added
on top of the last inception module. Figure 2 illustrates
PoseNet’s architecture. The yellow blocks represent the
pretrained modules that PoseNet inherits from GoogleNet.
The green blocks show PoseNet-specific modules that need
to be trained from scratch.

3.2. Loss Function and Optimization

The network described above, outputs a vector x′ and
a quaternion q′ to represent the estimated position and ori-
entation respectively. The parameters of the network are
optimized for each image I using the loss function:

Loss(I) = ||x− x′||2 + β||q − q′||2

where x and q represent the groundtruth position and orien-
tation. Since quaternions are constrained to the unit mani-
fold, the orientation error is typically much smaller than the
position error. Therefore, a constant scale factor β is used
for balancing the loss terms.



Figure 2. The Posenet architecture. Yellow modules are shared with GoogleNet while green modules are specific to Posenet.

The authors of PoseNet replace this constant scale fac-
tor with an adaptive one in [1]. The new loss function is
formulated using homoscedastic uncertainty:

Loss(I) = ||x−x′||2×e(−̂sx)+ŝx+||q−q′||2×e(−̂sq)+ŝq
(1)

where ŝ := log σ̂2 is a free scalar value trained by back
propagation and σ̂2 denotes the homoscedastic uncertainty.
The uncertainty term σ̂q

2 is typically smaller than σ̂x2, re-
sulting in a larger weighting factor for the orientation loss
term and a well-balanced loss function.

For all experiments in this paper we optimize the above-
mentioned adaptive loss function with the Adam optimizer
[28]. The learning rate, β1, β2 and ε for the Adam optimizer
are set to 0.0001, 0.9, 0.999 and 1e-08 respectively.

3.3. Datasets

Following PoseNet and its successor architectures
[1][9][20][23][24], we report our results on the Cambridge
Landmarks [9] and 7-Scenes [29] datasets with median er-
ror values. It is worth mentioning that these two datasets
differ both in their scale and data. Cambridge Landmarks
consist of 1920 × 1080 images captured outdoors using a
phone camera. The precise temporal information is lost
as a result of the frame stream being sampled and many
frames being removed. The labels for this dataset are pro-
duced using Structure from Motion. The 7-Scenes dataset is
recorded indoors using a Kinect RGB-D camera at a lower
640× 480 resolution. All frames are kept and the labels are
produced by a KinectFusion system [30].

The Cambridge Landmarks dataset covers larger areas in
volume with relatively smaller number of frames compared
to the sequences in the 7-Scenes dataset. Therefore, pose
prediction in the Cambridge Landmarks dataset is more
closely related to place recognition while in the 7-Scenes
dataset there is potential to exploit the temporal informa-
tion for continuous localization. In the following sections
we sometimes refer to these datasets as outdoor and indoor
datasets, respectively. Example frames for all sequences of
both datasets are shown in Figure 4.

4. Method and Experiments
4.1. Increased Field-of-View

One drawback to transfer learning and using pretrained
networks is that it imposes strong restrictions in terms of the
network architecture. As an example, changing the input
size is not an option. Consequently, given that GoogleNet
takes 224 × 224 RGB images as its input, PoseNet resizes
the smallest dimension of each image to 256 while keeping
the original aspect ratio and crops a centered 224×224 win-
dow of the resulting image to train the network. In another
training scheme, the network is trained on random crops of
each image. In both of these cases localization accuracy is
affected since the information outside cropping boundaries
are lost.

Instead, we propose to use the entire field of view, by
simply rescaling the input image to 224×224 pixels, even if
that leads to a different aspect ratio. We hypothesize that the
loss of aspect ratio should not affect the performance of the
network much, since the new aspect ratio is consistent for
all images in the dataset. Besides, field-of-view is of more
importance compared to image resolution since the pooling
layers in the network smooth the high frequency details of
a higher-resolution image.

Figure 3 shows an example of the difference in the field-
of-view for the input to PoseNet and our network. The left
column represents two images which their positions are 12
meters away from each other. The middle column shows
the crop selected by PoseNet as the network’s input while
the right column illustrates our proposed alternative. As
can be seen in the figure, PoseNet’s field-of-view (middle
column/the green rectangles in the right column) consists
of dynamic objects and roughly similar distant landmarks
which might not be very helpful for accurate localization.
However, when considering the full field of view, as we sug-
gest, closer and more useful landmarks for pose estimation,
as highlighted by the red rectangles, come into view and can
be exploited by the network.

Results in Table 1 confirm that keeping the whole field of
view in the image performs better than using a higher reso-
lution crop with the original aspect ratio. This modification
is specifically more in favor of the outdoor datasets where



Original image PoseNet Ours

Figure 3. From left to right: Original input images, PoseNet’s input
and our input. PoseNet (middle/green rectangle) can lose impor-
tant information for localization (highlighted in red).

Dataset Centered Crop Whole Field of View Improvement
King’s College 1.24m, 1.84◦ 0.97m, 1.27◦ 21.7%, 30.9%
Old Hospital 3.07m, 5.13◦ 3.10m, 4.94 ◦ -0.9%, 3.7%
Shop Facade 1.23m, 5.74◦ 0.93m, 4.25◦ 24.3%, 25.9%
St Mary’s Church 2.21m, 5.92◦ 1.66m, 4.24◦ 24.8%, 28.3%
Street 21.67m, 32.8◦ 14.88m, 24.35◦ 31.3%, 25.7%
Average 5.88m, 10.28◦ 4.30m, 7.81◦ 20.2%, 24.7%
Chess 0.18m, 5.92◦ 0.16m, 4.84◦ 11.1%, 18.2%
Fire 0.40m, 12.21◦ 0.35m, 12.10◦ 12.5%, 0.9%
Heads 0.24m, 14.20◦ 0.20m, 13.17◦ 16.6%, 7.2 %
Office 0.30m, 7.59◦ 0.25m, 6.39◦ 16.6%, 15.8%
Pumpkin 0.34m, 6.04◦ 0.27m, 5.53◦ 20.5%, 8.4%
Red Kitchen 0.36m, 7.32◦ 0.30m, 6.21 ◦ 16.6%, 15.1%
Stairs 0.35m, 13.11◦ 0.43m, 12.86◦ -22.8%, 1.9%
Average 0.31m, 9.48◦ 0.28m, 8.72◦ 10.1%, 9.6%

Table 1. Effect of increased field of view on localization accuracy
Dataset Baseline Baseline-Augmented Whole view-Augmented Improvement (Column 2&4)
King’s College 1.24m, 1.84◦ 1.46m, 3.60◦ 1.34m, 3.80◦ -8.0%, -106.5%
Old Hospital 3.07m, 5.13◦ 2.56m, 7.54◦ 2.64m, 6.50◦ 14.0%, -26.7%
Shop Facade 1.23m, 5.74◦ 1.31m, 7.14◦ 1.23m, 7.33◦ 0.0%, -27.7%
St-Mary’s Church 2.21m, 5.92◦ 2.30m, 7.66◦ 1.80m,5.85◦ 18.5%, 1.1%
Street 21.67m, 32.8◦ 17.63m, 34.86◦ 13.77m, 27.09◦ 36.4%, 17.4%
Average 5.88m, 10.28◦ 5.05m, 12.16◦ 4.15m, 10.11◦ 12.1%, -27.1%
Chess 0.18m, 5.92◦ 0.20m, 5.08◦ 0.17m, 4.65◦ 16.6%, 21.4%
Fire 0.40m, 12.21◦ 0.37m, 9.86 ◦ 0.34m, 8.80◦ 15.0%, 27.9%
Heads 0.24m, 14.20◦ 0.19m, 11.57◦ 0.16m, 9.43◦ 33.3%, 33.5%
Office 0.30m, 7.59◦ 0.29m, 7.50◦ 0.27m, 6.93◦ 10.0%, 8.6%
Pumpkin 0.34m, 6.04◦ 0.30m, 5.54◦ 0.24m,4.86◦ 29.4%, 19.5%
Red Kitchen 0.36m, 7.32◦ 0.32m, 6.73◦ 0.29m, 5.82◦ 19.4%, 20.4%
Stairs 0.35m,13.11◦ 0.42m, 5.97◦ 0.38m, 6.36◦ -8.5%, 43.8%
Average 0.31m, 9.48◦ 0.29m, 7.46◦ 0.26m, 6.69◦ 16.4%, 25.0%

Table 2. Data augmentation’s effect on localization accuracy

the area is larger and the landmarks close to the border of the
image typically move faster than those in a centered crop.
Therefore, such landmarks can play an important role for
camera localization.

4.2. Data Augmentation

Figure 4 demonstrates the performance of our baseline
model-which uses Posenet’s crop of the input image- on
training and test data for the different sequences. As can
be seen in this figure, the error on training data goes to zero
after a small number of epochs while the error on test data
tends to be much higher. Besides, the performance on orien-
tation prediction degrades over time for most of the indoor
sequences which is a sign of overfitting to the training data.

As shown in Figure 4 for many of sequences there is a
limited overlap between the training and test data for the
orientation trajectories. This makes it hard for the network
to extrapolate from the data it has seen during training given

Dataset Baseline Lenght 1 Lenght 5 Lenght 10 Lenght 20
King’s College 1.24m, 1.84◦ 1.32m, 2.08◦ 1.48m, 2.66◦ 1.79m, 2.77◦ 2.05m, 3.28◦

Old Hospital 3.07m, 5.13◦ 3.09m, 4.85◦ 3.38m, 6.35◦ 3.79m, 5.79◦ 4.05m, 7.36◦

Shop Faade 1.23m, 5.74◦ 1.07m, 5.56◦ 1.25m, 6.86◦ 1.41m, 7.39◦ 1.28m, 9.68◦

St-Mary’s Church 2.21m, 5.92◦ 2.32m, 8.00◦ 2.69m, 7.71◦ 3.05m, 9.87◦ 3.42m, 8.71◦

Street 21.67m, 32.8◦ 25.06m, 37.74◦ 29.25m, 35.35◦ 24.23m, 34.95◦ 26.80m, 35.04◦

Average 5.88m, 10.28◦ 6.57m, 11.64◦ 7.58m,11.78◦ 6.85m,12.15◦ 7.52m,12.81◦

Chess 0.18m, 5.92◦ 0.19m, 6.20 ◦ 0.16m, 5.88 ◦ 0.17m, 7.07 ◦ 0.18m, 6.07◦

Fire 0.40m, 12.21◦ 0.36m, 12.00 ◦ 0.35m,10.95 ◦ 0.39m, 12.38◦ 0.38m, 12.21◦

Heads 0.24m, 14.20◦ 0.18m, 14.74◦ 0.18m,14.72◦ 0.20m, 15.78 ◦ 0.22m, 13.37◦
Office 0.30m, 7.59◦ 0.32m, 8.35◦ 0.28m,7.46◦ 0.29m, 8.39 ◦ 0.29m, 7.04◦
Pumpkin 0.34m, 6.04◦ 0.34m, 6.70◦ 0.34m,6.39◦ 0.34m, 7.29 ◦ 0.32m, 5.88◦
Red Kitchen 0.36m, 7.32◦ 0.35m,7.49◦ 0.32m,7.05◦ 0.35m,7.82 ◦ 0.35m, 6.84◦
Stairs 0.35m,13.11◦ 0.34m, 11.85◦ 0.36m,10.83◦ 0.35m, 11.56◦ 0.33m, 11.30◦

Average 0.31m, 9.48◦ 0.29m, 9.61◦ 0.28m, 9.04◦ 0.29m, 10.04◦ 0.29m, 8.95◦

Table 3. Localization Accuracy Using LSTM Cells
Dataset Baseline Lenght 1 Lenght 5 Lenght 10 Lenght 20
King’s College 1.24m, 1.84◦ 0.93m, 1.59◦ 1.26m, 2.28◦ 1.40m, 2.47◦ 1.54m, 3.47◦

Old Hospital 3.07m, 5.13◦ 3.02m, 4.94◦ 3.37m, 5.20◦ 3.49m, 5.68◦ 3.49m, 6.33◦

Shop Faade 1.23m, 5.74◦ 0.82m, 4.15◦ 1.31m, 7.87◦ 1.60m, 6.95◦ 1.44m, 11.84◦

St Mary’s Church 2.21m, 5.92◦ 1.95m, 5.51◦ 2.07m, 5.56◦ 2.28m, 7.03◦ 2.53m, 8.10◦

Street 21.67m, 32.8◦ 16.48m, 30.00◦ 18.31m, 33.61◦ 20.93m, 34.42◦ 26.80m, 35.04◦

Average 5.88m, 10.28◦ 4.64m, 8.52◦ 5.26m,10.20◦ 5.94m,11.27◦ 7.16m,12.95◦

Chess 0.18m, 5.92◦ 0.17m, 6.57 ◦ 0.15m, 5.84 ◦ 0.16m, 5.71 ◦ 0.15m, 6.02 ◦

Fire 0.40m, 12.21◦ 0.32m, 12.53 ◦ 0.32m, 12.65 ◦ 0.36m, 13.00◦ 0.36m, 13.43◦

Heads 0.24m, 14.20◦ 0.17m, 14.64◦ 0.19m, 13.85◦ 0.18m, 13.67 ◦ 0.20m, 14.53◦

Office 0.30m, 7.59◦ 0.28m, 8.65◦ 0.27m, 8.96◦ 0.24m, 8.30 ◦ 0.27m, 9.15◦

Pumpkin 0.34m, 6.04◦ 0.32m, 7.06◦ 0.31m,6.89◦ 0.36m, 8.08 ◦ 0.31m, 6.79◦

Red Kitchen 0.36m, 7.32◦ 0.29m, 7.07◦ 0.28m, 6.91◦ 0.26m, 5.94 ◦ 0.27m, 6.00◦

Stairs 0.35m,13.11◦ 0.30m, 11.46◦ 0.36m, 10.19◦ 0.33m, 11.69 ◦ 0.31m, 12.34◦

Average 0.31m, 9.48◦ 0.26m, 9.71◦ 0.26m, 9.32◦ 0.27m, 9.48◦ 0.26m, 9.75◦

Table 4. Localization Accuracy Using LSTM Cells+Whole View
(Green: Improves PoseNet based architectures, Refer to Table 5.)

the limited number of training examples for each sequence.
Therefore, on each training epoch, we double the number

of training examples by rotating each image with a random
number in the range [-20,20] degrees. We manipulate the
quaternion part of the label of the image to account for the
new orientation. This way, we introduce new examples to
the network with the same position but a different orienta-
tion. Therefore, this has the potential to improve the perfor-
mance both for position and orientation. Table 2 shows the
performance of the proposed method. A closer look at Fig-
ure 4 and Table 2 suggests that generating new orientation
labels is mostly useful for the indoor datasets where there
is limited overlap between training and test orientation tra-
jectories. However, for the outdoor sequences with enough
overlap it can have a negative effect on the performance.

It is worth mentioning that generating more training ex-
amples using a range other than [-20,20] or other data aug-
mentation schemes such as horizontal, vertical flipping of
the images can still further improve the results. How-
ever, the purpose of this section is to show overfitting as
a problem for PoseNet and data augmentation as a remedy.
Therefore further evaluation of the possible augmentation
schemes are omitted.

4.3. LSTM experiments

In order to exploit the temporal information between
consecutive frames, we replaced the 2048 units fully con-
nected layer in PoseNet with two parallel LSTM cells with
64 units for pose and orientation regression. This archi-
tecture is different from [23] where LSTMs are used for
extracting spatial information and also different from [24]
where stacked bi-directional LSTMs are used for pose-only
regression. Figure 5 illustrates the architecture we used for
our experiments.

We fed sequences with 1, 5, 10 and 20 consecutive
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Figure 4. Left to right: an example image taken from each sequence, position trajectories for test (red) and training (blue) data, orientation
trajectories, performance of the baseline model on test (red) and training data (blue) over different epochs, for pose and orientation.



Figure 5. Proposed architecture for localization using LSTMs

Figure 6. Results on Localization datasets using LSTM cells with
different input sequence lengths

frames as input to our LSTM cells in separate experiments.
Figure 6 illustrates the performance of our model on the test
data, for one indoor and one outdoor localization scene. Ex-
periments with different LSTM sequence lengths are shown
in different colors in this figure. The results are averaged
for every 10 epochs and the variance on every 10 epochs is
shown with error bars. Tables 3 and 4 show results on all
localization datasets for different LSTM sequence lengths.
The green colored result in the table improves the perfor-
mance for PoseNet based architectures on the correspond-
ing outdoor localization sequence (refer to Table 5 for re-
sults on those architectures).

While we expected to have high localization gains using
longer sequence lengths, our results show that LSTM cells
with sequence length 1 seem to perform on average as good
as longer sequence lengths. This behaviour is expected on
the outdoor datasets where the frames are downsampled and
temporal information cannot be exploited.

Dataset PoseNet Spatial
LSTMs [23]

Vidloc[24] Posenet
Adaptive
Loss

This Paper

King’s College 1.66m, 4.86◦ 0.99m, 3.65◦ -,-◦ 0.99m, 1.06◦ 1.45m,4.75◦

Old Hospital 2.62m, 4.90◦ 1.51m, 4.29◦ -, -◦ 2.17m, 2.94◦ 2.47m,5.64◦

Shop Facade 1.41m, 7.18◦ 1.18m, 7.44◦ -, -◦ 1.05m, 3.97◦ 1.13m, 7.35◦

St-Mary’s Church 2.45m, 7.96◦ 1.52m, 6.68◦ -, -◦ 1.49m, 3.43◦ 2.10m,8.46◦

Street -, -◦ -, -◦ -, -◦ 20.7m, 25.7◦ 14.55m, 36.04◦

Average -, -◦ -, -◦ -,-◦ 5.28, 7.42◦ 4.34, 12.44◦

Chess 0.32m, 6.60◦ 0.24m, 5.77 ◦ 0.18m, - ◦ 0.14m, 4.50 ◦ 0.17m, 5.34◦

Fire 0.47m, 14.00◦ 0.34m, 11.9 ◦ 0.21m,- ◦ 0.27m, 11.8◦ 0.30m, 10.36◦

Heads 0.30m, 12.2◦ 0.21m, 13.7◦ 0.14m,-◦ 0.18m, 12.1 ◦ 0.15m, 11.73◦

Office 0.48m, 7.24◦ 0.30m, 8.08◦ 0.26m,-◦ 0.20m, 5.77 ◦ 0.27m, 7.10◦

Pumpkin 0.49m, 8.12◦ 0.33m, 7.00◦ 0.36m,- 0.25m , 4.82 ◦ 0.23m, 5.83◦

Red Kitchen 0.58m, 8.34◦ 0.37m, 8.83◦ 0.31m,- 0.24m, 5.52 ◦ 0.29m, 6.95◦

Stairs 0.48m, 13.1◦ 0.40m, 13.7◦ 0.26m,- 0.37m, 10.6 ◦ 0.30m, 8.30◦

Average 0.44m, 9.94◦ 0.31m, 9.85◦ 0.24m, -◦ 0.23m,7.87◦ 0.24,7.94◦

Table 5. Whole Field-of-View + Data Augmentation + LSTM

For indoor datasets, this behaviour is justified by the fact
that consecutive frames differ from each other with very
small translations. CNNs trained on classification datasets
such as ImageNet are designed to be translation-invariant
and treat pose as a nuisance variable; therefore, most of the
temporal information is lost in such CNN. The extracted
features for consecutive frames are always more than 98%
similar according to our experiments. This makes it hard
for the LSTMs to differentiate consecutive frames.

Besides, with sequence length one, results using the
LSTM architecture seem consistenly better than the CNN
architecture, especially for the whole field-of-view setting.
Therefore, we conclude LSTM cells can improve localiza-
tion performance independently from their sequence length
due to their more complex architecture compared to fully
connected layers. It is worth mentioning that we repro-
duced the same results with different settings such as us-
ing stacked LSTMs, higher number of units for LSTMs and
same LSTM to regress both pose and orientation.

4.4. Putting it All Together

Table 5 illustrates our localization performance com-
pared to other works in the literature when we combine all
the proposed modifications to the PoseNet baseline. The
green colored numbers in the table suggest improvement
over the performance of the PoseNet based works on the
corresponding localization sequences. This table and the
results discussed before suggest that for sequences where
the frames are downsampled and there is enough overlap
between training and test data, the best performance is
achieved by using the whole field-of-view as input. Oth-
erwise, data augmentation can help to reduce the margin
between test and training data. Besides, LSTM cells are
generally helpful due to their relatively more complex ar-
chitecture compared to fully connected layers, even when
applied to sequences of lenght one, i.e. a single input im-
age.

5. Conclusion
In this paper we study three different ways to improve

camera localization accuracy of PoseNet targeting its train-
ing data’s characteristics rather than network’s architecture.



Our experiments show that the field-of-view is typically
more important than the input image’s resolution. Further-
more, depending on the training labels’ abundance one can
benefit from data augmentation to cover more areas during
training time to gain accuracy on test time. Besides, while
LSTM cells do not seem to be able to exploit the tempo-
ral information due to the feature extraction network being
invariant to small translations, they can perform better due
to their more complex nature compared to fully connected
layers.
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