
Visual Domain Adaptation for Monocular Depth Estimation on
Resource-Constrained Hardware

Julia Hornauer1, Lazaros Nalpantidis2, and Vasileios Belagiannis1

1Ulm University , Ulm, Germany , {first.last}@uni-ulm.de
2DTU – Technical University of Denmark , Kgs. Lyngby, Denmark , lanalpa@elektro.dtu.dk

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprint-
ing/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. DOI: 10.1109/ICCVW54120.2021.00111.

Abstract

Real-world perception systems in many cases build on
hardware with limited resources to adhere to cost and
power limitations of their carrying system. Deploying deep
neural networks on resource-constrained hardware became
possible with model compression techniques, as well as ef-
ficient and hardware-aware architecture design. However,
model adaptation is additionally required due to the di-
verse operation environments. In this work, we address
the problem of training deep neural networks on resource-
constrained hardware in the context of visual domain adap-
tation. We select the task of monocular depth estimation
where our goal is to transform a pre-trained model to the
target’s domain data. While the source domain includes la-
bels, we assume an unlabelled target domain, as it happens
in real-world applications. Then, we present an adversar-
ial learning approach that is adapted for training on the
device with limited resources. Since visual domain adapta-
tion, i.e. neural network training, has not been previously
explored for resource-constrained hardware, we present the
first feasibility study for image-based depth estimation. Our
experiments show that visual domain adaptation is relevant
only for efficient network architectures and training sets at
the order of a few hundred samples. Models and code are
publicly available1.

1. Introduction
Machine learning on resource-constrained hardware has

emerged to an important research direction with applica-
tions on robotics [14], autonomous driving [9], and surveil-
lance systems [27]. Executing learning-based algorithms
directly on-site reduces the system latency, preserves the

1https://github.com/jhornauer/embedded_domain_
adaptation

Figure 1: Resource-constrained hardware can be used for
the deployment of deep neural networks. However, it is
often required to further adapt the model because of the
diverse operating environments. We study the problem of
training a deep neural network on the embedded hardware
in the context of domain adaption for monocular depth es-
timation. The visualized images are from the databases
KITTI [10] and Virtual KITTI [4].

data privacy, and makes the system more reliable because
of the independence from external factors such as remote
servers and communication networks. Moreover, resource-
constrained hardware, such as embedded devices, is signif-
icantly less expensive than workstations or cloud services.
Nevertheless, scaling up machine learning to real-world ap-
plications using resource-constrained hardware remains a
challenge.

1

ar
X

iv
:2

10
8.

02
67

1v
2

 [
cs

.C
V

]
 5

 M
ay

 2
02

2

https://github.com/jhornauer/embedded_domain_adaptation
https://github.com/jhornauer/embedded_domain_adaptation

In practice, deep neural networks, the horsepower in
the field, are very successful models for deployment on
resource-constrained systems. To reach real-time perfor-
mance, the model complexity and memory footprint are
reduced with network compression [3], as well as effi-
cient [12] and hardware-aware [30] network architecture
design. These approaches assume that further network
training is not necessary after deployment. However, the
integration of deep neural networks on low-cost embedded
devices makes them more ubiquitous and at the same time
exposes them to many and more diverse operation environ-
ments. Thus, on-device model adaptation is required for
those devices to perform as expected. Training deep neu-
ral networks on the resource-constrained hardware, though,
has not been addressed yet (illustrated in Fig. 1).

In this work, we address the problem of training deep
neural networks on resource-constrained hardware in the
context of visual domain adaptation. Our testbed is monoc-
ular image-based depth estimation where the model adap-
tation from the source to the target domain happens in an
unsupervised manner. We assume a pre-trained model that
resulted from the source domain data and it has been trained
with supervision. The model pre-training takes place on a
standard workstation. For the target domain, we suppose
that data collection is possible, e.g. a mobile agent, but
ground-truth depth maps are not available. Then, we present
an adversarial learning approach [16] that is adapted for
training on the resource-constrained hardware. Given the
hardware limitations, we employ an efficient network archi-
tecture [29] for depth estimation. Besides, we also consider
a complex architecture [17] for comparison reasons. Since
domain adaptation has not been previously explored for
resource-constrained devices, we present the first feasibility
study for the perception task of monocular depth estimation.
We analyze the training process of the deep neural network
regarding the data and training set size, model complexity,
and energy consumption. Our experiments show that visual
domain adaptation on resource-constrained hardware—and
thus deep neural network training—is meaningful only for
efficient network architectures and training sets at the order
of a few hundred samples.

2. Related Works
Embedded depth estimation deals with the depth pre-

diction from a single image. In [17], [7], and [6], promising
results are shown based on deep neural networks for regres-
sion. However, none of these methods is designed for usage
on resource-constrained devices. Instead, complex mod-
els have been proposed, which make hardware deployment
challenging. In [29], [26], [23] and [25], the effectiveness of
different lightweight depth estimation network architectures
is demonstrated on embedded devices, such as the Rasp-
berry Pi and NVIDIA Jetson TX2. Poggi et al. [26] propose

the lightweight architecture PyD-Net with a pyramidal fea-
ture extractor to train in an unsupervised manner for CPU
processor usage. Wofk et al. [29] design their neural net-
work, FastDepth, with depth-wise separable convolutions.
Oh et al. [23] propose a Repetition-Reduction block within
the encoder, and a condensed decoding connection block for
feature propagation to the decoder, in an encoder-decoder
architecture. Peluso et al. [25] demonstrate their accuracy-
driven quantization-aware training method adapted for the
ARMv7 core on PyD-Net [26]. Nevertheless, their ap-
proaches address only the problem of deployment.

Visual domain adaptation refers to the generalization
of a network trained on a source domain to some related tar-
get domain [5]. In domain adaptation for depth-estimation,
a major issue is the annotation of dense depth maps. In
[2], [32] and [31] image-to-image translation is used to ex-
ploit data generation for addressing the problem. Instead of
image-to-image translation Kundu et al. [16] explore an ad-
versarial domain adaptation setting with two discriminators
and different regularization techniques to obtain a monoc-
ular depth estimation model originally trained on synthetic
data. Lasinger et al. [18] target the generalization ability
towards different domains by training their MiDaS network
with multiple datasets of different scenes and environments.
As most datasets differ in their depth ground truth repre-
sentation, they create an objective that is unaffected by the
various label types. Aleotti et al. [1] create a large-scale
dataset, called WILD, by making predictions on images of
different environments with the pre-trained, large-scale Mi-
DaS [18] network. The resulting dataset is used to train
lightweight models with a high generalization ability for de-
ployment on handheld devices. We consider the adversarial
domain adaptation [16] as suitable for training on our hard-
ware with limited resources. The aforementioned works ac-
complished great success in depth estimation and domain
adaptation, but they rely on costly training of complex neu-
ral networks or only efficient model deployment on custom
hardware.

Resource-constrained hardware training has not been
considered at all. For example, lightweight architectures
have been proposed in [29], [26] and [23] with the aim to
deploy models in real-time on embedded devices, where
there is only a minor performance loss. More general,
Zhang et al. [30] propose to use hardware-aware neural
network search to adapt the model for deployment to the
dedicated hardware. Li et al. [19] propose linear learning
rate scheduling with regard to limited training duration in
terms of iteration. Although the design and deployment of
hardware-aware and hardware-efficient networks has been
studied in the past, the problem of training directly on the
device with limited resources has not been addressed in
those works.

2

3. Approach

We present the problem, our system and the domain
adaptation algorithm for image-based depth estimation on
resource-constrained hardware.

3.1. Problem formulation

Let fθ : Rw×h×3 → Rw×h×1 to be the function that
maps the image x with dimensions w × h × 3 to the depth
map y with dimensions w × h × 1, where the function is
represented by a deep neural network with parameters θ.
The model fθ is trained with supervision on the database
S = {(x,y)i}|S|i=1, which we refer to as the source domain.
Consider now a different domain that is expressed by the
data collection T = {(x)i}|T |i=1, referred to as the target
domain. The target domain represents the operation envi-
ronment. In the target domain, we assume not to have ac-
cess to the ground-truth depth map y. Furthermore, only
a resource-constrained hardware system, e.g. embedded de-
vice, is available for the model deployment. Then, our task
is to adapt the model parameters θ to the target domain with-
out supervision, by relying only on the collected set T and
the limited resources. Given the constrained hardware sys-
tem and the visual domain adaptation task, we examine the
training feasibility of the deep neural network w.r.t the data
and training set size, as well as model complexity and the
energy consumption.

3.2. Resource-constrained hardware

We consider the NVIDIA Jetson Nano for our evalua-
tions. The processing unit consists of the ARM-A57 CPU
with 4GB RAM and the 128-core CUDA Maxwell GPU.
The system is running a Linux-based operating system pro-
vided by NVIDIA and stored on a 128 GB SD card with
up to 100 MB/s transfer speeds. The SD card memory is
sufficient for the operating system, the executed libraries,
developed algorithms and stored data. Finally, the domain
adaptation is implemented in the PyTorch [24] framework.
Note that we reckoned with the Raspberry Pi 4 for our ex-
periments as well. However, the available processing power
is not sufficient for training image-based deep neural net-
works in a reasonable time, since it is not equipped with a
GPU.

3.3. Visual domain adaption with limited resources

We build the domain adaptation framework based on
AdaDepth [16], an adversarial domain adaptation approach
for depth estimation. This method is chosen because it re-
lies on a less expensive setup with two discriminators in-
stead of image-to-image translation as in the related ap-
proaches [2], [32] and [31]. We assume that the model fθ
is composed of the encoder φ and the decoder ψ network,

such that:
fθ(x) = ψ(φ(x)). (1)

The encoder φ maps the input image x to a latent space,
whereas the decoder ψ maps the latent space to the pixel-
wise depth prediction.

At first, the encoder-decoder model fθ is pre-trained on
the source domain database S. Similarly to AdaDepth [16],
ψ is shared between the two domains, and thus it is not
adapted. The domain adaptation transforms only the source
domain encoder φs to the target domain encoder φt. In
practice, only a subset of the encoder parameters will be
adapted, as we discuss later in Sec. 3.4.

During training, we rely on the latent space discrimina-
tor and the depth map discriminator to distinguish between
the latent space and the depth maps of the source and target
domain respectively. The latent space discriminator LD(·)
is trained to predict the domain of the latent space repre-
sentations φs(xs) and φt(xt). Similar to LSGAN [20], we
define the objective as:

LLD = Exs∼S [γ(LD(φs(xs))− 1)2]+

Ext∼T [γ(LD(φt(xt)))
2]+

Ext∼T [(1− γ)(LD(φt(xt))− 1)2],

(2)

where LD(φt(xt))− 1 stands for the adversary, i.e. setting
the target domain as source domain (indicated by 1) and
γ ∈ {0, 1} is used for updating the discriminators. The
discriminator is updated when γ = 1, while the encoder φt
is updated for γ = 0 in a second step.

In addition, the depth map discriminator DD(·) takes
the image and the depth map as input for identifying the
domain. It is trained to distinguish the source ground-truth
depth map ys from the target’s domain predicted depth map
ψ(φt(xt)). The objective function for the depth map dis-
criminator is given by:

LDD = E(xs,ys)∼S [γ(DD(xsys)− 1)2]+

Ext∼T [γ(DD(xt, ψ(φt(xt))))
2]+

Ext∼T [(1− γ)(DD(xt, ψ(φt(xt)))− 1)2].

(3)

Finally, we rely on the domain consistency regularization
loss from AdaDepth [16] as a measure for the prevention
of mode collapse. It minimizes the distance of the source
and target latent space representation based on the target
images. It is given by:

Lreg = Ext∼T [(1− γ)||φs(xt)− φt(xt)||1]. (4)

The adversarial training starts from the pre-trained model fθ
on the source domain data. As it progresses, φt is trained to
produce samples that seem to be originating from the source
domain. The minimization of all objectives is expressed as:

arg min
γ=1,LD,DD

min
γ=0,φt

LLD + LDD + λLreg, (5)

3

where the hyper-parameter λ controls the influence of the
regularization term. For every iteration, the first minimiza-
tion updates the parameters of the depth map discrimina-
tor DD(·) and latent space discriminator LD(·), while the
second minimization updates the parameters of the target
encoder φt. The regularizer, finally, is applied only once
during the second minimization where γ = 0. The training
process takes place on the resource-constrained hardware.

3.4. Neural network architectures for depth estima-
tion

Two main limitations of the resource-constrained hard-
ware are the computing power and the available memory.
The standard depth estimation network architectures are
computationally complex and memory demanding [17]. To
address this problem, there have been recently proposed
lightweight architectures for depth estimation [29]. For our
experiments, we consider both a lightweight and a com-
plex network architecture: FastDepth and ResNet-UpProj
respectively.

Lightweight architecture FastDepth [29] is built with
MobileNet [12] as the encoder and a lightweight de-
coder with depth-wise separable convolutions, followed by
nearest-neighbor interpolation for up-sampling. The net-
work counts 3.93M parameters in total [29]. Additional
skip connections between the encoder and the decoder are
added for feature propagation to compensate for the small
number of parameters. In line with the concept of [16], only
the last four layers of the encoder are trained during the do-
main adaptation.

Complex architecture Laina et al. design a encoder-
decoder depth estimation network with ResNet-50 as the
encoder and up-projection blocks within the decoder [17].
The architecture is implemented with five up-projections
blocks, similar to FastDepth [29], and has 63.6M param-
eters in total. This is a significantly larger number of pa-
rameters compared to FastDepth. Similar to [16], the 5-th
ResNet block is only adjusted during the adaptation.

At last, the depth map discriminator DD(·) follows the
PatchGAN [13] network structure, while the latent space
discriminator LD(·) is a convolutional discriminator which
we later present based on the evaluation.

4. Evaluation

In this section, we present the findings of our approach
on visual domain adaptation on the resource-constrained
hardware for the demanding task of monocular depth es-
timation. In our evaluation, we consider the scenarios of
indoor, as well as outdoor environments where we rely on

four standard benchmarks for depth estimation. In each sce-
nario, we study the factors of image resolution and training
set size, model complexity and energy consumption during
training on the device with the limited resources. We report
the mean performance after five runs for each experiment.

4.1. Indoor and outdoor benchmarks

In the indoor evaluation, the NYU Depth v2 dataset [21]
serves as the source domain database, while the target
domain is represented by the DIML/CVL RGB-D data
set [15]. In the outdoor scenario, the synthetic Virtual
KITTI (vKITTI) [4] is the source domain and the target do-
main is the KITTI database [10].

From NYU Depth v2 to DIML/CVL RGB-D (indoors)
The NYU Depth v2 (source domain) is an indoor dataset
taken at 464 different scenes by a depth-sensing camera.
The scenes are split into 249 scenes for training and 215
for testing. The images have a resolution of 480x640. We
rely on the training set for creating the pre-trained model.
The DIML/CVL RGB-D database (target domain) provides
a large-scale indoor dataset with 220k training images taken
by a Microsoft Kinect v2 at 283 different scenes of 18 dif-
ferent categories. In addition, there is a smaller set of 1500
training images and 500 samples for testing. The images
and aligned depth maps have a resolution of 756x1344. The
large-scale set utilization is not realistic because of the lim-
ited computational power and memory space, and thus we
select the smaller set for the target domain.

From Virtual KITTI to KITTI (outdoors) The syn-
thetic virtual KITTI (vKITTI) dataset is used as the source
domain for the outdoor scenario. It consists of 21260 syn-
thetic image-depth pairs with a resolution of 375x1242,
which we make use for training our networks. We rely
only on the left images of the image-depth pairs. Since the
maximum depth of KITTI is 80m, the ground truth depth is
clipped to this value as maximum. The two examined archi-
tectures are pre-trained on vKITTI. On the other hand, the
KITTI dataset is a real-world computer vision benchmark
(target domain) with 42382 rectified stereo pairs. RGB
image pairs with corresponding velodyne points are pro-
vided in the raw data, where we rely on the left images.
The Eigen-split [7] is used for the evaluation since it is a
common evaluation protocol in the literature [16], [26], [2],
[31]. Eigen et al. divide the data into 22600 samples for
training, 888 samples for validation and 697 samples for
testing.

4.2. Training protocol & implementation

In both settings, the FastDepth [29] and ResNet-
UpProj [17] architectures are first trained on the source do-
mains S. The stochastic gradient descent (SGD) solver is

4

(a) (b) (c) (d) (e)

Figure 2: Visual results on DIML/CVL RGB-D. (a): RGB (top) & Ground truth (bottom). (b) - (e): Training FastDepth (top)
& ResNet (bottom) with a resolution of 224x224. (b) Source-only; (c) Domain adaptation for |A| = |B| = 100; (d) Domain
adaptation for |A| = |B| = 500, (e) Domain adaptation for |A| = |B| = 1000.

Table 1: Evaluation of the indoor experiment training FastDepth and ResNet-UpProj with a resolution of 224x224. The results
of the models trained on the source domain (source) and domain adaption with subsets |A| = |B| ∈ {100, 500, 1000} are
listed. Depth prediction results are evaluated on the DIML/CVL RGB-D test set. For accuracy δ higher is better, for RMSE
lower is better. We also report the peak power consumption, average energy consumption per epoch, multiply–accumulate
operations (MACs), as well as the average training duration per epoch (in minutes) and the inference time (in milliseconds)
both for the Jetson device and for a PC workstation, for comparison.

Archi-
tecture

Training
δ1 δ2 δ3 RMSE Power Energy MACs Training [min] Inference [ms]

Data [W] [Wh] [G] Jetson PC Jetson PC

Fast-
Depth

Source 0.493 0.847 0.958 0.824
1000 0.560 0.856 0.953 0.801 12.4 1.6

0.76
13.5 2.3

33 10500 0.563 0.861 0.954 0.796 11.8 0.8 7 1.2
100 0.562 0.862 0.955 0.803 11.3 0.2 2.5 0.2

ResNet-
UpProj

Source 0.444 0.816 0.947 0.872
1000 0.576 0.857 0.941 0.777 11.9 9.4

32.25
61.5 4.8

610 44500 0.578 0.858 0.942 0.755 11.9 4.6 31 2.4
100 0.573 0.861 0.951 0.749 11.9 1.0 6.5 0.5

used to optimize the L1 distance between the input image
x and the depth map y. Data augmentation, similar to [29],
is applied too. Random color jitter, random rotation, ran-
dom scaling and center cropping is applied before the im-
ages are downsampled to a specific resolution. The final
resolution for indoors is 224x224, while for outdoors we
consider a lower 256x512 and a higher 288x704 resolution.
The source domain training takes place on a PC worksta-
tion2. Then, the domain adaptation on both settings is per-
formed using subsets of the training dataA ⊆ S and B ⊆ T
such that |A| = |B|. The subsets A and B of the training

2The workstation has a 6-core processor with 16GB RAM and 6GB
GPU memory.

data S and T are selected randomly for every run. Different
domain adaptation versions are trained using subsets of in-
creasing size on the NVIDIA Jetson Nano. For all settings
λ is set to 0.7. To imitate data collection on a real-world
environment, we select small target domain sets such that
|A| = |B| ∈ {100, 500, 1000}. Finally, the performance is
evaluated on a target test set, which has not been observed
during the domain adaptation.

Indoors The discriminator LD(·) consists of three con-
volutions with kernel size 3, each followed by a leaky rec-
tified linear activation, and one last linear layer. After the
last two convolutions dropout with probability 0.6 is ap-

5

(a) (b) (c) (d) (e)

Figure 3: Visual results on KITTI test image training FastDepth with a resolution of 256x512 (top) and 288x704 (bottom).
(a) RGB; (b) Source-only; (c) Domain adaptation for |A| = |B| = 100; (d) Domain adaptation for |A| = |B| = 500; (e)
Domain adaptation for |A| = |B| = 1000.

plied. The two discriminators and the target encoder are
optimized using the ADAM solver with β1 = 0.5 and β2 =
0.999. For FastDepth the learning rates are set to 0.0002 and
for ResNet-UpProj to 0.00002. The augmentation is main-
tained during the adaptation in the indoor setting. Up to 25
epochs are necessary for the domain adaptation with Fast-
Depth, i.e. 25 epochs for 100/500 samples and 15 epochs
for the rest. With the ResNet-UpProj architecture it is 15
and 10 epochs respectively. One limiting factor of the em-
bedded device is the available GPU memory. This leads to a
maximum batch size depending on the model size. Training
the adaptation with FastDepth a batch size of 16 per domain
is selected. This is not possible with the larger ResNet-
UpProj architecture, where the adaptation is trained with
sub-batches of 2 samples per batch to maintain a resolution
of 224x224.

Outdoors The discriminator LD(·) of the indoor adap-
tation is adopted, but the kernels in the convolutions are
replaced by (4,7), (3,5) and (3,5) because of the differing
resolution. The adaptation is performed for the resolutions
256x512 and 288x704. The outdoors resolution is too large
for ResNet-UpProj, where we cannot run inference or train-
ing due to the limited resources. We rely only on FastDepth
that is trained with the SGD optimizer with momentum set
to 0.9 during the adaptation. The learning rates are set to
1e-4 or 1e-5 depending on the specific setup. The adapta-
tion training requires up to 10 epochs, i.e. 10 epochs for
100/500 samples, and 5 epochs for the rest. The maxi-
mum possible batch size depends on the network parame-
ters number. For both resolutions, FastDepth batch size was
4.

4.3. Evaluation metrics and baselines

The depth prediction is evaluated on the standard met-
rics of accuracy δ1, δ2 and δ3, as well as the root-mean-
square error (RMSE), similar to the literature [32], [31].
We report results for both network architectures by train-
ing only on the source domain (source) and afterwards
with domain adaptation. As an addition, for domain adap-
tation in the outdoor setting we follow another standard
protocol in which the predicted depth maps are scaled by
median(ygt)/median(ypred) as in [16], [33]. The evalu-
ation on the resource-constrained hardware is based on the
peak power consumption, average energy consumption per
epoch, multiply–accumulate operations (MACs), as well as
the average training duration per epoch and the inference
time both for the NVIDIA Jetson Nano (Jetson) device and
for a PC workstation, as reference.

4.4. Results and discussion

We present the results for the indoor domain adaptation,
followed by the outdoor configuration.

Indoors adaptation (NYU to DIML/CVL) In the in-
door evaluation, four different subsets with |A| = |B| ∈
{100, 500, 1000} of the training data are randomly selected
to conduct the domain adaptation. Table 1 shows the per-
formance results of FastDepth and ResNet-UpProj archi-
tectures on the DIML/CVL RGB-D test set and presents
hardware-specific metrics and the model complexity. At
first, it is clear that the domain adaptation is always helpful
compared to only applying the model trained in the source
domain (source). Next, the lightweight FastDepth archi-
tecture functions with up to 1000 training data with faster
training time per epoch than the ResNet-UpProj architec-

6

Table 2: Evaluation of the outdoor experiment training FastDepth with a resolution of 256x512 and 288x704. The results
of the models trained on the source domain (source) and domain adaption with subsets |A| = |B| ∈ {100, 500, 1000} are
listed. The depth prediction results are evaluated on the KITTI test set. For accuracy δ higher is better, for RMSE lower is
better. We also report the peak power consumption, average energy consumption per epoch, multiply–accumulate operations
(MACs), as well as the average training duration per epoch (in minutes) and the inference time (in milliseconds) both for the
Jetson device and for a PC workstation, for comparison.

Reso-
lution

Training
δ1 δ2 δ3 RMSE Power Energy MACs Training [min] Inference [ms]

Data [W] [Wh] [G] Jetson PC Jetson PC

256x512

Source 0.549 0.790 0.893 8.505
1000 0.649 0.825 0.906 9.337 11.8 3.2

1.98
23.4 2.3

37 10500 0.637 0.822 0.905 9.385 11.8 1.6 11 1.3
100 0.630 0.817 0.901 9.449 11.4 0.3 2.4 0.3

288x704

Source 0.540 0.752 0.857 9.070
1000 0.652 0.825 0.906 9.567 11.8 5.2

3.07
34.5 3.1

38 10500 0.643 0.813 0.896 9.883 11.9 2.6 17 1.6
100 0.647 0.818 0.900 9.906 11.9 0.4 3.5 0.3

Table 3: Evaluation of the outdoor experiment training Fast-
Depth with a resolution of 256x512 and 288x704. For do-
main adaptation the results are reported with sample-wise
median scaling as in [16] and [33]. The results of the mod-
els trained on the source domain (source) and domain adap-
tion with subsets |A| = |B| ∈ {100, 500, 1000} are listed.
The depth prediction results are evaluated on the KITTI test
set. For accuracy δ higher is better, for RMSE lower is bet-
ter.

Reso-
lution

Training
δ1 δ2 δ3 RMSEData

256x512

Source 0.549 0.790 0.893 8.505
1000 0.649 0.863 0.938 7.813
500 0.650 0.863 0.938 7.788
100 0.637 0.854 0.930 7.942

288x704

Source 0.540 0.752 0.857 9.070
1000 0.635 0.862 0.939 7.924
500 0.626 0.856 0.934 7.952
100 0.629 0.855 0.934 8.168

ture. Moreover, the inference time of FastDepth is signif-
icantly faster. Also, the difference between the two archi-
tectures is large in the MAC operations. It is clear that the
complex ResNet-UpProj architecture is more suitable for
powerful computers. This also inferred when comparing
with the workstation’s training and inference time. Over-
all, relying on between 500 to 1000 training samples for
adaptation results in a good balance between performance,
training time and energy consumption. Finally, the com-
plexity of the architecture does not play an important role
in the energy consumption, which remains comparable for
both models, considering that the more complex architec-

ture converges faster. Fig. 2 illustrates the visual depth map
results for one test sample. In this figure, for both archi-
tectures, the improvement of the model adaptation is visi-
ble (c) compared to training only on the source domain (b).
Especially the lightweight architecture shows a significant
improvement: the objects become distinguishable from the
background and the object in the lower-left corner is pre-
dicted as closest.

Adaptation vKITTI to KITTI We follow the same con-
figuration for this experiment as well. In Table 2, we re-
port the results of the domain adaptation in the resource-
constrained hardware. In addition, we report the domain
adaptation results with median-scaling in Table 3. We rely
now on two image resolutions, where the depth prediction
results are in a similar range. The higher resolution adds
considerable training time, but the inference time is sim-
ilar. Furthermore, the energy consumption is not signifi-
cantly affected by the input resolution. On the other hand,
the complex ResNet-UpProj architecture is not capable of
running on the NVIDIA Jetson Nano due to the memory
limitation with either image resolutions. Finally, the results
after adaptation overall improve for both protocols. More-
over, our visual results show improvement from source only
to domain adaptation, as shown in Fig. 3.

Discussion Both indoor and outdoor evaluations demon-
strate the feasibility of domain adaptation on the resource-
constrained hardware in a meaningful period of time. The
image resolution and number of samples of course affects
the training time, which can go up to 61.5 minutes for
ResNet (indoors) and 34.5 minutes for FastDepth (out-
doors). The energy consumption is not a concern for any
of our experiments, while the inference time is architecture

7

dependent. For instance, we reach 10 milliseconds with
FastDepth for both experiments. Thus, we conclude that
training directly on the embedded device is possible with
adversarial training. Given that monocular depth estimation
is a demanding task, we expect perception tasks such as hu-
man trajectory estimation [11] and gesture recognition [28]
or other robotics applications [22, 8] to be easier transfer-
able to the resource-constrained hardware. Developing the
complete perception of an autonomous agent on resource-
constrained hardware is part of our future work. The main
benefit will be to reduce the overall energy demands, while
maintaining reliable performance.

5. Conclusion

We presented the first feasibility study on training deep
neural networks on resource-constrained hardware in the
context of visual domain adaptation. Our testbed is monoc-
ular depth estimation, where domain adaptation is accom-
plished without supervision. We extended an adversarial
learning approach to function on the device with limited re-
sources. In two evaluations using four standard databases,
we have shown that domain adaptation on the resource-
constrained hardware is manageable for lightweight archi-
tectures based on a few hundred samples from the target
domain. Our study indicates that the deployment-hardware
needs always to be considered along with the training algo-
rithm, neural network architecture and the type of supervi-
sion to scale up machine learning to real-world applications.

References
[1] Filippo Aleotti, Giulio Zaccaroni, Luca Bartolomei, M.

Poggi, Fabio Tosi, and S. Mattoccia. Real-time single image
depth perception in the wild with handheld devices. ArXiv,
abs/2006.05724, 2020. 2

[2] A. Atapour-Abarghouei and T. P. Breckon. Real-time
monocular depth estimation using synthetic data with do-
main adaptation via image style transfer. In 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 2800–2810, 2018. 2, 3, 4

[3] Vasileios Belagiannis, Azade Farshad, and Fabio Galasso.
Adversarial network compression. In Computer Vision -
ECCV 2018 Workshops - Munich, Germany, September 8-
14, 2018, Proceedings, Part IV, volume 11132 of Lecture
Notes in Computer Science, pages 431–449. Springer, 2018.
2

[4] Yohann Cabon, Naila Murray, and Martin Humenberger. Vir-
tual KITTI 2, 2020. 1, 4

[5] G. Csurka. Domain adaptation for visual applications: A
comprehensive survey. ArXiv, abs/1702.05374, 2017. 2

[6] D. Eigen and R. Fergus. Predicting depth, surface normals
and semantic labels with a common multi-scale convolu-
tional architecture. In 2015 IEEE International Conference
on Computer Vision (ICCV), pages 2650–2658, 2015. 2

[7] David Eigen, Christian Puhrsch, and Rob Fergus. Depth map
prediction from a single image using a multi-scale deep net-
work. ArXiv, abs/1406.2283, 2014. 2, 4

[8] Nico Engel, Stefan Hoermann, Markus Horn, Vasileios Bela-
giannis, and Klaus Dietmayer. Deeplocalization: Landmark-
based self-localization with deep neural networks. In 2019
IEEE Intelligent Transportation Systems Conference (ITSC),
pages 926–933. IEEE, 2019. 8

[9] Alexander Frickenstein, Manoj-Rohit Vemparala, Jakob
Mayr, Naveen-Shankar Nagaraja, Christian Unger, Federico
Tombari, and Walter Stechele. Binary dad-net: Binarized
driveable area detection network for autonomous driving. In
2020 IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 2295–2301. IEEE, 2020. 1

[10] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel
Urtasun. Vision meets robotics: The KITTI dataset. Interna-
tional Journal of Robotics Research (IJRR), 2013. 1, 4

[11] Irtiza Hasan, Francesco Setti, Theodore Tsesmelis, Vasileios
Belagiannis, Sikandar Amin, Alessio Del Bue, Marco
Cristani, and Fabio Galasso. Forecasting people trajectories
and head poses by jointly reasoning on tracklets and vislets.
IEEE transactions on pattern analysis and machine intelli-
gence, 43(4):1267–1278, 2019. 8

[12] A. Howard, Menglong Zhu, Bo Chen, D. Kalenichenko, W.
Wang, Tobias Weyand, M. Andreetto, and H. Adam. Mo-
bileNets: Efficient convolutional neural networks for mobile
vision applications. ArXiv, abs/1704.04861, 2017. 2, 4

[13] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and A. Efros.
Image-to-image translation with conditional adversarial net-
works. 2017 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 5967–5976, 2017. 4

[14] Jae In Kim, DongWook Kim, Matthew Krebs, Young Soo
Park, and Yong-Lae Park. Force sensitive robotic end-
effector using embedded fiber optics and deep learning
characterization for dexterous remote manipulation. IEEE
Robotics and Automation Letters, 4(4):3481–3488, 2019. 1

[15] Youngjung Kim, Hyungjoo Jung, D. Min, and K. Sohn. Deep
monocular depth estimation via integration of global and lo-
cal predictions. IEEE Transactions on Image Processing,
27:4131–4144, 2018. 4

[16] J. N. Kundu, P. K. Uppala, A. Pahuja, and R. V. Babu.
AdaDepth: Unsupervised content congruent adaptation for
depth estimation. In 2018 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 2656–2665,
2018. 2, 3, 4, 6, 7

[17] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N.
Navab. Deeper depth prediction with fully convolutional
residual networks. In 2016 Fourth International Conference
on 3D Vision (3DV), pages 239–248, 2016. 2, 4

[18] Katrin Lasinger, Ren’e Ranftl, K. Schindler, and V.
Koltun. Towards robust monocular depth estimation: Mixing
datasets for zero-shot cross-dataset transfer. IEEE transac-
tions on pattern analysis and machine intelligence, PP, 2020.
2

[19] Mengtian Li, Ersin Yumer, and Deva Ramanan. Budgeted
training: Rethinking deep neural network training under re-
source constraints. ICLR, 2020. 2

8

[20] Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen
Wang, and Stephen Paul Smolley. Least squares genera-
tive adversarial networks. In Proceedings of the IEEE inter-
national conference on computer vision, pages 2794–2802,
2017. 3

[21] Pushmeet Kohli Nathan Silberman, Derek Hoiem and Rob
Fergus. Indoor segmentation and support inference from
RGBD images. In ECCV, 2012. 4

[22] Christian Nissler, Nikoleta Mouriki, Claudio Castellini,
Vasileios Belagiannis, and Nassir Navab. Omg: introduc-
ing optical myography as a new human machine interface
for hand amputees. In 2015 IEEE International Conference
on Rehabilitation Robotics (ICORR), pages 937–942. IEEE,
2015. 8

[23] S. Oh, H. S. Kim, J. Lee, and J. Kim. RRNet: Repetition-
reduction network for energy efficient depth estimation.
IEEE Access, 8:106097–106108, 2020. 2

[24] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An
imperative style, high-performance deep learning library. In
Advances in neural information processing systems, pages
8026–8037, 2019. 3

[25] V. Peluso, A. Cipolletta, A. Calimera, M. Poggi, F. Tosi,
and S. Mattoccia. Enabling energy-efficient unsupervised
monocular depth estimation on armv7-based platforms. In
2019 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pages 1703–1708, 2019. 2

[26] M. Poggi, F. Aleotti, F. Tosi, and S. Mattoccia. Towards
real-time unsupervised monocular depth estimation on cpu.
In 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 5848–5854, 2018. 2, 4

[27] Weihua Sheng, Yongsheng Ou, Duy Tran, Eyosiyas Tadesse,
Meiqin Liu, and Gangfeng Yan. An integrated manual and
autonomous driving framework based on driver drowsiness
detection. In 2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 4376–4381. IEEE,
2013. 1

[28] Julian Wiederer, Arij Bouazizi, Ulrich Kressel, and Vasileios
Belagiannis. Traffic control gesture recognition for au-
tonomous vehicles. In 2020 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pages
10676–10683. IEEE, 2020. 8

[29] D. Wofk, F. Ma, T. Yang, S. Karaman, and V. Sze. FastDepth:
Fast monocular depth estimation on embedded systems. In
2019 International Conference on Robotics and Automation
(ICRA), pages 6101–6108, 2019. 2, 4, 5

[30] Xiaofan Zhang, Haoming Lu, Cong Hao, Jiachen Li, Bowen
Cheng, Y. Li, Kyle Rupnow, Jinjun Xiong, Thomas Huang,
Humphrey Shi, W. Hwu, and D. Chen. SkyNet: a hardware-
efficient method for object detection and tracking on embed-
ded systems. ArXiv, abs/1909.09709, 2020. 2

[31] S. Zhao, H. Fu, M. Gong, and D. Tao. Geometry-aware sym-
metric domain adaptation for monocular depth estimation.
In 2019 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 9780–9790, 2019. 2, 3, 4,
6

[32] C. Zheng, T. Cham, and J. Cai. T2Net: Synthetic-to-realistic
translation for solving single-image depth estimation tasks.
In ECCV, 2018. 2, 3, 6

[33] Tinghui Zhou, M. Brown, Noah Snavely, and D. Lowe. Un-
supervised learning of depth and ego-motion from video.
2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 6612–6619, 2017. 6, 7

9

