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Abstract

Researches have shown that deep neural networks are
vulnerable to malicious attacks, where adversarial images
are created to trick a network into misclassification even if
the images may give rise to totally different labels by human
eyes. To make deep networks more robust to such attacks,
many defense mechanisms have been proposed in the litera-
ture, some of which are quite effective for guarding against
typical attacks. In this paper, we present a new black-box
attack termed AdvFoolGen, which can generate attacking
images from the same feature space as that of the natu-
ral images, so as to keep baffling the network even though
state-of-the-art defense mechanisms have been applied. We
systematically evaluate our model by comparing with well-
established attack algorithms. Through experiments, we
demonstrate the effectiveness and robustness of our attack
in the face of state-of-the-art defense techniques and unveil
the potential reasons for its effectiveness through principled
analysis. As such, AdvFoolGen contributes to understand-
ing the vulnerability of deep networks from a new perspec-
tive and may, in turn, help in developing and evaluating new
defense mechanisms.

1. Introduction
Deep neural networks have found wide applications in

many computer vision tasks like face and object recog-
nition, image segmentation, scene understanding etc., of-
ten delivering state-of-the-art performance for a given task.
However, in recent years, it has been discovered that deep
networks can be easily fooled/attacked: images can be cre-
ated to trick a network into misclassification, although such
created images may be classified correctly by humans. This
has become a major concern for deep networks since they
are becoming the backbone of real-world applications like
access control and surveillance, where there may be adver-
sarial agents constantly trying to outsmart the system.

Adversarial attacks on deep networks are broadly cate-
gorized as white-box, gray-box and black-box attacks, de-
pending on the degree of access that the attacker has to the

targeted network. The white-box attack is the one where
the attacker has full access to the network (its architecture
as well as the parameters). For a gray-box attack, the at-
tacker has no access to the parameters but knows the archi-
tecture of the network. A black-box attack does not assume
knowledge of a network’s architecture or its parameters.

Although white-box attacks generally do better in baf-
fling a targeted network than black-box attacks, the latter
require minimum information of the targeted network and
thus are favored by real-world attackers. Black-box attacks
usually rely on a property called transferability [12] of the
adversarial images for their design. This property refers to
crafting the adversarial images via a substitute model and
then using them for fooling the targeted model (since the
parameters and the architecture of the targeted network is
unknown). This can be explained considering the observa-
tion that the decision boundaries for a given feature space
are similar for various networks if they all can deliver a high
classification accuracy on the same test data.

Images generated using different attack types can be cat-
egorized as adversarial images or fooling images. Fooling
images may look like random noise to human eyes but are
given a class label with high confidence by a deep network.
On the other hand, adversarial images may look just like
some of the authentic images although often perturbations
(either visible or imperceptible to human eyes) have been
introduced to trick a network into misclassification.

While many earlier attack algorithms can deliver high
fooling ratio in fooling typical deep classifiers, recent years
have seen effective defenses techniques [4, 20, 5, 26, 19,
27, 29], which can defeat many existing attacking schemes.
A defense mechanism can be as simple as retraining the
network with adversarial images as additional inputs [25].
More complex mechanisms often employ a new network
for explicitly identifying the adversarial images [13, 23, 21].
Yet, new attack schemes keep emerging [18, 28, 24, 30, 32],
and this attack-defense game will continue.

In this paper, we present a robust black-box attack ap-
proach that does not make explicit use of a substitute model
for generating the images. This does not confine our attack
to the group of the classifiers to which the substitute model
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belongs. Our approach employs a VAE-GAN [10] architec-
ture as a building block and utilizes multiple target labels
for constructing the objective function. These, in conjunc-
tion with employing a combination of both real and random
images as input, help to produce new images lying in vari-
ous portions of the original image feature space, hence cre-
ating a hurdle for existing defense mechanisms. As a result,
our approach, termed as AdvFoolGen, can maintain a good
fooling ratio in the face of many defense mechanisms. We
call the created images as ‘AdvFool images’ since they are
not random noise but also not exactly similar to the original
images either.

We first evaluate our framework using initial fooling ra-
tio as a criterion, compared with well-established attack ap-
proaches. We then showcase how these images are robust
to existing defenses like retraining the network, adversarial
training [14] and use of input transformations for retrain-
ing the network [7]. Moreover, we also illustrate why Adv-
FoolGen can fool the targeted network consistently through
a principled analysis. As such, the work contributes to un-
derstanding the vulnerability of deep networks from a new
perspective and may, in turn, help developing and evaluat-
ing new defense mechanisms.

Section 2 discusses important related work in the area
of adversarial attacks and defenses. Section 3 is an elabo-
rate explanation of our approach. Section 4 contains the ex-
periments and results. Section 5 includes the reasons why
AdvFool images can fool the neural network even if state-
of-the-art defenses are used, and Section 6 concludes the
paper.

2. Related Work
The existence of the adversarial negatives of neural net-

works, despite the high performance of the network, was
first discussed in [25]. [16] showed that it is extremely
easy to fool a network with images that look like random
noise to the human eye, crafted using evolutionary algo-
rithms. There are two reasons mentioned for why these
images get classified with high confidence. First, the fool-
ing images contain the features matching one of the target
class, because the evolutionary algorithms produce the fea-
tures which are unique to a class rather than features from
all the classes. Second, the neural networks do not learn
the global structure of the objects but learn low-level and
middle-level features.

[6] presented a simple approach called Fast Gradient
Sign Method (FGSM) for producing adversarial images
which look similar to the original ones. It is a white-box at-
tack that works by adding or subtracting the sign of the gra-
dient such that the loss increases. They also mentioned that
the linearity of the networks in high-dimensional spaces is
the reason for the existence of such adversarial images. [15]
proposed an attack called DeepFool based on iterative lin-

earization of the target network for generating adversarial
images. These images have minimum perturbations when
compared to those produced by the FGSM method.

The Carlini-Wagner (C&W) attack, a white-box attack
that produces very strong adversarial images, was first in-
troduced in [3]. It uses box-constraints and perturbation
norm to form a cost function, which is optimized to gener-
ate adversarial images. Though the fooling ratio is 99% for
C&W attack, they are computationally very expensive. In
[18], an encoder-decoder architecture is used for generating
the perturbations which are then added to the original image
to form the adversarial image. This attack has a high fool-
ing ratio and is faster than the previous adversarial attacks.
To generate adversarial images robust to the input transfor-
mations, [2] proposed an algorithm called Expectation over
Transformation.

More recently, there are works utilizing variants of Gen-
erative Adversarial Networks (GANs) for generating adver-
sarial images to design fast and efficient attacks [28, 24, 31].
These methods assume that they either have access to the
target classifier (semi-white box) or take a substitute dis-
tilled model (black-box) when training the generator of
GAN which generates the adversarial examples. How-
ever, such assumption may not be realistic in real scenar-
ios. Moreover, the adversarial examples generated by above
approaches have been narrowed down to a relatively small
subspace of the space where the original images lie.

To tackle the hazard caused by the adversarial/fooling
images, several methods for defending against these adver-
sarial attacks have been proposed. Initially, [25] mentioned
that training the network on a combined dataset of origi-
nal and adversarial images improves the robustness of the
network to adversarial attacks. [14] further discussed the
adversarial robustness of the deep neural networks using
MNIST and CIFAR-10 datasets. It also presents an iterative
strategy called adversarial training. Here, the network is
trained on adversarial images generated during the training
stage. Another effective defense, known as defensive distil-
lation, was proposed in [17]. Based on the use of the knowl-
edge from a DNN for training another neural network, this
defense produced classifiers which are less sensitive to per-
turbations.

[7] proposed the use of input transformations like JPEG
compression, image quilting, bit-depth reduction, total
variance minimization on the images before retraining to
achieve higher robustness. A faster way of defending
against adversarial images was proposed in [29]. The input
images are passed through a random resizing and padding
layer before feeding it to the neural network. This elimi-
nates the need for retraining the network, which saves time
and resources.
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3. Proposed Approach: AdvFoolGen
Consider a classification network P trained on clean im-

ages of C different classes, and the space of the normalized
natural images Xo is represented by R[0,1]. Without loss
of generality, we assume P achieves good performance on
the clean images. Our aim is to generate adversarial or/and
fooling images Xaf that belong to the same space as the
clean images but can achieve high fooling ratio even with
various defense mechanisms applied. More specifically, if
the correct class of an original image xo is c, our goal is to
make the pre-trained network P predict the corresponding
adversarial or/and fooling image xaf anything other than c,
with the constraint of the distance between xo and xaf to be
as small as possible. Note that we only test on network P
and require no access to the parameters or gradients from P .
This framework can also be extended to other applications
like segmentation with appropriate changes in the similar-
ity distance and loss. Without losing generality, we focus
on the task of fooling the image classification models.

Although the feature space R[0,1] of X is almost infinite
in terms of the various combinations of different values, the
original image set itself only occupies a relatively small re-
gion in R[0,1] [12]. This leaves a huge space for the attack-
ers to explore for success. On the other hand, the adversarial
or/and fooling images generated by the current attack algo-
rithms often gather in another small region in R[0,1], which
in turn leaves room for a defense scheme to work by en-
abling the target network P to recognize the small, ‘poison’
region where majority of the attacking images are present.
We propose a new framework for generating diverse and
robust adversarial/fooling images by forcing the generated
images to utilize the feature space R[0,1] greedily. More-
over, the min-max game training strategy is used for train-
ing a Generative Adversarial Network (GAN) to strengthen
the generator in our attack model.

Fig. 1 illustrates the architecture of our framework. The
input is a four-channel image xi consisting of an original
colored image xo and a gray-scale noise image of one chan-
nel xn, with a relative magnitude. xi is first fed to an en-
coder to learn the parameters of the latent distribution µx

and log(σx), followed by a re-sampling process from the
learned µx and log(σx). Next, the re-sampled latent repre-
sentation goes through a decoder to reconstruct an image
xaf . Note that in our case, the structure of the encoder
and the decoder is not symmetric as the input consists of
four channels and the reconstructed image consists of three
channels only. The next step is to feed both xo and xaf
to a discriminator D to detect whether the image is real
or fake. Simultaneously, xo and xaf are passed through
the pre-trained model P to check if the predicted labels are
different. We followed the WGAN [1] training strategy to
ensure stability of training. The loss is defined by four com-
ponents. The first one is the re-sampling loss Lre (Eq. (1)).

Algorithm 1: AdvFoolGen
Input : Original images Xo, Noise mask Xn, model

G, D and P
Output: AdvFool image Xaf

for each epoch e = 1, 2, ... do
while Training do

for each batch b = 1, 2, ... do
Generate a noise mask Xn;
Construct input image as cat(Xo, Xn);
for i = 1 to 5 do

Update model D;
end
Update model G;

end
end
while Testing do

Generate a noise mask Xn;
Construct input image as cat(Xo, Xn);
Output Xaf ;
Compute fooling ratio using the predicted
label given by P ;

end
end

The parameters of the latent representation are drawn from
a multivariate Gaussian distribution N(0, 1).

Lre = DKL(N(µx, σx)||N(0, 1)) (1)

where DKL represents the KL divergence.
The second loss component is the similarity loss LS (Eq.

(2)), which aims at decreasing the pixel-wise distance be-
tween xo and xaf .

LS = ||xo − xaf ||2 (2)

The third loss component is the GAN loss LGAN (Eq.
(3)) that uses a discriminator to distinguish xaf from xo
and in turn makes the generator stronger.

LGAN = log(D(xo)) + log(1−D(G(z))) (3)

The last loss component is the fooling loss Laf (Eq. (4)).
Based on the type of an attack (non-targeted attack or tar-
geted attack), the fooling loss takes different forms. In our
work, we force the predicted label of image xaf to be close
to the two least likely classes simultaneously, unlike the pre-
vious fooling losses which force the predicted label to be
one target label only [6, 3, 15].

Laf = −
2∑

i=1

log(H(P (xaf )), 1ti) (4)
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Figure 1. The proposed AdvFoolGen framework for generating AdvFool images. The input is a 4-channel image consisting of three original
image channels and a noise channel. The discriminator network D and pre-trained network P compute their respective losses with the
original image and the corresponding AdvFool image as inputs.

where H(·) is the cross-entropy function, and ti represents
the i-th target label. It is worth mentioning that this fooling
loss can force the adversarial images to lie close to the de-
cision boundary of the two least likely classes in the feature
space, which causes more confusion for the classifier even
with defenses applied. We discuss more details about it in
Section 5.

The total loss for the AdvFoolGen is the weighted sum-
mation of the above four losses, given by Eq. 5. The entire
algorithm is summarized in Algorithm 1.

L = αLre + βLS + γLGAN + λLaf

subject to α+ β + γ + λ = 1.
(5)

In the existing adversarial image generators, one critical
constraint on the adversarial image is resemblance to the
original image. In our case, we impose a relaxed version
of such constraint because of the following considerations:
1) This constraint is a subjective one because the similarity
threshold for the images may vary from person to person,
making it an inconsistent criterion; 2) It confines the ad-
versarial images to a small subspace which can be easily
defended. To utilize the feature space greedily, our gener-
ator generates images that lie between the adversarial im-
ages and fooling images. Thus, we name the images as Ad-
vFool images. The AdvFool images do not look like noise
since it contains some patterns from the corresponding orig-
inal image. On the other hand, the difference is obvious to
the human eye. Fig. 2 shows some AdvFool images along
with their corresponding original images from the CIFAR-
10 dataset. In our experiments, we found that the AdvFool
images yielded a better fooling ratio even with various de-
fenses applied. The details are presented in the next section.

4. Experiments
This section includes the experimental results showing

the success of our approach. First, the experiments are com-

pared with well-established baseline attacks - Fast Gradi-
ent Sign Method (FGSM) [6], Iterative Fast Gradient Sign
Method (I-FGSM) [9], DeepFool [15], Carlini & Wag-
ner (C&W) [3] and Generative Adversarial Perturbations
(GAP) [18] in terms of the initial fooling ratio explicitly.
Next, we show the robustness of the AdvFool images by
re-attacking the target network strengthened with state-of-
the-art defense strategies like retraining the network, adver-
sarial training [14], bit-depth reduction and JPEG compres-
sion [7]. We also include the details about the experimental
settings and evaluation criteria in this section.

Figure 2. (a) The original images from CIFAR-10 dataset. (b) The
corresponding AdvFool images. Though the difference between
the AdvFool and original images is visible to human eye, these
images still capture the colors and object patterns from the original
images.

4.1. Experimental Setting

We use CIFAR-10 dataset [8] and TinyImageNet dataset
[11] for our experiments. CIFAR-10 contains 10 classes,
and each class has 5,000 training images and 1,000 test im-
ages. Each image has a height and width of 32 and consists
of 3 channels. The target network is VGG-19 [22] clas-
sifier trained on clean CIFAR-10 images achieving a test
accuracy of 92.42%. TinyImagenet is a smaller version of
ImageNet dataset. It has 200 classes, and each class has
500 training and 50 validation images. Each images size
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Attack Algorithm Initial Fooling Ratio
CIFAR10 TinyImagenet

Top1 Top5
FGSM 92.82% * 88.55% * 75.18% *

I-FGSM 99% * 100% * 98.86% *
DeepFool 99% 99% 83.77%

C&W 100% 99.12% 90.63%
GAP 82% 94.98% 87.01%

AdvFoolGen 68.5% - 78.36%** 95.41%-97.65%** 90.14%-93.07%**
Table 1. Initial fooling ratio for the AdvFoolGen compared with state-of-the-art attacks on CIFAR-10 and TinyImageNet Dataset. *ε =
0.07 for FGSM and I-FGSM. **We report a range for AdvFoolGen attack as the fooling ratio varies from epoch to epoch.

is 64 × 64 × 3. The target network for TinyImagenet is
ResNet18 with Top1 and Top5 validation accuracy of 72.3%
and 91.2% respectively. No overfitting is observed while
training the classifiers for both datasets. We use the test
and validation data to report our results for CIFAR-10 and
TinyImageNet respectively.

For the AdvFool images generator, the noise mask xn
is drawn from a uniform distribution of U(0,mgn), where
mgn is the noise magnitude. Though the choice of noise
magnitude is not unique, we found that different magnitudes
yield similar performance through an empirical study. Thus,
we used a fixed value of 0.1. The model is trained from
scratch and it reaches a relatively stable stage after a few
epochs. Thereafter, we use the AdvFool images generated
from different epochs to attack the pre-trained network.

To demonstrate the robustness of AdvFool images, we
attack the networks equipped with defenses. It is worth
mentioning that initially, we set the ground truth label for
each xaf to be tc, the true label of the corresponding orig-
inal image xo. However, the AdvFool images are visually
between original images and fooling images, and thus us-
ing the original labels is not fair for the defense. Therefore,
we assign additional labels for xaf when applying defenses
that require ground truth of AdvFool images. More infor-
mation about the labeling of AdvFool images is discussed
in the later part of this section.

4.2. Initial Fooling Ratio

To evaluate the success of the attack, we use the fooling
ratio as the evaluation metric which is calculated using Eq.
(6).

Fratio =

∑C
c=0 t

xaf
c 6= tc
N

(6)

where txaf
c represents the predicted label for xaf , tc is the

predicted label for xo and N is the number of all images in
the test set.

Table 4.1 shows the initial fooling ratio of different at-
tack methods on CIFAR-10 dataset and TinyImagenet. Ad-
vFoolGen achieves a reasonable (more than half the images
can fool) but not a competitive (15%-30% lower than oth-

ers) fooling ratio as compared to the existing approaches.
As TinyImageNet dataset is a smaller version of ImageNet
dataset, to remain consistent with the notations the latter
dataset uses, we report two fooling ratios - Top1 and Top5.
It can be seen that Top1 fooling ratio is always higher than
the Top5 fooling ratio, which is intuitive since the Top1 ac-
curacy is always lower than the Top5 accuracy. The moder-
ate Top1 accuracy of the target classifier explains the high
Top1 and Top5 fooling ratio for all the attacks. Similar to
the results obtained on CIFAR-10 dataset, we observe that
the fooling ratio of AdvFoolGen attack is lower than most
of the state-of-the-art attacks. However, the majority of the
AdvFool images can successfully fool the network.

Although the initial fooling ratio is a common measure
to evaluate how good an attacker is, it has several draw-
backs. Using just the fooling ratio, we cannot evaluate the
diversity of the generated images nor robustness of the at-
tack, which are two critical properties contributing to con-
sistent fooling in real-world applications. In other words,
if an attacker can only fool the pre-trained network once
and fails under one simple defense technique, it is not a
strong attacker. Thus, the adversarial/fooling images that
can fool the pre-trained network strengthened with defenses
consistently have drawn more attention recently. In the next
section, we demonstrate the robustness of AdvFool images
with experiments using various defenses.

4.3. Effect of Defenses on Fooling Ratio

Table 4.2 shows the fooling ratio of different attacks as
the defenses are employed for CIFAR-10 dataset. The re-
sults on TinyImageNet are included in the supplementary
material. The 2nd column shows the fooling ratio against
retrained networks. For the existing attackers, we retrain the
pre-trained network with the same number of the adversar-
ial images as that of the original images. For AdvFoolGen,
we retrain the target network by slightly revising the struc-
ture: more output labels instead of 10, the details of which
are discussed next.

As AdvFool images are between adversarial and fool-
ing images, we tested them using three different retraining
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Attack Retraining* Adv Training BDR-3 BDR-8 JPEG
FGSM 9.76% 35.9% 18.21% 16.2% 18.6%

I-FGSM 8.22% 39.3% 12.32% 11.2% 13.1%
DeepFool 9.87% 26.5% 14.55% 14.1% 14.8%

C&W 9.2% 41.25% 12.97% 12.19% 15.67%
GAP 8.91% 9.04% 14.99% 15.09% 19.89%

AdvFoolGen 27.3%-58.1% 59.56%-65.26% 37.08%-52.82% 24.76%-35.4% 24.44%-50.64%
Table 2. Fooling ratio after the defenses are applied. The fooling ratio for AdvFoolGen is higher than existing attacks when it comes to
networks with added defense mechanisms. For Bit-Depth Reduction (BDR), the results are reported for bit-depth of 3 and 8. For JPEG, all
the images are compressed at the quality level of 75 (out of 100). *Equal number of original and adversarial images are used for retraining.
For AdvFoolGen attack, 5000 AdvFool images are used for training and 1000 AdvFool images are used for testing and the total number of
classes is 11.

strategies. First, we used their original class labels i.e. treat-
ing them as adversarial images for retraining. Second, we
created 10 new corresponding classes for the AdvFool im-
ages i.e. if the original label of an AdvFool image is 2,
then it will be assigned label 12 while retraining. In this
case, we get a total of 20 classes. Lastly, we created a new
class for all the AdvFool images making the total number
of classes equal to 11. For the first two types of retraining,
the network could not learn the AdvFool images very well
(around 25% test accuracy on AdvFool images) and eventu-
ally led to more confusion, reducing the accuracy on origi-
nal images significantly. However, for the 11-class retrain-
ing strategy, the network could learn the AdvFool images
very well (around 95% test accuracy on AdvFool images).
Therefore, we present all the results for AdvFoolGen attack
with one additional class (11-class strategy). If the network
does not classify an AdvFool image as belonging to 11th

class, it is considered to be fooling the network.
Compared with baseline attacks, although all the fooling

ratio decreased significantly on the retrained networks, at
least 30% of the AdvFool images still fooled the retrained
network. Also, the accuracy on the original images only
slightly decreased to 88.05%.

Considering the 3rd column, it is observed that the ad-
versarially trained networks can no longer be fooled by
the state-of-the-art attacks with a high fooling ratio. How-
ever, AdvFool images can fool such a network effortlessly.
Moreover, we observed that with increased number of train-
ing AdvFool images from different epochs, the accuracy on
both original and AdvFool images decreased significantly.
The high fooling ratio indicates that AdvFoolGen can get
past the adversarial training strategy with ease.

The 4th and 5th columns show the results for Bit-Depth
Reduction on the input images followed by retraining. We
use a bit depth of 3 and 8. The last column shows the JPEG
compression defense results where all the images are com-
pressed at the quality level of 75 (out of 100). Yet, a sig-
nificant number of AdvFool images can fool the network
retrained with the transformed images.

The fooling ratio for all the baseline attacks drop dramat-

Figure 3. The first row shows the original images from CIFAR-10
dataset. Row 2-5 are AdvFool images generated using generators
of different epoch. The variations between the images from dif-
ferent epochs are clearly visible. Though the images are morphed,
they do not resemble objects from any other classes.

ically after the defenses are applied. A decrease in the fool-
ing ratio is observed for the AdvFoolGen attack as well but
it is relatively high compared to the baseline attacks. Adv-
FoolGen attack suffers only 20%-30% decrease in the fool-
ing ratio. On an average, 30% of the AdvFool images still
fool the network. Therefore, in real-world applications, Ad-
vFool images can be considered as more ‘poisonous’ than
the adversarial images generated by existing attacks.

Taking a closer look at Table 4.2, we found that the I-
FGSM and C&W attacks with almost 100% initial fool-
ing ratio, completely failed when simple defenses were em-
ployed. On the contrary, FGSM which has the lowest fool-
ing ratio among the baseline approaches achieves high fool-
ing ratio against the defenses. This supports our claim that
the initial fooling ratio may not be a good criterion for eval-
uating the adversarial attacks. Furthermore, the difference
between the initial fooling ratio and re-attack fooling ra-
tio implies that the adversarial images generated by C&W
attack overfit the target network. Thus, these images fail
immediately with only a few changes to the target network.
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Figure 4. Visualizing the features from the layer before classification layer of VGG-19 network in 2-D for C&W (left) adversarial CIFAR-
10 images and the AdvFool (right) CIFAR-10 images. The corresponding original images are represented in both of the figures by black
dots. Two sets of AdvFool images are shown, each from a different epoch generator. While the C&W images remain clustered in a small
subspace, the AdvFool images are spread out and between the classes explaining its higher fooling ratio for defense-equipped networks.
Besides, the two sets of AdvFool images do not overlap completely explaining its fooling ability across various epochs.

Figure 5. The distributions of the mean (left) and variance (right)
used for latent representation of AdvFool images in three different
epochs of the AdvFoolGen attack. For each epoch, the distribution
is Gaussian with different parameters.

5. Why AdvFool Images can Fool the Network?
In this section, we unveil the reasons why AdvFool im-

ages can fool the network in the face of various defense
techniques using two different perspectives. We first care-
fully examine the architecture of our model to discover po-
tential factors leading to the effectiveness and robustness
of AdvFool images. Next, we use statistical tools to ana-
lyze AdvFool images from various epochs to verify several
conjectures that explain the good fooling ratio of AdvFool
images.

5.1. Revisiting the architecture of AdvFoolGen

From Fig. 1, it is clear that the reference image of an
AdvFool image is not a pure original image, but a 4-channel
image which is an integration of the original colored image
and an added channel of gray-scale noise image of relatively
small magnitude. We introduce the noise to bring in ran-
domness in the input which helps the generator to explore
the feature space deeper. Although the noise magnitude has
to be chosen from a limited range, the variations of the value
within this limited range are unlimited. The re-sampling
step adds extra randomness which forces the generator to
explore the untouched regions as well. Fig. 3 shows some

AdvFool images from different epochs. It is clear that the
images from different epochs have different perturbations
which are visible to human eye. Due to the almost unlim-
ited range of noise magnitude and the re-sampling process,
every single time a different set of AdvFool images are gen-
erated. Therefore, the network can be fooled even if images
from different epochs are used for retraining. Besides, as
the number of AdvFool images used for retraining increase,
the accuracy on the original images starts to decrease which
is highly undesirable.

We defined fooling loss Laf in such a way that the Adv-
Fool images should be on/near the boundary region of two
least-likely classes, where the original images rarely occur.
The relaxed constraint of the similarity between the origi-
nal image and AdvFool image along with the discriminator
network ensures that the AdvFool image does not visually
go too far away from the corresponding original image. As
a result of these constraints in the fooling loss, the Adv-
Fool images are morphed but never completely change into
images that belong to any of the remaining classes. Thus,
these images lie between adversarial images and fooling
images, making it hard for the classification model to de-
termine their correct labels required for retraining the net-
work. Moreover, the AdvFool images capture features from
three different classes (the original class and two least-likely
classes). It tends to confuse humans while labeling result-
ing in inconsistent labels. Therefore, human labeling for
AdvFool images is not feasible.

5.2. Analytical Study of AdvFool Images

To further support our claims about the AdvFool images,
we analyze the AdvFool images systematically using statis-
tical tools. Fig. 4 is the visualization of the deep features
extracted for a typical batch of CIFAR-10 dataset by the
VGG-19 network just before the classification layer in 2-D.
The original images (black dots) are well-clustered in both
the figures. In the first figure, the C&W adversarial images
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Epoch Mean Variance
KLD(P‖Q) KLD(Q‖P) KLD(P‖Q) KLD(Q‖P)

120 &180 4.91× 1010 1.236× 1010 1.35× 1012 2.99× 1011

120 &240 10.26× 1010 1.298× 1010 2.513× 1012 3.135× 1011

120 &330 10.309× 1010 1.299× 1010 2.539× 1012 3.136× 1011

120 &360 10.313× 1010 1.30× 1010 2.546× 1012 3.1368× 1011

Table 3. KL-Divergence between the distributions of the mean and variance of the latent representation. P and Q are the first and second
epoch number mentioned in a particular row in the first column.

are present in a small subspace which is in the opposite di-
rection of the original image categories. Therefore, these
images can be easily defended with defenses like retraining.
However, it is clear from the second figure that the AdvFool
images are quite spread out, lying near the decision bound-
ary of two classes. Also, the set of AdvFool images from
two different epochs do not overlap which makes defending
them difficult.

In the re-sampling process of AdvFoolGen, the values of
mean and variance are sampled assuming that the distribu-
tion is Gaussian. We claim that the AdvFool images from
different epochs can fool the network because they belong
to different distributions. To verify this claim, we use den-
sity estimation and show that the mean and variance sam-
pled for the latent distribution at different epochs belong to
different distributions. We used a non-parametric density
estimation technique called Parzen-Window with Gaussian
window function to estimate the distribution of the mean
and variance. The smoothing parameter for this technique
is found using Grid Search.

As mean and variance from the re-sampling process have
high dimensions, we used Principal Component Analysis
(PCA) to reduce their dimensions for visualization and il-
lustration purpose. The dimensionality reduction is done in
such a way that all of them are mapped to the same dimen-
sion to make a fair comparison. Fig. 5 shows the distri-
butions of the mean (left) and variance (right) used in the
re-sampling process during 3 different epochs. It is evident
that all of these are Gaussian distributions but with differ-
ent parameters. Though the difference between the distribu-
tions look very minute in the figures, it is enough to result
in distinct distributions that can produce different set of Ad-
vFool images. Such sets of AdvFool images can fool the
network successfully. It becomes difficult to defend these
images which are generated from different epoch genera-
tors as they belong to different distributions. In other words,
even if the network learns AdvFool images from one epoch,
it can be easily fooled by another set of AdvFool images
from a different epoch as they do not belong to the same
distribution.

We calculated the KL-Divergence between two different
distributions to show that even a tiny difference in the pa-
rameters leads to very distinct distributions. Table 5.1 lists

the KL-Divergence between the distributions from different
epochs. It is clear that the KL-Divergence increases as we
move farther away from a particular epoch number. This
justifies the increase in the fooling ratio as a farther epoch
generator is used for generating the AdvFool images. For
example, if a network is familiar with the AdvFool images
from epoch 120, the AdvFool images from epoch 360 will
achieve high fooling ratio than those from epoch 180. As
KL-Divergence is not symmetric, we calculated it in the re-
verse manner as well and observed the same trend. There-
fore, the order in which the KL-Divergence is calculated
does not make an impact on the results.

6. Conclusion

In this paper, we proposed a new black-box scheme, Ad-
vFoolGen, for attacking deep classifiers. AdvFoolGen gen-
erates images (termed as AdvFool images) which can con-
sistently fool a network that has the help of many existing
defense techniques. From experiments, we observed that
the initial fooling ratio is not a good metric for evaluating
an attack scheme, as the scheme may fall apart under some
defense mechanisms. Though AdvFoolGen has relatively
lower initial fooling ratio, it can keep deceiving the defense
strategies over and over again.

The principled analysis shows that the mean and vari-
ance used for the latent representation of the images in our
framework belong to different Gaussian distributions for
different epochs. Thus, the images from AdvFoolGen at
a certain epoch can fool the network trained on images pro-
duced from the AdvFoolGen at another epoch. The analy-
sis also showed that the AdvFool images do not occupy a
small subspace and are highly spread. Also, sets of Adv-
Fool images from different epoch generators do not over-
lap in space explaining why they can fool the network after
defenses are applied using a set of AdvFool images. The
success of our attack on the defenses shows the susceptibil-
ity of the current defense mechanisms and raises a need for
more robust DNNs. It provides a better understanding of
the pitfalls of the neural networks which is useful for build-
ing more generic and advanced defense mechanisms in the
future.
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Attack Algorithm Retraining* Adversarial Training BDR-3 JPEG
FGSM 30.8% 49.37% 51.92% 54.18%

I-FGSM 40.5% 48.74% 48.44% 51.15%
DeepFool 29.2% 47.36% 43.02% 47.76%

CW 30.04% 48.61% 46.95% 47.26%
GAP 34.09% 33.76% 33.55% 35.21%

AdvFoolGen** 43.1%-57.2% 54.6%-61.0% 40.3%-66.4% 42.1%-63.9%
Table 4. Top 1 fooling ratio after the defenses are applied on TinyImageNet dataset. The fooling ratio for AdvFoolGen is higher than
existing attacks when it comes to networks with added defense mechanisms. For Bit-Depth Reduction, a bit-depth of 3 is used. *Equal
number of original and adversarial images are used for retraining. For AdvFoolGen attack, 500 AdvFool images are used for training and
50 AdvFool images are used in validation set as a new class is added for them. **We report a range for AdvFoolGen attack as the fooling
ratio varies from epoch to epoch.

Attack Algorithm Retraining* Adversarial Training BDR-3 JPEG
FGSM 18.26% 22.28% 27.12% 26.78%

I-FGSM 17.28% 20.96% 20.26% 23.09%
DeepFool 16.07% 15.26% 20.96% 18.98%

CW 14.35% 16.71% 18.55% 18.88%
GAP 12.81% 11.91% 12.77% 13.3%

AdvFoolGen** 24.8%-33.2% 28.9%-35.2% 20.1%-32.4% 20.6%-35.6%
Table 5. Top 5 fooling ratio after the defenses are applied on TinyImageNet dataset. The fooling ratio for AdvFoolGen is higher than
existing attacks when it comes to networks with added defense mechanisms. For Bit-Depth Reduction, a bit-depth of 3 is used. *Equal
number of original and adversarial images are used for retraining. For AdvFoolGen attack, 500 AdvFool images are used for training and
50 AdvFool images are used in validation set as a new class is added for them. **We report a range for AdvFoolGen attack as the fooling
ratio varies from epoch to epoch.
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7. Supplementary Material
In this supplementary material, we provide additional re-

sults to support our claims proposed in the main submission,
AdvFoolGen. The additional results provided are on Tiny-
ImageNet dataset. We show reattack Top1 and Top5 fooling
ratio on networks equipped with different defenses.

8. Additional Experimental Results
In this section, we provide the additional results obtained

on TinyImageNet dataset for AdvFoolGen attack.

8.1. Effect of Defenses on Fooling Ratio

Table 4 and Table 5 show the Top1 and Top5 reattack
fooling ratio on TinyImageNet dataset for different attacks,
respectively. The target network here is strengthened with
effective defenses. The fooling ratio varies for different
epochs for AdvFoolGen and therefore a range of fooling ra-
tio is reported. In this case too, Top1 fooling ratio is higher
than the Top5 fooling ratio. Though there is a decrease in
the fooling ratio to some extent after the defenses are used
for all the attacks including AdvFoolGen, it is clear that the
decrease in fooling ratio of AdvFoolGen is comparatively
lower.

The fooling ratio achieved by different attack algorithms
on retrained target networks is shown in Column 2. For
the existing attack algorithms, equal number of adversarial
and original images are used for retraining. For the rea-
sons mentioned in the main submission, we use a network
with one additional class for the AdvFool images while re-
training. As each class contains 500 training images and
50 validation images in TinyImageNet dataset, we use 500
AdvFool images for training and 50 AdvFool images for
validation. It is seen that all the state-of-the-art attacks fail
to fool the retrained network with high fooling ratio but al-
most half of the AdvFool images can still fool it.

The next column presents the fooling ratio when the tar-
get network is adversarially trained. As the number of Ad-
vFool images from generators at different epoch increase in
the training set, the accuracy on original as well as AdvFool
images decrease. All other attacks we compare with can be
easily defended using adversarial training.

The last two columns are the defenses which use trans-
formed images for retraining in order to defend against ad-
versarial attacks. The transformations like Bit-Depth Re-
duction and JPEG compression are applied to the images
before using them for retraining the network. Column 4
displays the results for Bit-Depth Reduction transformation
with a Bit-Depth of 3. The last column is the defense which
uses JPEG compressed adversarial images for retraining the
network. The average fooling ratio of AdvFoolGen attack
for both these defenses is comparable to FGSM, but outper-
forms all other attacks. This demonstrates that the AdvFool
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images can fool the network regardless of the type of image
transformation applied.

Carefully examining the results obtained, it is observed
that the attacks with high initial fooling ratio experience a
significant decrease in the fooling ratio after the defenses
are applied. This low fooling ratio shows that the exist-
ing attacks are not strong adversarial attacks and can be de-
fended with small changes in the network. The AdvFool-
Gen attack is stronger than the existing ones because it can
fool the networks equipped with state-of-the-art defenses.
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