
Free-Lunch Saliency via Attention in Atari Agents

Dmitry Nikulin1

d.nikulin@samsung.com

Anastasia Ianina1

a.ianina@samsung.com

Vladimir Aliev1

vladimiralieva@gmail.com

Sergey Nikolenko1,2,3

sergey@logic.pdmi.ras.ru
1Samsung AI Center, Moscow, Russia

2Steklov Institute of Mathematics at St. Petersburg, Russia
3Neuromation OU, Tallinn, Estonia

Abstract

We propose a new approach to visualize saliency maps
for deep neural network models and apply it to deep rein-
forcement learning agents trained on Atari environments.
Our method adds an attention module that we call FLS (Free
Lunch Saliency) to the feature extractor from an established
baseline [24]. This addition results in a trainable model that
can produce saliency maps, i.e., visualizations of the impor-
tance of different parts of the input for the agent’s current de-
cision making. We show experimentally that a network with
an FLS module exhibits performance similar to the baseline
(i.e., it is “free”, with no performance cost) and can be used
as a drop-in replacement for reinforcement learning agents.
We also design another feature extractor that scores slightly
lower but provides higher-fidelity visualizations. In addition
to attained scores, we report saliency metrics evaluated on
the Atari-HEAD dataset of human gameplay.

1. Introduction
Reinforcement learning (RL) models train agents that

process input information from the environment in order
to learn and implement a policy that maximizes the desired
reward [39]. Over the last decade, reinforcement learning has
shifted towards deep reinforcement learning, where policies
and/or models of the environment are modeled with deep
neural networks, with impressive results achieved across a
wide variety of tasks, from game playing to robotics [2, 14].
Unfortunately, both RL and deep learning in general suffer
from poor interpretability: it is hard to explain why a deep
neural network performs as it does, hard to understand why
an RL agent has assigned a specific value to a given state, and
harder yet when these two inherently “black-box” methods
come together [8]. On the other hand, interpretability is a key
feature for many critical applications, especially in robotics.

This motivates the design of interpretable RL agents and
modifying existing architectures for easier interpretation.

In this work, we concentrate on RL problems where the
environment is represented by an image; a common example
is given by Atari game environments popularized for deep
RL in [23]. In this context, interpretability often comes in
the form of saliency maps, i.e., values of how important
individual pixels or small patches of the input image are for
the Q-function or current policy decision. In the context of
deep convolutional networks, saliency maps were introduced
in [34], where gradients of the output category for image
classification problems were visualized with respect to the
input components (pixels). A map of such values provides
some intuition of pixel importance: large absolute values of
the gradients tell us that changes in those pixels can signif-
icantly affect the output category. Later works shifted the
focus from trying to interpret already trained models towards
building interpretability into the models themselves, usually
with some form of an attention mechanism [4]; we give a
survey of these and other methods in Section 2. However,
adding built-in interpretability often leads to a significant
decrease in the actual rewards obtained by the resulting RL
agents, i.e., usually one can have either state of the art per-
formance or interpretability but not both.

We aim to explore the possibility of having both inter-
pretable visualizations and high rewards at the same time.
We introduce a visualization layer used to change the feature
extractor’s architecture in such a way that it learns visual-
izations as a side effect of training. We conduct a com-
prehensive experimental study on six Atari environments:
BeamRider, Breakout, MsPacman, SpaceInvaders, Enduro,
and Seaquest. As a result of applying soft attention to Atari
gameplay screenshots (adding a new layer), the resulting
agent is able to localize its attention and generate saliency
maps in the process of training. These saliency maps can
be used to understand how the agent learns. Moreover, they

ar
X

iv
:1

90
8.

02
51

1v
2

 [
cs

.L
G

]
 3

0
O

ct
 2

01
9

provide a close match to human attention. To evaluate this
effect, we have used the Atari Human Eye-Tracking and
Demonstration Dataset (Atari-HEAD) [45] as the ground
truth, measuring the similarity between saliency maps and
human eye movements across three metrics: normalized
scanpath saliency (NSS), KL divergence, and shuffled AUC.

Thus, we present a useful and interpretable way for visu-
alization. Unlike other ways of visualizing the agents’ per-
formance, such as Jacobians or reward curves [40], saliency
maps can allow even non-experts to draw reasonable con-
clusions. Moreover, it provides an easy way for debugging
agents and interpreting the policy.

The paper is organized as follows. In Section 2, we
provide an overview of different ways to improve the inter-
pretability of deep RL models and agents. Section 3 intro-
duces our attention-based modifications to the baseline RL
agents and previously developed models. A comprehensive
evaluation study of our model against these competitors is
provided in Section 4. We speculate on potential avenues for
future research and conclude the paper in Section 5.

2. Related work
In this section, we review the recent interpretability and

saliency studies in deep reinforcement learning (RL). Since
we had been unable to find comprehensive surveys of exist-
ing work to reference during literature review, we decided to
make this section into such a review. The deep RL revolu-
tion was started by [23], who successfully used deep CNNs
trained using Q-learning to play Atari games from raw pixels.
In a follow-up work [24] they were also the first to attempt
to interpret trained models by applying t-SNE to network
hidden states. They used a single architecture to play all
of the environments. We show its feature extractor in Fig-
ure 2.a, with the corresponding Sparse block in Figure 1.a.
We broadly divide work on interpreting deep RL models and
deep neural networks in general into two major categories:
post-hoc and built-in saliency. Next, we briefly review the
former and provide a comprehensive survey of the latter.

Post-hoc saliency includes approaches where additional
techniques intended for interpretation follow an already
trained model, without affecting the model and the train-
ing process itself.

As we have already noted, saliency maps were first intro-
duced in deep learning in the context of image classifica-
tion by [34], who proposed to visualize gradients of out-
put category with respect to input image. This general ap-
proach was extended in many later works, most notably
with guided backpropagation [37], integrated gradients [38],
Grad-CAM [31], LRP [3], and DeepLIFT [33]. The current
state of the art approaches are SmoothGrad [35] and Var-
Grad [1], which were studied theoretically in [32] and found
to be best in a recent comprehensive evaluation [20].

In the context of deep RL in particular, studies of inter-
pretability were pioneered by [24] who applied t-SNE to a
CNN network playing Atari games; later, Jacobians of value
and advantage streams with respect to input images were
used for the same purpose in [40]. The work [44] investi-
gated t-SNE embeddings in more depth. In [15], saliency
maps for Atari agents trained with A3C were visualized by
blurring different parts of input images and measuring the
L2 difference between actor and critic outputs; such an ap-
proach is computationally expensive but the resulting images
are clearer than Jacobians. Recently, the work [41] took a
closer look at a slightly modified version of Grad-CAM in
the context of deep RL on Atari games.

Built-in saliency refers to approaches where interpretabil-
ity follows from special constructions added to the models
themselves. There is already a significant number of works
in this direction. We give a brief summary of their main
features in Table 1 and describe them in more detail below.

One of the first notable models with saliency in RL via
attention is DARQN [36] (Figure 1.d), a modification of
DRQN [17] augmented with spatial attention dependent on
the recurrent state. The authors experimented with both
soft attention (regular spatial attention) and hard attention
(sampling from the distribution generated by the attention
network). The results are ambiguous: while achieving high
scores on Seaquest, they scored lower than baseline scores on
Breakout. We compare our approach against a non-recurrent
variation of their method, which we call DAQN.

In [9], a similar approach is augmented by experiments
with temporal attention in addition to spatial attention. De-
spite the fact that temporal attention appears to improve
performance, it cannot be used to obtain saliency maps, so
we do not consider it in our work. The work [9] is vague on
the exact procedure for obtaining visualizations, although
they look like simple upscalings of attention activations.

The work [26] refers to assessors in order to get areas of
the input image (frame) which people are most likely to look
at during a game. The collected data is used as a proxy for
gaze positions. Comparing to previous works, the model is
trained with a smaller attention module, and the resulting
saliency maps are evaluated by measuring how similar they
are to data collected from humans. The authors compare
their approach with two methods for determining saliency
that are not based on DL: Itti-Koch saliency model [21] and
Graph-Based Visual Saliency (GBVS) [16]. They show that
both of them are no better than random, while attention-
based saliency significantly outperforms them. They also do
not specify their visualization method precisely.

The work [46] also uses human attention data but brings
a different approach: they have collected a dataset of hu-
man gaze positions with an eye tracker, trained an encoder-
decoder architecture to predict human gaze positions using

Ref Algorithm Custom
env

envs
(Atari)

Based on Train-
able
attn

Attention types Attention
archi-
tecture

Sum-
pool

Vis. method Metrics

[36] DRQN 7 5 [17] 3 Soft and hard self-
attention

Fig. 1.d 3 Upscale Reward

[9] DRQN 7 3 [17] 3 Soft temporal and spa-
tial self-attention

Fig. 1.d 3 Upscale* Reward

[26] DRQN 7 5 [17] 3 Soft self-attention Fig. 1.e 3 Upscale* NSS, AUC
[10] DQN GridWorld 0 Custom 3 Soft key-value See [10] 3 Raw Reward
[46] Imitation 7 8 [24] 3 Soft, on human data See [46] N/A Raw Reward, NSS, AUC, KL, CC
[43] A2C Catch 4 [24] 7 N/A N/A N/A Opt. flow Reward
[42] Rainbow 7 8 [24] 3 Soft Fig. 1.c 7 Jacobian Reward
[22] PPO 7 10 [24] 3 Soft self-attention * 7 Grad-CAM +

upscale
Reward

[25] IMPALA 7 57 [13] 3 Soft key-value See [25] 3 Raw Reward
Ours PPO 7 6 [24], custom 3 Soft self-attention Fig. 1.f both convT Reward, NSS, KL, sAUC

Table 1: Papers on ad-hoc saliency. Asterisks show cases where the original paper is vague on exact details.

that data, and finally used it to train an agent with imitation
learning, achieving promising results.

The approach of [42] is very similar to ours: their main
modification is the addition of a custom attention block (Fig-
ure 2.c) that they call RS (Region-Sensitive) module. They
train the resulting model with Rainbow [19] and show that
the it learns to focus its attention on semantically relevant
areas. The work [22] tested variations of self-attention but
used Grad-CAM to visualize saliency maps.

Inspired by selective attention models, the authors of [43]
use optical flow between two frames as the attention map.
They experiment with A2C on Atari games, conducting sev-
eral experiments on DQN with and without attention and
reporting moderate performance improvements on four Atari
games (Breakout, Seaquest, MsPacman, and Centipede).
However, they provide no metrics or ways to estimate the
result quantitatively. The authors remark that more experi-
mental data is needed to show the benefits of visual atten-
tion for deep RL models, stating that “experiments on more
games should be conducted to provide a more comprehensive
evaluation for the effect of introducing visual attention”.

In [10], an attention model is applied to a toy problem
in single-agent and multi-agent settings. The authors show
better performance compared to the DQN and report advan-
tages of a multi-agent architecture over a single-agent one.
Furthermore, they report 20% better sample efficiency.

In a recent paper [25], soft top-down attention in a recur-
rent model is used to force the agent to focus on task-relevant
information. The resulting agent exhibits performance com-
parable to state of the art on Atari games.

3. Our approach

Our work continues the general idea of applying attention
improvements to RL agents in order to get interpretabil-
ity while hopefully not sacrificing performance. Unlike all
works discussed in Section 2, we suggest a quantitative way

to evaluate attention maps produced by the models, using the
information from an eye-tracker recently made available in
the Atari Human Eye-Tracking and Demonstration Dataset
(Atari-HEAD) [45]. This allows us to compare multiple
architectures and model setups in order to find the best way
of introducing attention to deep RL models.

Contrary to some of the prior art, the Sparse FLS architec-
ture we propose in our work is a small, incremental change
from the non-recurrent baseline. We conduct experiments
using 5 random seeds across 6 Atari environments, and in
all of our experiments, our model performs similarly to the
baseline, while also producing visualizations. We also com-
pute saliency metrics using the Atari-HEAD dataset [46]
of human eye fixations captured using an eye tracker from
human players playing Atari games, showing that neural
models perform significantly better than random in approxi-
mating human gazes. Finally, we also propose a Dense FLS
architecture, which, despite attaining lower scores, generates
significantly sharper images.

Deep RL models are notorious for their sensitivity to hy-
perparameters [18]. For this reason, we primarily investigate
incremental changes to approaches that are known to work
well [23, 24] rather than attempt to build a new one from
scratch. Since post-hoc saliency methods have been studied
quite extensively (see Section 2), we develop a model that
has built-in saliency. We turn to the idea of attention [4],
and, borrowing elements from [27], integrate visual soft self-
attention into a baseline model from [24]. We show details
of the architectures in Figure 2.

Similar to [42] (Fig. 2.c with the RS module detailed in
Fig. 1.c; see Section 2), we add an extra self-attention mod-
ule between convolutional and fully-connected layers. One
of the main differences is that we use SoftPlus [12] as the
activation function for the final layer of the FLS module. The
choice of SoftPlus is inspired by [27] and motivated by the
fact that, in contrast to previous approaches [36, 9, 26, 42],
it does not use any normalization. We have verified experi-

· · ·
Conv

32 @ 8× 8
s=4, p=0

ReLU
Conv

64 @ 4× 4
s=2, p=0

ReLU
Conv

64 @ 3× 3
s=1, p=0

ReLU · · ·

(a)

st vt

+

Conv
N @ 1× 1
s=1, p=0

· · ·

Linear
w/o bias

· · ·
Tanh

Conv
1 @ 1× 1
s=1, p=0

Spatial
softmax

· · ·

(d)

vt

ht

αt

· · ·
Conv

32 @ 7× 7
s=1, p=3

ReLU
Conv

64 @ 5× 5
s=1, p=2

ReLU
Conv

64 @ 3× 3
s=1, p=1

ReLU · · ·

(b)

st vt

+

Conv
64 @ 1× 1
s=1, p=0

· · ·

Linear
w/o bias

· · ·
Tanh Spatial

softmax
· · ·

(e)

vt

ht

αt

· · ·
Conv

512 @ 1× 1
s=1, p=0

ELU
Conv

2 @ 1× 1
s=1, p=0

Spatial
softmax

Sum-pool
channels

· · ·

(c)

vt αt · · ·
Conv

256 @ 3× 3
s=1, p=1

ReLU
Conv

1 @ 3× 3
s=1, p=1

Softplus · · ·

(f)

vt αt

Figure 1: Convolutional and attention blocks. At time t, input frames st are turned into embeddings vt, ht is the recurrent
state: (a) Sparse convolutional block; (b) Dense convolutional block; (c) Region-Sensitive Module [42]; (d) DARQN [36]
(N = 256) and [9] (N = 512); (e) architecture from [26]; (f) our architecture (ht ≡ 0).

(a) Sparse block Flatten · · ·
st

(b)

Sparse block

Attn

× Spatial sum-pool · · ·
st

(c)

Pad 1px Sparse block L2 norm

RS module

× Flatten · · ·
st

(d)

Sparse or dense block

FLS module

× Flatten or
spatial sum-pool

· · ·
st

Figure 2: Model architectures; st – input frames at time
t: (a) Nature CNN [24]; (b) DAQN, inspired by [36]; (c)
LTIAA [42]; (d) our architecture. Fig. 1 shows the Sparse
and Dense blocks and attention modules.

mentally that normalizing the output of SoftPlus makes the
model perform worse (see Section 4.2). We have also seen
that adding sum-pooling makes the model perform worse.

In addition to the Sparse block which is a part of the
baseline model from [24], we also propose a different con-
volutional block which we call Dense, as shown in Fig. 1. It
is designed in such a way that the receptive fields and strides
of neurons in its final layer are small, making visualizations
crisper; but, as we will see in experiments, this comes at the
cost of the achieved reward. This model can only reasonably
fit in GPU memory if sum-pooling is applied after attention.

We visualize saliency maps generated by FLS modules
by drawing receptive fields of all neurons from the final con-
volutional layer with intensity proportional to the activations
of the corresponding neurons in the attention layer, which
we implement via transposed convolution of the output of
the FLS module with a unit kernel (i.e., a tensor filled with
ones) with suitable kernel size, strides, and padding. This

approach strikes the balance between bilinear upscaling of
the attention activations and more mathematically sound but
extremely noisy Jacobian of the input image with respect to
some function of attention activations.

In the next section, we proceed to show direct experimen-
tal comparisons against the architecture from [42] trained
with PPO (which we call RS-PPO) and a non-recurrent ver-
sion of [36] (denoted DAQN).

4. Experimental evaluation

4.1. Setup

We run all experiments on 6 Atari games [5]: BeamRider,
Breakout, MsPacman, SpaceInvaders, Enduro, and Seaquest.
This is identical to the set of games reported in an early
version of [42] (a later version added Frostbite) with the
exception that we replaced Pong with Breakout because in
Pong, the score is capped at 21, and it is relatively easy to
train an agent that achieves perfect or near-perfect score,
which trivializes many comparisons. We use environments
provided by the OpenAI Gym library [7], specifically their
NoFrameskip-v4 versions.

All agents were trained using the Proximal Policy Opti-
mization (PPO) algorithm [30] as implemented in the Ope-
nAI Baselines library [11], with default hyperparameters. We
ran 8 environments in parallel and capped the total number
of environment steps at 5 · 107 to limit resource usage.

For each environment and each architecture, we trained
5 agents with different random seeds. For every experi-
ment, we recorded a smoothed curve of episode rewards the
agents obtained during training. Reward curves in Figure 3
show the mean score and its standard deviation on every
timestep. Specifically, we show the eprewmean metric
reported by the Baselines library and computed as follows:
during training, collecting experience is interleaved with
agent updates. Experience is collected in 8 threads, which,

Model # params % of [24]

Nature CNN [24] 1,686,693 100%
DAQN [36] 130,726 7.8%
RS-PPO [42] 1,720,999 102.0%
Sparse FLS 1,836,710 108.9%
Sparse FLS + sum-pooling 263,846 15.6%
Dense FLS + sum-pooling 280,358 16.6%
Sparse + FLS after first conv layer 1,762,982 104.5%
Sparse + FLS after each conv layer 2,063,016 122.3%

Table 2: Model sizes. Colors correspond to Fig. 3.

under default hyperparameters, are executed for 128 steps
at a time, totaling 1024 environment steps between agent
updates. The eprewmean metric is the average reward
for the last 100 episodes completed by the time the expe-
rience collection step is over. This includes episodes that
are completed in steps prior to the current one. We have
made the source code for the implementation of our mod-
els and reproducing the experiments available at https:
//github.com/dniku/free-lunch-saliency.

4.2. Performance

Figure 3 shows reward curves obtained during training.
It can be seen that our Sparse FLS architecture, which is
the baseline model with an extra attention module, performs
similarly to the baseline, while our Dense FLS architecture
achieves lower rewards. We evaluate each trained model
213 = 8192 times on environments initialized with a previ-
ously unseen random seed.

The final results are shown in Table 3. In addition to
testing the architectures discussed in Section 3, Table 3 also
shows an ablation study and the results of testing several
variations intended to verify our hypotheses.

First, we hypothesize that inferior performance of our
Dense FLS model is at least partially due to spatial sum-
pooling; we test this hypothesis by training an intermediate
model, one with a Sparse block and spatial sum-pooling.
Experimental results validate our hypothesis, showing much
lower results for this intermediate model compared with the
regular Sparse-based model. The loss of performance from
sum-pooling may be caused by the loss of spatial information
(i.e., the position of the ball and paddle in Breakout). Indeed,
the work [25] suggests to concatenate fixed Fourier basis
vectors to the tensor before applying spatial sum-pooling.
We have not investigated the effects of similar workarounds.
Note, however, that our Sparse FLS architecture has approx-
imately 10% more parameters than the baseline, while the
addition of sum-pooling reduces the number of parameters
in the model by nearly a factor of 7 (see Table 2). Thus, in
some applications sum-pooling may be a sensible choice in
terms of the memory-performance trade-off.

Second, we hypothesize that normalizing the output of
the FLS module makes the model perform worse, and train
a model where we divide the output of the FLS module

0

2000

4000

6000
BeamRider

0

100

200

300

400

500

600 Breakout

0

1000

2000

3000

4000

5000

6000
MsPacman

0

2000

4000

6000

8000 SpaceInvaders

0

1000

2000

3000

4000

5000

Enduro

0 1 2 3 4 5
1e7

0

500

1000

1500

2000

2500 Seaquest

Nature CNN
DAQN

RS-PPO
Sparse FLS

Sparse FLS + sum-pooling
Dense FLS + sum-pooling

Figure 3: Reward curves during training. The horizontal axis
shows the number of environment frames, the vertical axis
shows the current reward.

https://github.com/dniku/free-lunch-saliency
https://github.com/dniku/free-lunch-saliency

Game BeamRider Breakout Enduro MsPacman Seaquest SpaceInvaders

Nature CNN [24] 6949±2569 618±209 3808±1670 4874±1701 1920±37 3867±3627
DAQN [36] 701±205 601±201 2182±1075 3111±1165 1453±420 2096±1554
RS-PPO [42] 583±185 605±202 3851±1677 3943±1435 1670±372 2562±1339
RS-PPO [42] w/o padding 823±432 591±199 3658±1670 3950±1371 1710±379 2248±782

Sparse FLS 6634±2361 624±211 5094±1876 5421±1517 2440±382 9359±13230
Sparse FLS + sum-pooling 3356±1878 520±183 1917±1486 4317±1485 1150±385 1847±773
Sparse FLS + norm 6584±2159 598±200 4524±1807 3409±1275 1161±348 11206±10441
Sparse FLS w/ 1× 1 convs 6870±2413 621±207 4701±1880 4887±1589 2252±336 5673±6344
Sparse FLS w/ SoftPlus2 6697±2261 612±208 4854±1823 5242±1527 1908±29 6443±7684
Sparse FLS w/o final ReLU 6777±2242 589±207 4814±1904 5049±1145 2013±185 2929±556
Sparse FLS w/o final ReLU + sum-pooling 1057±1061 480±158 2093±1469 3365±1292 2356±1874 1999±899
Sparse + FLS after first conv layer 7468±2645 640±212 4942±2053 4720±1455 2181±376 9395±13615
Sparse + FLS after each conv layer 6588±2348 633±217 5950±3739 4978±1461 2083±314 2855±194
Dense FLS + sum-pooling 866±415 532±173 2114±2164 4977±1253 1368±517 1549±831
Dense FLS w/o final ReLU + sum-pooling 730±245 503±162 1292±1829 4879±1282 10052±11853 1316±813

Table 3: Evaluation scores. We trained 5 models with different random seeds for each (game, architecture) pair. Each model
was evaluated 8192 times on environments initialized with a previously unseen random seed, with results aggregated across
models. Colors correspond to Fig. 3.

by its sum. This, again, reduces the performance, yielding
evidence in favor of this hypothesis. Third, we tested the
model with 3×3 convolutions replaced with 1×1. Although
this change was beneficial in our early experiments, a full
ablation study revealed that it actually makes little difference.

Fourth, note that the FLS module can learn to output a
constant value of ln 2 if all of its weights are set to zero.
We hypothesize that since we multiply the output of con-
volutional blocks by the output of the FLS module, model
performance can be improved if this constant is instead 1.
To test that, we replace SoftPlus with its base-2 equivalent:
SoftPlus2(x) = log2 (1 + 2x) = 1

log 2SoftPlus(x · log 2).
Table 3 shows that this change does not significantly affect
model performance. We also showed that the non-linearity
before the FLS module is essential: removing it and feeding
the output of the final convolutional layer directly into the
FLS module severely degrades performance.

Finally, we experimented with other positions for the FLS
module. Experiments suggest that inserting it after the first
convolutional layer does not significantly affect performance;
however, the resulting images tend to be less coherent that
the ones produced by our Sparse FLS model. Similarly,
inserting an instance of the module after each convolutional
layer does not impact performance, but the images obtained
by summing attention masks from each module tend to be
very blurry (see Section 4.4 for visualizations).

4.3. Saliency metrics

Saliency metrics estimate how well the saliency maps gen-
erated by a model approximate human eye fixations on the
same images. We used the Atari-HEAD dataset of human
actions and eye movements recorded while playing Atari
videos games [46] in order to compare saliency maps gener-
ated by our models with human eye fixations. The dataset

Model Breakout Enduro MsPacman Seaquest SpaceInv.

Normalized Scanpath Saliency (NSS)

DAQN 1.344±0.114 0.586±0.356 0.881±0.100 0.334±0.096 1.899±0.052

RS-PPO 0.947±0.107 0.922±0.123 0.943±0.081 0.955±0.111 1.775±0.039

Sparse FLS 0.510±0.055 1.588±0.072 0.631±0.029 0.556±0.109 1.664±0.015

Sparse+SP 0.747±0.267 0.251±0.369 0.621±0.059 0.286±0.067 1.569±0.043

Dense+SP 1.385±0.545 0.629±0.689 -0.136±0.188 0.797±0.265 -0.230±0.557

KL divergence

DAQN 2.885±0.072 4.025±0.370 3.364±0.054 4.418±0.155 2.880±0.063

RS-PPO 3.209±0.101 3.368±0.093 3.325±0.053 3.294±0.094 2.979±0.029

Sparse FLS 3.472±0.031 3.180±0.033 3.491±0.018 3.492±0.072 3.145±0.019

Sparse+SP 3.481±0.342 4.752±0.614 3.535±0.049 4.281±0.417 3.086±0.017

Dense+SP 3.070±0.261 3.453±0.325 4.075±0.232 3.553±0.299 4.186±0.445

Shuffled Area-Under-Curve (Shuffled AUC)

DAQN 0.758±0.024 0.527±0.013 0.604±0.017 0.502±0.011 0.679±0.015

RS-PPO 0.654±0.029 0.552±0.018 0.629±0.024 0.629±0.020 0.678±0.011

Sparse FLS 0.530±0.012 0.530±0.015 0.520±0.005 0.453±0.027 0.656±0.010

Sparse+SP 0.612±0.071 0.536±0.017 0.524±0.013 0.486±0.010 0.660±0.020

Dense+SP 0.698±0.105 0.579±0.107 0.610±0.121 0.693±0.097 0.419±0.110

Table 4: Saliency metrics. Comparing against DAQN [36]
and RS-PPO [42]. Sparse/Dense+SP denotes Sparse/Dense
FLS with sum-pooling. Colors correspond to Fig. 3.

consists of 44 hours of gameplay data from 16 games and a
total of 2.97 million demonstrated actions.

Computing the metrics is rather nontrivial due to a com-
plex image preprocessing stack in the Baselines library
whose design follows that of [23, 24] and is widely regarded
as standard. For the particular task of computing saliency
metrics, the most relevant are the following steps. First, im-
ages are downscaled from 160×210 to 84×84 and converted
to grayscale. Second, only two out of every four subsequent
images are retained, and they are combined into one image
with pixel-wise maximum. In the resulting stream, images

are batched together in groups of size 4. Therefore, disre-
garding batch size, the neural network takes as input tensors
of shape 84×84×4, each of which corresponds to 8 images
in the original stream. For saliency metrics, we took the
union of all eye fixations in the corresponding 8 images as
ground truth fixations for every frame. The saliency map was
generated by applying transposed convolution to the FLS
module activations as shown in Section 3 and then upscaling
the resulting map from 84 × 84 to 160 × 210. We aver-
aged per-frame metrics over gameplay recordings, dropping
frames with undefined metrics.

Following [29], we computed three metrics: normalized
scanpath saliency (NSS) [28], KL divergence, and shuf-
fled AUC [6]. Throughout this section, we assume that
the saliency map and fixation map are matrices of the same
size; the saliency map contains floating-point values (output
of the FLS module), while the fixation map contains integers,
i.e., how many times an eye fixation was registered in a pixel
while the human was viewing the image.

NSS measures the extent to which pixels with eye fix-
ations are more prominent in saliency maps compared to
other pixels. First, the saliency map is normalized to have
zero mean and unit variance (NSS is undefined for saliency
maps with zero variance). Then, the values of the pixels are
averaged with weights equal to the number of fixations for
the corresponding pixel:

NSS(f, s) =

∑
i,j f [i, j] · ŝ[i, j]∑

i,j f [i, j]
, (1)

where s is the saliency map, f is the fixation map, and ŝ is
the normalized saliency map.

Kullback-Leibler (KL) divergence is a pseudometric be-
tween probability distributions. It does not work well for
discrete distributions such as a fixation map, which may
have, e.g., non-intersecting supports [46]; therefore, before
computing the KL divergence we blur fixation maps with
Gaussian blur and σ = 5, a value also used in [15]:

DKL(f‖s) =
∑
i,j

f [i, j] · log f [i, j]
s[i, j]

, (2)

where s is the saliency map normalized to [0..1], and f is
the fixation map after blurring and a similar normalization.

Shuffled AUC (Area Under Curve) is a metric specifically
designed for measuring the quality of saliency maps. It takes
into account that the distribution of real fixations is skewed.
The metric operates on a per-pixel level, regarding a saliency
map as a prediction of the probability that there is an eye
fixation in each pixel. As the name suggests, it computes the
AUC by taking true fixations as true positives. However, as
true negatives it takes real fixations for other frames in the
same dataset. Shuffled AUC compensates for dataset bias by
scoring a center prior at chance which implies that a model

with more central predictions will have lower sAUC score
than a model with predictions closer to the edges. Similar
to AUC, shuffled AUC equal to 1 indicates that the saliency
model is perfect while being equal to 0.5 means random
predictions from the ground truth.

We summarize our experimental results in Table 4 (there
is no BeamRider because it is not included in Atari-HEAD).
Somewhat surprisingly, these experiments show that while
all models perform better than random (an observation also
made in [26]), no model can be singled out as a clear winner.
Dense FLS has the highest variance, which may be explained
by the fact that the space of saliency distributions it is able
to generate is larger than that of any other model.

4.4. Visualizations

Figure 4 illustrates the information that can be gained via
saliency maps. The top part of every image contains raw ob-
servations, while the blue channel of the bottom part shows
preprocessed images as they are fed into the neural network.
Saliency maps produced by the models are drawn in white
for raw observations and in green for the preprocessed ones.

In general, Figure 4 shows that Dense FLS produces crisp
visualizations that are easy to interpret, but its performance
is inferior to Sparse FLS, which yields very coarse maps.

Figs. 4(a)-(b) show Dense FLS digging a tunnel through
blocks in Breakout. The model focuses its attention on the
end of the tunnel as soon as it is complete, suggesting that it
sees shooting the ball through the tunnel as a good strategy.

Figs. 4(c)-(d) depict the same concept of tunneling per-
formed by the Sparse FLS model. Note how it focuses
attention on the upper part of the screen after destroying mul-
tiple bricks from the top. This attention does not go away
after the ball moves elsewhere (not shown in the images).
We speculate that this is how the agent models tunneling:
rather than having a high-level concept of digging a tunnel,
it simply strikes wherever it has managed to strike already.

Figs. 4(e)-(f) illustrate how the Dense FLS model playing
Seaquest has learned to attend to in-game objects and, im-
portantly, the oxygen bar at the bottom of the screen. As the
oxygen bar is nearing depletion, attention focuses around it,
and the submarine reacts by rising to refill its air supply.

Figs. 4(g)-(h) are two consecutive frames where an agent
detects a target appearing from the left side of the screen.
The bottom part of the screenshots shows how attention in
the bottom left corner lights up as soon as a tiny part of the
target, only a few pixels wide, appears from the left edge
of the screen. In the next frame, the agent will turn left
and shoot the target (not shown here). However, the agent
completely ignores targets in the top part of the screen, and
its attention does not move as they move (also not shown).

Fig. 5 shows similar visualizations on the Atari-HEAD
dataset. We have also made a full gameplay video available
at https://youtu.be/i41rQXKsa50.

https://youtu.be/i41rQXKsa50

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 4: Game visualizations: (a-d) Breakout; (e-h) Seaquest; (a,b,e,f) Dense FLS; (c,d,g,h) Sparse FLS.

(a) (b) (c)

(d) (e) (f)

Figure 5: Atari-HEAD visualizations: (a,d) Breakout; (b,e) Enduro; (c,f) Seaquest. Each image shows the same frame with
saliency maps produced by, left to right: DAQN [36], RS-PPO [42], Sparse FLS, Dense FLS, Sparse + FLS after first conv
layer, Sparse + FLS after each conv layer. Human eye fixations are shown in red.

5. Conclusion

In this work, we have addressed the need for clear inter-
pretable explanations for the behaviour of deep RL agents.
We have proposed two new attention-based architectures
designed to obtain saliency maps in the process of train-
ing while having competitive performance. Experiments on
Atari environments show that our architectures (both Sparse
and Dense) allow to get interpretable visualizations and also
exhibit several other advantages: the Sparse model with sum-
pooling is smaller in terms of the number of parameters,
while the Dense model provides the best visualizations.

We have studied two feature extractors for deep RL play-
ing Atari games. The Sparse FLS model achieves results very
similar to the baseline but yields coarse visualizations. The
Dense FLS model, to the contrary, provides crisp images but
achieves lower scores. One obvious open question is how to
strike the balance between the two models we present. One
plays well but yields worse visualizations, the other plays
worse but produces excellent pictures — can we have the

best of both worlds? Our results suggest that inserting an
attention module between early convolutional layers where
receptive fields are small or using multiple attention mod-
ules does not improve visualizations. One possible idea for
further research would be to use multiple attention modules
and maintain a loss term such as KL divergence to ensure
that different modules yield similar attention maps. The
attention modules could also be penalized with entropy loss.
A visual attention module such as FLS could also improve
interpretability in contexts other than deep reinforcement
learning, such as image classification; this is also an avenue
for further work. In general, we believe that visualizations
can be further improved with custom loss functions, which
again are a subject for further research.

A visual attention module such as FLS could also improve
interpretability in contexts other than reinforcement learning,
such as image classification; this is also an avenue for further
work. We believe that continued work in this direction may
improve state of the art in deep learning interpretability even
further.

References
[1] J. Adebayo, J. Gilmer, I. Goodfellow, and B. Kim. Local

explanation methods for deep neural networks lack sensitivity
to parameter values. arXiv preprint arXiv:1810.03307, 2018.
2

[2] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A.
Bharath. Deep reinforcement learning: A brief survey. IEEE
Signal Processing Magazine, 34(6):26–38, Nov 2017. 1

[3] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller,
and W. Samek. On pixel-wise explanations for non-linear
classifier decisions by layer-wise relevance propagation. PloS
one, 10(7):e0130140, 2015. 2

[4] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine trans-
lation by jointly learning to align and translate. 2014. 1,
3

[5] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling.
The arcade learning environment: An evaluation platform for
general agents. Journal of Artificial Intelligence Research,
47:253–279, jun 2013. 4

[6] A. Borji, D. N. Sihite, and L. Itti. Quantitative analysis
of human-model agreement in visual saliency modeling: A
comparative study. IEEE Transactions on Image Processing,
22(1):55–69, 2012. 7

[7] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba. OpenAI Gym. arXiv preprint
arXiv:1606.01540, 2016. 4

[8] S. Chakraborty, R. Tomsett, R. Raghavendra, D. Harborne,
M. Alzantot, F. Cerutti, M. Srivastava, A. Preece, S. Julier,
R. M. Rao, T. D. Kelley, D. Braines, M. Sensoy, C. J. Willis,
and P. Gurram. Interpretability of deep learning models: A
survey of results. In 2017 IEEE SmartWorld, Ubiquitous
Intelligence Computing, Advanced Trusted Computed, Scal-
able Computing Communications, Cloud Big Data Comput-
ing, Internet of People and Smart City Innovation (Smart-
World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pages 1–6,
Aug 2017. 1

[9] Y. Chen, R. Zhu, and H. Liang. 10703 course project final
report: Observe, attend and act: Attention mechanisms in
DQN. page 8, 2017. 2, 3, 4

[10] J. Choi, B.-J. Lee, and B.-T. Zhang. Multi-focus attention
network for efficient deep reinforcement learning. 2017. 3

[11] P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert,
A. Radford, J. Schulman, S. Sidor, Y. Wu, and P. Zhokhov.
OpenAI Baselines. https://github.com/openai/
baselines, 2017. 4

[12] C. Dugas, Y. Bengio, F. Bélisle, C. Nadeau, and R. Garcia.
Incorporating second-order functional knowledge for better
option pricing. In Advances in neural information processing
systems, pages 472–478, 2001. 3

[13] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih,
T. Ward, Y. Doron, V. Firoiu, T. Harley, I. Dunning, et al. Im-
pala: Scalable distributed deep-rl with importance weighted
actor-learner architectures. arXiv preprint arXiv:1802.01561,
2018. 3

[14] V. François-Lavet, P. Henderson, R. Islam, M. G. Bellemare,
and J. Pineau. An introduction to deep reinforcement learning.
CoRR, abs/1811.12560, 2018. 1

[15] S. Greydanus, A. Koul, J. Dodge, and A. Fern. Visualizing
and understanding atari agents. 2017. 2, 7

[16] J. Harel, C. Koch, and P. Perona. Graph-based visual saliency.
In Proceedings of the 19th International Conference on Neu-
ral Information Processing Systems, NIPS’06, pages 545–552,
Cambridge, MA, USA, 2006. MIT Press. 2

[17] M. Hausknecht and P. Stone. Deep recurrent q-learning for
partially observable MDPs. 2015. 2, 3

[18] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup,
and D. Meger. Deep reinforcement learning that matters.
In Thirty-Second AAAI Conference on Artificial Intelligence,
2018. 3

[19] M. Hessel, J. Modayil, H. van Hasselt, T. Schaul, G. Os-
trovski, W. Dabney, D. Horgan, B. Piot, M. G. Azar, and
D. Silver. Rainbow: Combining improvements in deep re-
inforcement learning. In Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence, (AAAI-18), the
30th innovative Applications of Artificial Intelligence (IAAI-
18), and the 8th AAAI Symposium on Educational Advances
in Artificial Intelligence (EAAI-18), New Orleans, Louisiana,
USA, February 2-7, 2018, pages 3215–3222, 2018. 3

[20] S. Hooker, D. Erhan, P.-J. Kindermans, and B. Kim.
Evaluating feature importance estimates. arXiv preprint
arXiv:1806.10758, 2018. 2

[21] L. Itti, C. Koch, and E. Niebur. A model of saliency-based
visual attention for rapid scene analysis. IEEE Transactions
on Pattern Analysis & Machine Intelligence, (11):1254–1259,
1998. 2

[22] A. Manchin, E. Abbasnejad, and A. v. d. Hengel. Reinforce-
ment learning with attention that works: A self-supervised
approach. 2019. 3

[23] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves,
I. Antonoglou, D. Wierstra, and M. Riedmiller. Playing Atari
with deep reinforcement learning. page 9, 2013. 1, 2, 3, 6

[24] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,
G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,
H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis.
Human-level control through deep reinforcement learning.
518(7540):529–533, 2015. 1, 2, 3, 4, 5, 6, 10

[25] A. Mott, D. Zoran, M. Chrzanowski, D. Wierstra, and D. J.
Rezende. Towards interpretable reinforcement learning using
attention augmented agents. CoRR, abs/1906.02500, 2019. 3,
5

[26] S. Mousavi, M. Schukat, E. Howley, A. Borji, and N. Moza-
yani. Learning to predict where to look in interactive en-
vironments using deep recurrent q-learning. 2016. 2, 3, 4,
7

[27] H. Noh, A. Araujo, J. Sim, T. Weyand, and B. Han. Large-
scale image retrieval with attentive deep local features. 2016.
3

[28] R. J. Peters, A. Iyer, L. Itti, and C. Koch. Components of
bottom-up gaze allocation in natural images. Vision research,
45(18):2397–2416, 2005. 7

[29] N. Riche, M. Duvinage, M. Mancas, B. Gosselin, and T. Du-
toit. Saliency and human fixations: State-of-the-art and study

https://github.com/openai/baselines
https://github.com/openai/baselines

of comparison metrics. In Proceedings of the IEEE inter-
national conference on computer vision, pages 1153–1160,
2013. 7

[30] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov. Proximal policy optimization algorithms. 2017. 4

[31] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam,
D. Parikh, and D. Batra. Grad-cam: Visual explanations
from deep networks via gradient-based localization. In Pro-
ceedings of the IEEE International Conference on Computer
Vision, pages 618–626, 2017. 2

[32] J. Seo, J. Choe, J. Koo, S. Jeon, B. Kim, and T. Jeon. Noise-
adding methods of saliency map as series of higher order
partial derivative. arXiv preprint arXiv:1806.03000, 2018. 2

[33] A. Shrikumar, P. Greenside, and A. Kundaje. Learning impor-
tant features through propagating activation differences. In
Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 3145–3153. JMLR. org, 2017. 2

[34] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep Inside Con-
volutional Networks: Visualising Image Classification Mod-
els and Saliency Maps. arXiv e-prints, page arXiv:1312.6034,
Dec 2013. 1, 2

[35] D. Smilkov, N. Thorat, B. Kim, F. Viégas, and M. Wattenberg.
Smoothgrad: removing noise by adding noise. arXiv preprint
arXiv:1706.03825, 2017. 2

[36] I. Sorokin, A. Seleznev, M. Pavlov, A. Fedorov, and A. Ignat-
eva. Deep attention recurrent q-network. 2015. 2, 3, 4, 5, 6,
8, 10

[37] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Ried-
miller. Striving for simplicity: The all convolutional net.
arXiv preprint arXiv:1412.6806, 2014. 2

[38] M. Sundararajan, A. Taly, and Q. Yan. Axiomatic attribution
for deep networks. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 3319–
3328. JMLR. org, 2017. 2

[39] R. S. Sutton and A. G. Barto. Reinforcement Learning. MIT
Press, Cambridge, MA, 2nd edition, 2018. 1

[40] Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot,
and N. de Freitas. Dueling network architectures for deep
reinforcement learning. 2015. 2

[41] L. Weitkamp, E. van der Pol, and Z. Akata. Visual rationaliza-
tions in deep reinforcement learning for Atari games. 2019.
2

[42] Z. Yang, S. Bai, L. Zhang, and P. H. S. Torr. Learn to interpret
Atari agents. 2018. 3, 4, 5, 6, 8, 10

[43] L. Yuezhang, R. Zhang, and D. H. Ballard. An initial attempt
of combining visual selective attention with deep reinforce-
ment learning. 2018. 3

[44] T. Zahavy, N. Ben-Zrihem, and S. Mannor. Graying the black
box: Understanding DQNs. In International Conference on
Machine Learning, pages 1899–1908, 2016. 2

[45] R. Zhang, Z. Liu, L. Guan, L. Zhang, M. M. Hayhoe, and
D. H. Ballard. Atari-HEAD: Atari human eye-tracking and
demonstration dataset. CoRR, abs/1903.06754, 2019. 2, 3

[46] R. Zhang, Z. Liu, L. Zhang, J. A. Whritner, K. S. Muller,
M. M. Hayhoe, and D. H. Ballard. AGIL: Learning attention
from human for visuomotor tasks. In Proceedings of the
European Conference on Computer Vision (ECCV), pages
663–679, 2018. 2, 3, 6, 7

6. Appendix
6.1. Performance details

Figs. 6–7 show curves for some models omitted in Fig. 3.
Figs. 8–14 show in detail performance evaluations sum-

marized in Table 3. Each scatterplot corresponds to one
model. Each circle in each scatterplot corresponds to one
completed episode. The horizontal axis shows the number of
steps in the episodes; the vertical axis shows attained reward.
Color is proportional to density.

6.2. Breakout is censored

We pay special attention to Breakout (Fig. 8–9) because
it is a popular benchmark. During experimentation, we
noticed that none of the episodes attained a score greater
than 864. It turned out that this was by design; the blocks
could be cleared out only twice and did not respawn for
the third time. This feature hampers our ability to compare
agents that play the game; indeed, performance approaches
864 asymptotically, while variance remains high, making
differences between models imperceptible. To work around
this issue, we modified the original game so that blocks
would respawn each time they are cleared and called the
modified version “BreakoutInfinite”. We did so by patching
the atari-py wrapper from OpenAI to overwrite the score
value in the emulator RAM: as soon as the value of 864 is
attained, we replace it with 432, which triggers the built-
in game logic for respawning blocks. We evaluated all of
our models on the modified environment in addition to the
standard one. The results are shown in Table 5.

Game Breakout BreakoutInfinite

Nature CNN [24] 618±209 652±274 (+5.4%)
DAQN [36] 601±201 622±245 (+3.5%)
RS-PPO [42] 605±202 625±244 (+3.3%)
RS-PPO [42] w/o padding 591±199 606±234 (+2.5%)

Sparse FLS 624±211 663±283 (+6.4%)
Sparse FLS + sum-pooling 520±183 529±204 (+1.6%)
Sparse FLS + norm 598±200 621±247 (+3.8%)
Sparse FLS w/ 1× 1 convs 621±207 650±272 (+4.8%)
Sparse FLS w/ SoftPlus2 612±208 641±268 (+4.8%)
Sparse FLS w/o final ReLU 589±207 614±255 (+4.4%)
Sparse FLS w/o final ReLU + SP 480±158 484±172 (+0.9%)
Sparse + FLS after first conv layer 640±212 689±291 (+7.6%)
Sparse + FLS after each conv layer 633±217 681±302 (+7.7%)
Dense FLS + sum-pooling 532±173 534±182 (+0.3%)
Dense FLS w/o final ReLU + SP 503±162 506±171 (+0.6%)

Table 5: Comparison of evaluation scores for original and
modified Breakout. SP denotes sum-pooling. Colors corre-
spond to Fig. 3.

We see that, as expected, in all cases the models perform
better. However, the difference is not overwhelming, and
never exceeds 8%. Although we have not tested this, we
hypothesize that training on “BreakoutInfinite” may improve
model performance.

0

2000

4000

6000

8000

BeamRider

0

100

200

300

400

500

600

700

Breakout

0

1000

2000

3000

4000

5000

6000

MsPacman

0

2000

4000

6000

8000

10000 SpaceInvaders

0

1000

2000

3000

4000

5000

Enduro

0 1 2 3 4 5
1e7

0

500

1000

1500

2000

2500 Seaquest

Sparse FLS
Sparse FLS + norm
Sparse FLS w/ 1 × 1 convs

Sparse FLS w/ SoftPlus2
Sparse + FLS after first conv layer
Sparse + FLS after each conv layer

Figure 6: Reward curves for some models omitted in Fig. 3,
highlighting various modifications of Sparse FLS.

0

2000

4000

6000

8000

BeamRider

0

100

200

300

400

500

600

700

Breakout

0

1000

2000

3000

4000

5000

6000

MsPacman

0

2000

4000

6000

8000

10000 SpaceInvaders

0

1000

2000

3000

4000

5000

Enduro

0 1 2 3 4 5
1e7

0

500

1000

1500

2000

2500 Seaquest

RS-PPO
RS-PPO w/o padding
Sparse FLS w/o final ReLU

Sparse FLS w/o final ReLU + SP
Dense FLS + sum-pooling
Dense FLS w/o final ReLU + SP

Figure 7: Reward curves for some models omitted in Fig. 3.
Note that RS-PPO w/o padding performs about as well as
vanilla RS-PPO, and missing ReLU before attention destroys
performance (except for Dense FLS on Seaquest).

0

200

400

600

800

Na
tu

re
 C

NN

Seed 1 Seed 9 Seed 17 Seed 25 Seed 33

0

200

400

600

800

DA
QN

0

200

400

600

800

RS
-P

PO

0

200

400

600

800

RS
-P

PO
 w

/o
 p

ad
di

ng

0

200

400

600

800

Sp
ar

se
 F

LS

0

200

400

600

800

Sp
ar

se
 F

LS
 +

 su
m

-p
oo

lin
g

0

200

400

600

800

Sp
ar

se
 F

LS
 +

 n
or

m

0

200

400

600

800

Sp
ar

se
 F

LS
 w

/ 1
×

1
co

nv
s

0

200

400

600

800

Sp
ar

se
 F

LS
 w

/ S
of

tP
lu

s 2

0

200

400

600

800

Sp
ar

se
 F

LS
 w

/o
 fi

na
l R

eL
U

0

200

400

600

800

Sp
ar

se
 F

LS
 w

/o
 fi

na
l R

eL
U

+
SP

0

200

400

600

800

Sp
ar

se
 +

 F
LS

 a
fte

r
fir

st
 c

on
v

la
ye

r

0

200

400

600

800

Sp
ar

se
 +

 F
LS

 a
fte

r
ea

ch
 c

on
v

la
ye

r

0

200

400

600

800

De
ns

e
FL

S
+

su
m

-p
oo

lin
g

4000 8000 12000 16000
0

200

400

600

800

De
ns

e
FL

S
w/

o
fin

al
 R

eL
U

+
SP

4000 8000 12000 16000 4000 8000 12000 16000 4000 8000 12000 16000 4000 8000 12000 16000

Figure 8: Breakout scatterplot.

0

500

1000

1500

2000

2500

3000

Na
tu

re
 C

NN

Seed 1 Seed 9 Seed 17 Seed 25 Seed 33

0

500

1000

1500

2000

2500

3000

DA
QN

0

500

1000

1500

2000

2500

3000

RS
-P

PO

0

500

1000

1500

2000

2500

3000

RS
-P

PO
 w

/o
 p

ad
di

ng

0

500

1000

1500

2000

2500

3000

Sp
ar

se
 F

LS
0

500

1000

1500

2000

2500

3000

Sp
ar

se
 F

LS
 +

 su
m

-p
oo

lin
g

0

500

1000

1500

2000

2500

3000

Sp
ar

se
 F

LS
 +

 n
or

m

0

500

1000

1500

2000

2500

3000

Sp
ar

se
 F

LS
 w

/ 1
×

1
co

nv
s

0

500

1000

1500

2000

2500

3000

Sp
ar

se
 F

LS
 w

/ S
of

tP
lu

s 2

0

500

1000

1500

2000

2500

3000

Sp
ar

se
 F

LS
 w

/o
 fi

na
l R

eL
U

0

500

1000

1500

2000

2500

3000

Sp
ar

se
 F

LS
 w

/o
 fi

na
l R

eL
U

+
SP

0

500

1000

1500

2000

2500

3000

Sp
ar

se
 +

 F
LS

 a
fte

r
fir

st
 c

on
v

la
ye

r

0

500

1000

1500

2000

2500

3000

Sp
ar

se
 +

 F
LS

 a
fte

r
ea

ch
 c

on
v

la
ye

r

0

500

1000

1500

2000

2500

3000

De
ns

e
FL

S
+

su
m

-p
oo

lin
g

4000 8000 12000 16000
0

500

1000

1500

2000

2500

3000

De
ns

e
FL

S
w/

o
fin

al
 R

eL
U

+
SP

4000 8000 12000 16000 4000 8000 12000 16000 4000 8000 12000 16000 4000 8000 12000 16000

Figure 9: BreakoutInfinite scatterplot. See 6.2 for more
details.

0

5000

10000

15000

20000

Na
tu

re
 C

NN

Seed 1 Seed 9 Seed 17 Seed 25 Seed 33

0

5000

10000

15000

20000

DA
QN

0

5000

10000

15000

20000

RS
-P

PO

0

5000

10000

15000

20000

RS
-P

PO
 w

/o
 p

ad
di

ng

0

5000

10000

15000

20000

Sp
ar

se
 F

LS

0

5000

10000

15000

20000

Sp
ar

se
 F

LS
 +

 su
m

-p
oo

lin
g

0

5000

10000

15000

20000

Sp
ar

se
 F

LS
 +

 n
or

m

0

5000

10000

15000

20000

Sp
ar

se
 F

LS
 w

/ 1
×

1
co

nv
s

0

5000

10000

15000

20000

Sp
ar

se
 F

LS
 w

/ S
of

tP
lu

s 2

0

5000

10000

15000

20000

Sp
ar

se
 F

LS
 w

/o
 fi

na
l R

eL
U

0

5000

10000

15000

20000

Sp
ar

se
 F

LS
 w

/o
 fi

na
l R

eL
U

+
SP

0

5000

10000

15000

20000

Sp
ar

se
 +

 F
LS

 a
fte

r
fir

st
 c

on
v

la
ye

r

0

5000

10000

15000

20000

Sp
ar

se
 +

 F
LS

 a
fte

r
ea

ch
 c

on
v

la
ye

r

0

5000

10000

15000

20000

De
ns

e
FL

S
+

su
m

-p
oo

lin
g

0 2500 5000 7500 10000
0

5000

10000

15000

20000

De
ns

e
FL

S
w/

o
fin

al
 R

eL
U

+
SP

0 2500 5000 7500 10000 0 2500 5000 7500 10000 0 2500 5000 7500 10000 0 2500 5000 7500 10000

Figure 10: BeamRider scatterplot.

0

2000

4000

6000

8000

10000

12000

14000

Na
tu

re
 C

NN

Seed 1 Seed 9 Seed 17 Seed 25 Seed 33

0

2000

4000

6000

8000

10000

12000

14000

DA
QN

0

2000

4000

6000

8000

10000

12000

14000

RS
-P

PO

0

2000

4000

6000

8000

10000

12000

14000

RS
-P

PO
 w

/o
 p

ad
di

ng

0

2000

4000

6000

8000

10000

12000

14000

Sp
ar

se
 F

LS
0

2000

4000

6000

8000

10000

12000

14000

Sp
ar

se
 F

LS
 +

 su
m

-p
oo

lin
g

0

2000

4000

6000

8000

10000

12000

14000

Sp
ar

se
 F

LS
 +

 n
or

m

0

2000

4000

6000

8000

10000

12000

14000

Sp
ar

se
 F

LS
 w

/ 1
×

1
co

nv
s

0

2000

4000

6000

8000

10000

12000

14000

Sp
ar

se
 F

LS
 w

/ S
of

tP
lu

s 2

0

2000

4000

6000

8000

10000

12000

14000

Sp
ar

se
 F

LS
 w

/o
 fi

na
l R

eL
U

0

2000

4000

6000

8000

10000

12000

14000

Sp
ar

se
 F

LS
 w

/o
 fi

na
l R

eL
U

+
SP

0

2000

4000

6000

8000

10000

12000

14000

Sp
ar

se
 +

 F
LS

 a
fte

r
fir

st
 c

on
v

la
ye

r

0

2000

4000

6000

8000

10000

12000

14000

Sp
ar

se
 +

 F
LS

 a
fte

r
ea

ch
 c

on
v

la
ye

r

0

2000

4000

6000

8000

10000

12000

14000

De
ns

e
FL

S
+

su
m

-p
oo

lin
g

0 2000 4000
0

2000

4000

6000

8000

10000

12000

14000

De
ns

e
FL

S
w/

o
fin

al
 R

eL
U

+
SP

0 2000 4000 0 2000 4000 0 2000 4000 0 2000 4000

Figure 11: MsPacman scatterplot.

0

25000

50000

75000

100000

125000

150000

Na
tu

re
 C

NN

Seed 1 Seed 9 Seed 17 Seed 25 Seed 33

0

25000

50000

75000

100000

125000

150000

DA
QN

0

25000

50000

75000

100000

125000

150000

RS
-P

PO

0

25000

50000

75000

100000

125000

150000

RS
-P

PO
 w

/o
 p

ad
di

ng

0

25000

50000

75000

100000

125000

150000

Sp
ar

se
 F

LS

0

25000

50000

75000

100000

125000

150000

Sp
ar

se
 F

LS
 +

 su
m

-p
oo

lin
g

0

25000

50000

75000

100000

125000

150000

Sp
ar

se
 F

LS
 +

 n
or

m

0

25000

50000

75000

100000

125000

150000

Sp
ar

se
 F

LS
 w

/ 1
×

1
co

nv
s

0

25000

50000

75000

100000

125000

150000

Sp
ar

se
 F

LS
 w

/ S
of

tP
lu

s 2

0

25000

50000

75000

100000

125000

150000

Sp
ar

se
 F

LS
 w

/o
 fi

na
l R

eL
U

0

25000

50000

75000

100000

125000

150000

Sp
ar

se
 F

LS
 w

/o
 fi

na
l R

eL
U

+
SP

0

25000

50000

75000

100000

125000

150000

Sp
ar

se
 +

 F
LS

 a
fte

r
fir

st
 c

on
v

la
ye

r

0

25000

50000

75000

100000

125000

150000

Sp
ar

se
 +

 F
LS

 a
fte

r
ea

ch
 c

on
v

la
ye

r

0

25000

50000

75000

100000

125000

150000

De
ns

e
FL

S
+

su
m

-p
oo

lin
g

0 20000 40000 60000 80000
0

25000

50000

75000

100000

125000

150000

De
ns

e
FL

S
w/

o
fin

al
 R

eL
U

+
SP

0 20000 40000 60000 80000 0 20000 40000 60000 80000 0 20000 40000 60000 80000 0 20000 40000 60000 80000

Figure 12: SpaceInvaders scatterplot.

0

2500

5000

7500

10000

12500

15000

Na
tu

re
 C

NN

Seed 1 Seed 9 Seed 17 Seed 25 Seed 33

0

2500

5000

7500

10000

12500

15000

DA
QN

0

2500

5000

7500

10000

12500

15000

RS
-P

PO

0

2500

5000

7500

10000

12500

15000

RS
-P

PO
 w

/o
 p

ad
di

ng

0

2500

5000

7500

10000

12500

15000

Sp
ar

se
 F

LS
0

2500

5000

7500

10000

12500

15000

Sp
ar

se
 F

LS
 +

 su
m

-p
oo

lin
g

0

2500

5000

7500

10000

12500

15000

Sp
ar

se
 F

LS
 +

 n
or

m

0

2500

5000

7500

10000

12500

15000

Sp
ar

se
 F

LS
 w

/ 1
×

1
co

nv
s

0

2500

5000

7500

10000

12500

15000

Sp
ar

se
 F

LS
 w

/ S
of

tP
lu

s 2

0

2500

5000

7500

10000

12500

15000

Sp
ar

se
 F

LS
 w

/o
 fi

na
l R

eL
U

0

2500

5000

7500

10000

12500

15000

Sp
ar

se
 F

LS
 w

/o
 fi

na
l R

eL
U

+
SP

0

2500

5000

7500

10000

12500

15000

Sp
ar

se
 +

 F
LS

 a
fte

r
fir

st
 c

on
v

la
ye

r

0

2500

5000

7500

10000

12500

15000

Sp
ar

se
 +

 F
LS

 a
fte

r
ea

ch
 c

on
v

la
ye

r

0

2500

5000

7500

10000

12500

15000

De
ns

e
FL

S
+

su
m

-p
oo

lin
g

0 25000 50000 75000 100000
0

2500

5000

7500

10000

12500

15000

De
ns

e
FL

S
w/

o
fin

al
 R

eL
U

+
SP

0 25000 50000 75000 100000 0 25000 50000 75000 100000 0 25000 50000 75000 100000 0 25000 50000 75000 100000

Figure 13: Enduro scatterplot.

500

1000

1500

2000

2500

3000

3500

Na
tu

re
 C

NN

Seed 1 Seed 9 Seed 17 Seed 25 Seed 33

500

1000

1500

2000

2500

3000

3500

DA
QN

500

1000

1500

2000

2500

3000

3500

RS
-P

PO

500

1000

1500

2000

2500

3000

3500

RS
-P

PO
 w

/o
 p

ad
di

ng

500

1000

1500

2000

2500

3000

3500

Sp
ar

se
 F

LS

500

1000

1500

2000

2500

3000

3500

Sp
ar

se
 F

LS
 +

 su
m

-p
oo

lin
g

500

1000

1500

2000

2500

3000

3500

Sp
ar

se
 F

LS
 +

 n
or

m

500

1000

1500

2000

2500

3000

3500

Sp
ar

se
 F

LS
 w

/ 1
×

1
co

nv
s

500

1000

1500

2000

2500

3000

3500

Sp
ar

se
 F

LS
 w

/ S
of

tP
lu

s 2

500

1000

1500

2000

2500

3000

3500

Sp
ar

se
 F

LS
 w

/o
 fi

na
l R

eL
U

500

1000

1500

2000

2500

3000

3500

Sp
ar

se
 F

LS
 w

/o
 fi

na
l R

eL
U

+
SP

500

1000

1500

2000

2500

3000

3500

Sp
ar

se
 +

 F
LS

 a
fte

r
fir

st
 c

on
v

la
ye

r

500

1000

1500

2000

2500

3000

3500

Sp
ar

se
 +

 F
LS

 a
fte

r
ea

ch
 c

on
v

la
ye

r

1000 1500 2000 2500 3000 3500
500

1000

1500

2000

2500

3000

3500

De
ns

e
FL

S
+

su
m

-p
oo

lin
g

1000 1500 2000 2500 3000 3500 1000 1500 2000 2500 3000 3500 1000 1500 2000 2500 3000 3500 1000 1500 2000 2500 3000 3500

0 2000 4000 6000 8000 10000
0

10000
20000
30000
40000
50000
60000
70000
80000

De
ns

e
FL

S
w/

o
fin

al
 R

eL
U

+
SP

0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000

Figure 14: Seaquest scatterplot. Note the difference in scale
on the vertical axis between the last model and the other
ones.

