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Abstract

The paper presents a comparative analysis of several
distinct approaches based on deep learning for identifying
COVID-19 cases in chest CTs. A first approach is a
volumetric one, involving 3D convolutions, while other two
approaches perform at first slice-wise classification and
then aggregate the results at the volume level. The ex-
periments are carried on the COV19-CT-DB dataset, with
the aim of addressing the challenge raised by the MIA-
COV19D Competition within ICCV 2021. Our best results
reach a macro F1 score of 92.34% on the validation subset
and 90.06% on the test set, obtained with the volumetric
approach which was ranked second in the competition. Its
performance can be further improved by a simple trick,
using semi-supervised training in the form of self-training,
technique which proved to bring a consistent increase over
the reported F1-score on the validation subset.

I.. Introduction

There is a high effervescence in the Artificial Intelli-
gence (AI) community trying to provide tools to assist
medical diagnosis, with a special focus on medical imag-
ing, exploiting but also triggering important advancements
in the area of computer vision and deep learning. The
pandemic scenario we face today clearly calls for such
approaches in order to be able to address the high inci-
dence rate which overwhelms the medical system. Medical
imaging, mostly in the form of x-Rays and CTs, is used
to assess the lung involvement. In this context, COVID-
19 datasets are publicly released and competitions are
organized, aiming at involving and stimulating the AI
community to produce models that can accurately detect
Covid-19 affections in the lungs.

The current work addresses the challenge raised by the
MIA-COV19D competition1 organized within the ICCV
2021 conference. The challenge consists in tackling a
two-class classification problem on the COV19-CT-DB
dataset consisting of CTs classified in two groups: COVID
patients and non-COVID patients, with the second class
containing both healthy patients or patients presenting lung
lesions due to other causes. The dataset was split by the
organizers into 3 subsets: training, validation and test, with
the first two subsets also exposing the class label. The
baseline set for this classification task by the organizers,
for comparison purposes, is a 0.70 macro-F1 score on
the validation set, obtained with a CNN-RNN network
described in [12], which is the result of authors’ previous
work reported in [14], [13], [15]. The final evaluation of
the models built by the participants in the competition is
made on the test set which was released with no class/label
information.

Given the nature of the data, we address the challenge
in two different ways: 1) treating the CT as a volume and
thus using 3D convolutions, and 2) treating the CT as a
set of 2d images (slices), the second approach calling for
2D convolutions and predictions at slice level, followed
by an aggregation step where the outputs at slice level are
aggregated into a response at CT level.

For the first (volumetric) approach we use pretrained
networks and several tricks as data augmentation, regular-
ization, simultaneous minimization of the loss value and
loss sharpness by involving Sharpness-Aware Minimiza-
tion [6], training an ensemble of NNs and finally exploiting
the unlabeled data by self-training.

Our second approach is motivated by the results re-
ported in the 2020 and 2021 ImageClefMed competitions
on tuberculosis tasks, where slice-based methods were

1https://mlearn.lincoln.ac.uk/mia-cov19d/
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ranked first [19], [20], outperforming volumetric methods.
This approach needs in the training phase more refined
information: it needs CT slices split in two categories:
slices that present COVID lesions and slices that do not
present COVID lesions, the last category coming from
patients having no affection or presenting various other
affection types. Because the dataset exposes class infor-
mation only at CT level and a COVID CT presents both
healthy and affected lung slices, we needed to come up
with a procedure to extract COVID-affected slices from
the COVID CTs in the training set. We use at first a naive
method to label slices, where all the slices belonging to
a COVID CT are considered as slices presenting COVID
lesions. As a second, more refined method, we use a model
we had trained for the tuberculosis classification task on
data published in the ImageClefMed 2021 competition;
this method is able to detect slices presenting different
types of tuberculosis lesions and differentiate them from
clean slices (slices presenting no lesion). This model is
basically used to identify healthy slices from the COVID
CTs.

After slice labeling, we use two distinct approaches for
COVID classification: one that makes use of a manually
designed NN architecture working with ”mini-volumes”
made of 3 slices and one that performs NN architecture
search with sharpDARTS[9].

The paper is structured as follows. Section II describes
the COV19-CT-DB dataset. SectionIII describes our first
approach that makes inference directly at the CT level.
Sections IV-B and IV-A describe the two approaches that
learn to classify the slices as COVID/non-COVID and then
aggregate the results at CT level. Section V presents the
results obtained on the training and validation sets and
section VI concludes the paper.

II.. The dataset
Excepting pre-trained models, the only dataset used in

the experimental analysis is COV19-CT-DB [12], provided
in the MIA-COV19D competition.

Our slice-based approaches described in sections IV-B
and IV-A do not involve directly an external dataset, but
only a pretrained model built by us in the ImageClef2021
competition on CT data consisting of non-COVID patients
that present tuberculosis lesions; this pretrained model
serves only to select a subset of slices from the COVID
class in the COV19-CT-DB training dataset - slices likely
to presents COVID lesions.

The provided COV19-CT-DB training set has a total
of 1560 CT scans. The class distribution is 690 COVID-
19 cases versus 870 Non-COVID19 cases. Out of these,
we found 8 volumes with less than 20 slices and 5
volumes with more than 700 slices in their corresponding
directories.

The provided validation set has a total of 374 CT scans.
The class distribution is 165 COVID-19 cases versus 209
Non-COVID-19 cases. Out of these, we found no volume
with less than 20 slices and 1 volume with more than 700
slices in their corresponding directories.

As explained in [12], the labeling of the dataset was
made by a consensus of two radiologists and two pneumol-
ogists. The difference with other publicly available datasets
is the annotations based on expert opinion rather than just
positive RT-PCR testing.

The whole COV19-CT-DB database consists of about
5000 CT scans, corresponding to more than 1000 patients
and 2000 subjects, leading to 3455 cases for the test set.

The images are provided in the jpg format and were
obtained by clipping the voxel intensities using a win-
dow/level of 350 Hounsfield units (HU) and 1150 HU and
normalization to the range of [0,1] of each slice from a
whole volume rather than the dicom files.

Due to the large number of slices per volume and
large dimensions of an individual slice, in our approaches
we usually rescale the given images. Each classification
approach described in the sections below will also list the
modifications done to the input data.

III.. A volumetric approach
Convolutional neural networks have emerged as a suc-

cessful tool in tackling a wide range of image vision tasks.
These architectures have obtained, ever since the appear-
ance of Alex-Net [16], state of the art results on tasks like
image classification, object detection and segmentation.

Even though applications in 2D image tasks have shown
great results, architectures for 3D image tasks still have to
prove themselves as good contenders for state of the art
results.

Using transfer learning in the form of exploiting pre-
trained models is a popular technique for achieving good
performance on the dataset at hand. Since large 3D datasets
are not so numerous, we turn our attention to a specific
kind of model to fully benefit of the advantages of pre-
trained models.

A.. The NN architecture
We use an inflated convolutional neuronal network

pretrained on Kinetics dataset [5]. Inflated convolutions
are obtained by expanding filters and pooling kernels
of 2D ConvNets into 3D, resulting in the possibility to
learn spatio-temporal feature extractors from 3D images
while using successful ImageNet architectures. Due to gpu
limitations we only used an Inflated ResNet50 model [8].

For capturing long range dependencies within the slices
of a same volume, we use non-local features which have
been proven to increase the results of basic architectures.
[28]
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The final model is an Inflated 3D ResNet50 with non lo-
cal operations on the second and third layers (based on the
official implementation from PyTorch) 2. The pretrained
model we started the training from is the one from the
official caffe2 implementation 3 .

Due to the large number of parameters, 3D conv nets
are easy to overfit. In order to mitigate the overfitting, we
use label smoothing [21] with cross entropy and Sharpness
Aware Minimization [6] on top of Stochastic Gradient
Descent as loss function and optimizer, respectively.

B.. Data augmentation and training settings
We use augmentations like Random Horizontal and Ver-

tical Flip, Gaussian Blur and Contrast and Color changes.
We also experimented with Cut-Out and Affine transfor-
mations like ShearX and ShearY, but the results were not
improved compared to the basic augmentations mentioned
above. Thus, in an effort to reduce training time, we stayed
with the basic augmentations. We also use volume flipping
on the depth axis. All these augmentations are done with
0.5 chance.

We train the above architecture several times, on differ-
ent samples of the dataset, for 150 epochs or 100 epochs,
in order to come up with an ensemble of models for final
predictions on the competition test set. Thus, one model is
trained on the official train-validation split for 150 epochs
whereas other 4 models are trained on 4 in-house generated
folds for 100 epochs. Initial learning rate is set to 1e-3
and the learning rate scheduler is cosine scheduler with 5
epochs of warm-up for each model. Batch size is 2.

The input consists of volumes of size 128× 224× 224.
First, we resize all the images to 224× 224 and take only
128 slices from each volume (with zero-padding if neces-
sary to reach the depth 128). Since there are large volumes
in our dataset, we solve this issue using the following rule:
if a volume has between 128k and 128(k + 1) slices, we
choose as starting slice a random number between 0 and
k and then sample every kth slice, discarding the others,
generating a volume of 128 slices. This way, we make
sure that most of the volume is preserved. Our procedure
is based on the fact that volumes with large number of
slices (corresponding to small slice thickness) admit a
transversing with a small sliding window without great
loss of information for an accurate Covid diagnosis.

During the inference process, parts of a single volume
will be several times input for the model. If a volume has
between 256k and 256(k+1) slices, we choose as starting
slice each number between 0 and k and take each kth

slice discarding the others. This procedure generates k+1
sub-volumes of 256 slices at inference time. For each sub-
volume we apply horizontal or vertical flip or depth axis

2https://pytorch.org/vision/0.8/ modules/torchvision/models/resnet.html
3https://github.com/facebookresearch/video-nonlocal-netmain-results

flip (meaning we could apply more than one of these test-
time-augmentations). This means 8(k + 1) inferences for
a certain volume. For inference we define two important
thresholds: the confidence threshold for non-covid labels
and confidence threshold for covid labels. Every non-covid
prediction which is below the first threshold is ignored. The
same happens for the second threshold but with the covid
labels. After the eliminations based on the thresholding, the
most frequent diagnosis is given to the specific volume.

Some of the results obtained by the models trained
on our custom samples/folds 2 − 5 are illustrated in
table I, together with the results obtained for training
on the official train-validation split. For the official train-
validation split the results are obtained by storing 4 models
at different epochs during the training process and taking
the majority vote (favoring the covid class in case of equal
votes) in order to guarantee more stable predictions. For
the other entries, a single model is used and the epoch
number corresponding to the stored model is reported.
The results indicate similar performances, thus rejecting
possible hypotheses related to the existence of some biases
in the official train-validation split.

Fold/Epoch F1 score

2/93 0.936
3/99 0.923
4/99 0.936
5/96 0.925

official / ensemble 0.9234

TABLE I. Results of the volumetric approach when trained on
different train-validation splits. For the official train-test split an
ensemble of 4 models is used to provide final predictions these
being stored at different epochs during training

For the final prediction pipeline designed for the test set,
we constructed an ensemble with 2 models from each fold
we trained on, stored at the epochs we obtained the highest
validation accuracy, resulting in a total of 10 models used
in the ensemble.

C.. Self-training

Recently, Semi-Supervised learning has shown to bring
improvements over the baselines with minimum human
effort.

Some branches of the semi-supervised learning tech-
nique are consistency training [[3], [23], [27], [4]], pseudo-
labeling [[17], [10], [1], [22]], graph-based methods [[30],
[29]], methods that make use of latent variables as target
variables [[11], [18]] and low-density separation methods
[[7], [24]].

Recently [25] have used consistency training to improve
COVID-19 prognosis prediction on chest X-rays. Also
recently, [2] have used pseudo-labeling in combination
with a graph-based method for identifying COVID-19 on
Chest X-rays.
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Consistency training methods constrain the model pre-
dictions to not change when noise is added to the input,
hidden states or model parameters. Pseudo labeling meth-
ods use a model to predict labels on unlabeled data either
during training or after a model converges. We tried to
apply psuedo labeling with a student-teacher approach.
We use the same neural network for both the student
and teacher. We did not increase the noise in the student
training phase, keeping the same augmentations as the ones
for the teacher network. We also continued the training for
the student from the weights of the last epoch of the teacher
network.

Thus, we went further with the experiments evaluating
the improvements the Self-Training method could bring
on the train-validation split provided by the organisers. We
used the best model (a single NN, not an ensemble) trained
on the official split to predict on the validation dataset.
Out of all these predictions on the validation set we only
kept the ones with a confidence score of at least 0.85.
This threshold was empirically chosen in order to keep a
big part of the validation dataset while also assuring more
accurate predicted labels. The classification report on this
subset of the validation dataset is shown in Table II

class precision recall f1-score support

non-covid 0.96 1.0 0.98 171/209
covid 1.0 0.93 0.97 123/165

macro 0.971
TABLE II. Results on the subset with threshold 0.85

The table above shows that the predictions with at
least 0.85 confidence score are highly qualitative and
quantitative (consisting of at least 80% of the validation
dataset).

We enlarged the training set with this subset of the
validation dataset (together with the labels predicted by the
neural network). We finetuned the model trained for 150
epochs on this new extended training set for another 60
epochs. We also lowered the base learning rate to 1e − 4
for smaller modifications of the gradients. We kept the
other configurations the same.

Testing again with the model with the highest accuracy
on the validation dataset we obtained the results shown in
Table III on the official validation dataset:

Fold/Epoch F1 score

1/43(+93) 0.9399
TABLE III. Results on the validation dataset after Self Supervised
Training

The increase in the F1 score is of about 1.65% which
is a consistent one. We believe that such approach could
improve our result on the test set.

IV.. Slice-based approaches
Slice-based classification approaches for the CTs would

bring two important advantages over a volumetric ap-
proach: 1)lower needs in terms of computational resources
and 2) more informative output/decision, since they iden-
tify the slices in the CT that conduct to a certain diagnostic.

We further present two slice-based approaches in an
attempt to compete the volumetric approach described
previously.

A.. A slice based approach tackled with neural
network architecture search

This approach is intended to act as our own baseline, as
it consists of very simple steps that could be taken to build
a classifier for CT data, requiring no advanced knowledge
into the domain nor fine tuning, but resorting to existing
frameworks. These steps are:

• label each CT slice in the training set with its corre-
sponding CT label;

• use an existing implementation that performs neural
architecture search for image classification to generate
a network architecture that performs well on our
problem at hand - classifying the CT slices;

• aggregate the results at slice level using simple statis-
tics in order to classify a CT.

In the last few years there have been great improve-
ments in the field of Neural Architecture Search (NAS).
The state-of-the-art models are able to find neural network
architectures in a small number of GPU days, much less
than the long search times that were required just a few
years ago. Since we are dealing with a classification
problem, employing a neural architecture search algorithm
that has a very good result on a benchmark classification
dataset is an idea worth exploring.

The current state-of-the-art neural architecture search
algorithm for the classification of the CIFAR-104 dataset
is sharpDARTS, introduced in [9]. The sharpDARTS algo-
rithm operates in such a way that it searches for a primitive
that will appear multiple times in a larger neural network
architecture.

The authors of the sharpDARTS algorithm are mod-
elling the space of the neural network architectures in such
a way that it is differentiable. In this differentiable search
space, gradient based search methods are proven to be very
effective. The authors have also made the implementation
of sharpDARTS available 5. Starting from the authors’
implementation, we have made the necessary adjustments
to the implementation in order to run the search on the
present dataset. In this approach, the classification takes
place at the level of each CT slice. We have downsampled

4https://www.cs.toronto.edu/ kriz/cifar.html
5https://github.com/ahundt/sharpDARTS
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Fig. 1. The primitive found by the sharpDARTS search algorithm.
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Fig. 2. The final architecture found by the sharpDARTS search
algorithm.

the resolution of the images from 512x512 to 192x192
in order to speed up the training process by avoiding the
loading in memory of the entire dataset multiple times.

We build the slice-based dataset in a very simple
manner, being aware that it has some important flaws:
every label in a COVID CT is marked as COVID, while
every label in a non-COVID CT is marked as non-COVID.
No filtering is performed, meaning that we expect to have
many similar slices in the dataset with contradictory labels,
coming from both COVID patients and healthy patients,
since not all the slices in a COVID CT present COVID
specific lesions.

SharpDARTS’ authors have found a state-of-the-art
model on the CIFAR-10 dataset in 0.8 days. We have
run the search algorithm for 1 day, finding a primitive
presented in Figure 1.

With this primitive, we have constructed the final ar-
chitecture as shown in Figure 2. We continued to train the
final neural network architecture for 300 epochs.

We present the results of this per-slice approach in Table
IV - scores are computed here based on slice labels and
not CT labels (basically we measure the performance of
the model for labeling slices as coming from COVID or
non-COVID CTs).

We compute the label for each volume by utilizing the
majority vote rule, based on the labels predicted for all the
slices in the volume. The results for CTs classification are
presented in Tables V and VI. Despite it being a relatively
small architecture of only 61.3 MMAC (million multiply-
accumulate operations; 122.6 MFLOPS) and being trained
on noisy data, it obtained an unexpectedly good F1 score
on the validation dataset of 0.74.

It is worth improving this approach by utilizing the slice
labeling procedure described in Section IV-B. This would

Data precision recall macro F1
Train 0.724 0.731 0.727
Validation 0.729 0.777 0.752

TABLE IV. Per slice results of the sharpDARTS algorithm

help eliminate the issue of slices that are not informative
relative to the covid or non-covid nature of the CT. We
would also like to remind that this approach is at a
disadvantage since it only utilizes a single slice at a time,
losing context information.

B.. A slice based approach with mini-volumes

This method is a slice based approach with the addition
that it incorporates the immediate previous and next slice
creating a ”minivol”. It uses both slice and lung (side) level
labels which we obtained in two steps:

• a neural network trained on an external dataset but
with slice level labels (the dataset in question is a
small subset of the training set for the ImageCLEF
2021 - Tuberculosis detection competition [20], which
we manually labeled)

• manual correction of the predictions and further la-
beling

As the COV19-CT-DB dataset it too big to manually
address slice labeling, we applied this process to only a
small subset of the data. The final dataset we construct will
have 3 labels: COVID, non-COVID pneumonia, healthy.

To use the aforementioned neural network trained at
ImageClef, we need to apply on the COV19-CT-DB data
the same pre-processings used for its training. This turned
out to be a complex and imprecise task as the original
ImageClef training set used CT volumes in DICOM format
and some of the pre-processing steps were applied on the
Hounsfield values of the input, while the COV19-CT-DB
is in jpg format.

Next, we shortly describe the process involved in
building the model for tuberculosis classification in the
ImageClef competition, in order to understand its use for
building the COVID refined dataset here. Given a selected
slice in a CT, we grouped it together with the previous
and the next slice in the volume; these mini volumes of 3
consecutive slices, we thought, could better highlight the
lesions present in the tuberculosis dataset, emphasising the
difference between an infiltration and an artery, or a cavern
and a lumen as these can be very similar at a certain point
in space but continue in a different manner. We changed
its window and level values to highlight the lung features.
The selected slices were split into half, corresponding to
each lung, and we kept only the side that was labeled. We
cropped the images, using a simple threshold method to
remove the padding and keep only the body. The resulting
images were resized to 256× 256 pixels. These were then
normalized with values in the range [0, 255] corresponding
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to 3 black and white images which were concatenated
at channel level. As augmentations we used a random
crop of size 224 × 224, a random horizontal flip with a
probability of 0.5 and normalized the image. We trained
an EfficientNet-B3 [26], with batches of 32 for 90 epochs.

We used this network to predict on each slice of a
volume for the COVID patients in the COV19-CT-DB
training set the presence of an affection, and obtain the
probabilities of each affection type that was present in the
ImageClef data (a total of five lesion types and one healthy
class).

In order to be able to apply this pre-trained model on
the COVID dataset we had to address several problems.
The steps we followed to address the pre-processing are:

• We aggregated the slices into volumes
• Constructed an equivalent cropping functions based

on pixel thresholds
• Made a prediction with the pre-trained neural network

and filtered the results based on one specific label
- ”healthy”. Using an upper and a lower threshold
we filtered out the predictions with a score for the
”healthy” label between those values, thus keeping
only high confidence predictions. We also filtered
based on slice location, preferring slices at the middle
at the series so as not to saturate the ”healthy” class
with slices at the ends of the volume that were by
default healthy as they did not contain yet the lungs.

• We retrained and made the predictions on the entire
original training set. In order to obtain the same
number of predictions per patients for the last training
we resized the reconstructed volumetric image to a
depth of size 96. As some of the patients’ folder
have very few slices this means the resize would just
multiply the same images along the volume.

• For each slice we predicted the probabilities of the
3 classes enumerated above. We grouped the slices
predictions into an array of size (96, 3). We did this
for each patient, thus creating a data set that was used
as training data for a linear classifier that learns to
predict the class at CT level.

To predict on the validation set we would first have to
predict with the first neural network on the reconstructed
slices at slice level and then predict on the results with
the second classifier at patient level. We trained a logistic
regression classifier and a multilayer perceptron with 100
neurons and a single layer. The results on the training and
validation sets are shown in tables 2 and 3.

V.. Experimental results

Tables V and VI present the results obtained on the
training and validation sets, in terms of precision and
recall for the COVID class, and the macro F1 score, as

required in the competition. Table VII presents the results
obtained on the test set, according to the evaluation made
by the organizers based on the labels we submitted. We
report the results for all our methods, excepting for the
method that uses self-training, situation which is due to
our impossibility of providing the labels on the test set in
time to be evaluated in the competition.

All the approaches taken outperform the baseline score
set by the competition organizers [12] on the validation
set.

The volumetric approach achieves the best results,
bringing a consistent improvement over the slice-wise
approaches, with a 90.06% F1 score on the test data.

The best slice-wise approach is the one building the
training set by labeling the slices using a network pre-
trained on a Tuberculosis task, then taking a mini-volume
approach for slice classification and aggregating the results
at CT level using logistic regression. This one achieved a
81.85% F1 score on the test data.

The simplest approach, in terms of the effort taken to
build the classifier, achieved an F1 score of 76.73% on the
test data.

Although with lower accuracy, we consider the slice-
based approaches to be more relevant in practice, providing
more information related to lesion localization in the lungs
and implicitly its extension/size. Given previous experience
on similar CT classification tasks [19], [20], we argue that
the poorer results are due to the presence of noisy labels at
slice level in the training data (because of the automated
slice labeling procedures we use) and filtering manually
COVID slices is necessary to build a good training set for
increasing the performance of this approach.

We still think, in the light of the results obtained on
the validation data, that semi-supervised training could
improve our best results obtained on the testing set, but
this is for the moment just a hypothesis to be checked.

VI.. Conclusions
The paper presents and evaluates distinct approaches

for the problem of COVID19 detection in CTs. Given
the nature of the data, consisting of volumetric (3D)
images, two distinct ways to perform CT classification
are used: one that treats the CT as a whole, and one
that performs classification at slice level and then ag-
gregates the results at CT level. The experiments show
best results for the volumetric approach surpassing a 0.90
F1 score on the validation and test data. However, with
a better strategy to build a clean slice-labeled data set,
the slice based approach could definitely achieve higher
performance compared to its current reported results (0.81
F1 score), at the advantage of less computational resources
used and a more informative diagnostic when compared to
the volumetric approach.
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Method precision (Covid class) recall (Covid class) macro F1 score
volumetric approach 0.97 0.96 0.96
slice-wise approach based on sharpDARTS 0.93 0.94 0.93
slice-wise approach based on minivolumes & log reg 0.95 0.89 0.93
slice-wise approach based on minivolumes & mlp 0.98 0.93 0.97

TABLE V. Results on the train set for: the volumetric approach described in Section III, the slice based approach using neural architecture
search described in Section IV-A and the two slice based approaches based on mini-volumes described in Section IV-B

Method precision (Covid class) recall (Covid class) macro F1 score
volumetric approach 0.95 0.88 0.92
slice-wise approach based on sharpDARTS 0.67 0.82 0.74
slice-wise approach based on minivolumes & log reg 0.83 0.71 0.82
slice-wise approach based on minivolumes & mlp 0.87 0.76 0.84

TABLE VI. Results on the validation set for: the volumetric approach described in Section III, the slice based approach using neural
architecture search described in Section IV-A and the two slice based approaches based on mini-volumes described in Section IV-B

Method macro F1 score
volumetric approach 0.9006
slice-wise approach based on sharpDARTS 0.7673
slice-wise approach based on minivolumes & log reg 0.8185
slice-wise approach based on minivolumes & mlp 0.6435

TABLE VII. Results on the test set for: the volumetric approach described in Section III, the slice based approach using neural
architecture search described in Section IV-A and the two slice based approaches based on mini-volumes described in Section IV-B
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editors, Working Notes of CLEF 2020 - Conference and Labs of the
Evaluation Forum, Thessaloniki, Greece, September 22-25, 2020,
volume 2696 of CEUR Workshop Proceedings. CEUR-WS.org,
2020.

[20] Cosmin Moisii, Radu Miron, and Mihaela Breaban. Identifying
tuberculosis type in cts. In Guglielmo Faggioli, Nicola Ferro, Alexis
Joly, Maria Maistro, and Florina Piroi, editors, Working Notes of
CLEF 2021 - Conference and Labs of the Evaluation Forum, 2021,
CEUR Workshop Proceedings. CEUR-WS.org, 2021.

[21] Rafael Müller, Simon Kornblith, and Geoffrey E. Hinton. When
does label smoothing help? CoRR, abs/1906.02629, 2019.

[22] Hieu Pham, Zihang Dai, Qizhe Xie, Minh-Thang Luong, and
Quoc V. Le. Meta pseudo labels, 2021.

[23] Antti Rasmus, Harri Valpola, Mikko Honkala, Mathias Berglund,
and Tapani Raiko. Semi-supervised learning with ladder networks,

535



2015.
[24] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung,

Alec Radford, and Xi Chen. Improved techniques for training gans,
2016.

[25] Anuroop Sriram, Matthew Muckley, Koustuv Sinha, Farah
Shamout, Joelle Pineau, Krzysztof J. Geras, Lea Azour, Yindalon
Aphinyanaphongs, Nafissa Yakubova, and William Moore. Covid-
19 prognosis via self-supervised representation learning and multi-
image prediction, 2021.

[26] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling
for convolutional neural networks. In International Conference on
Machine Learning, pages 6105–6114. PMLR, 2019.

[27] Antti Tarvainen and Harri Valpola. Mean teachers are better
role models: Weight-averaged consistency targets improve semi-
supervised deep learning results, 2018.

[28] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He.
Non-local neural networks, 2018.

[29] Jason Weston, Frédéric Ratle, and Ronan Collobert. Deep learn-
ing via semi-supervised embedding. In Proceedings of the 25th
International Conference on Machine Learning, ICML ’08, page
1168–1175, New York, NY, USA, 2008. Association for Computing
Machinery.

[30] Xiaojin Zhu, Zoubin Ghahramani, and John Lafferty. Semi-
supervised learning using gaussian fields and harmonic functions. In
Proceedings of the Twentieth International Conference on Interna-
tional Conference on Machine Learning, ICML’03, page 912–919.
AAAI Press, 2003.

536


