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Abstract

We present LSD-C, a novel method to identify clusters in an unlabeled dataset. Our
algorithm first establishes pairwise connections in the feature space between the
samples of the minibatch based on a similarity metric. Then it regroups in clusters
the connected samples and enforces a linear separation between clusters. This is
achieved by using the pairwise connections as targets together with a binary cross-
entropy loss on the predictions that the associated pairs of samples belong to the
same cluster. This way, the feature representation of the network will evolve such
that similar samples in this feature space will belong to the same linearly separated
cluster. Our method draws inspiration from recent semi-supervised learning prac-
tice and proposes to combine our clustering algorithm with self-supervised pretrain-
ing and strong data augmentation. We show that our approach significantly outper-
forms competitors on popular public image benchmarks including CIFAR 10/100,
STL 10 and MNIST, as well as the document classification dataset Reuters 10K.
Our code is available at https://github.com/srebuffi/lsd-clusters.

1 Introduction

The need for large scale labelled datasets is a major obstacle to the applicability of deep learning
to problems where labelled data cannot be easily obtained. Methods such as clustering, which
are unsupervised and thus do not require any kind of data annotation, are in principle more easily
applicable to new problems. Unfortunately, standard clustering algorithms [7, 10, 38, 41] usually
do not operate effectively on raw data and require to design new data embeddings specifically for
each new application. Thus, there is a significant interest in automatically learning an optimal
embedding while clustering the data, a problem sometimes referred to as simultaneous data clustering
and representation learning. Recent works have demonstrated this for challenging data such as
images [27, 51] and text [28, 44]. However, most of these methods work with a constrained output
space, which usually coincides with the space of discrete labels or classes being estimated, therefore
forcing to work at the level of the semantic of the clusters directly.

In this paper, we relax this limitation by introducing a novel clustering method, Linearly Separable
Deep Clustering (LSD-C). This method operates in the feature space computed by a deep network
and builds on three ideas. First, the method extracts mini-batches of input samples and establishes
pairwise pseudo labels (connections) for each pair of sample in the mini-batch. Differently from
prior art, this is done in the space of features computed by the penultimate layer of the deep network
instead of the final output layer, which maps data to discrete labels. From these pairwise labels, the
method learns to regroup the connected samples into clusters by using a clustering loss which forces
the clusters to be linearly separable. We empirically show in section 4.2 that this relaxation already
significantly improves clustering performance.
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Second, we initialize the model by means of a self-supervised representation learning technique. Prior
work has shown that these techniques can produce features with excellent linear linear separability [4,
16, 22] that are particularly useful as initialization for downstream tasks such as semi-supervised and
few-shot learning [14, 42, 54].

Third, we make use of very effective data combination techniques such as RICAP [49] and MixUp [55]
to produce composite data samples and corresponding pseudo labels, which are then used at the
pairwise comparison stage. In section 4 we show that training with such composite samples and
pseudo labels greatly improves the performance of our method, and is in fact the key to good
performance in some cases.

We comprehensively evaluate our method on popular image benchmarks including CIFAR 10/100,
STL 10 and MNIST, as well as the document classification dataset Reuters 10K. Our method
almost always outperforms competitors on all datasets, establishing new state-of-the-art clustering
results. The rest of the paper is organized as follows. We first review the most relevant works
in section 2. Next, we develop the details of our proposed method in section 3, followed by the
experimental results, ablation studies and analysis in section 4. Our code is publicly available at
https://github.com/srebuffi/lsd-clusters.

2 Related work

Deep clustering. Clustering has been a long-standing problem in the machine learning community,
including well-known algorithms such as K-means [38], mean-shift [7], DBSCAN [10] or Gaussian
Mixture models [41]. Furthermore it can also be combined with other techniques to achieve very
diverse tasks like novel category discovery [21, 11] or semantic instance segmentation [9] among
others. With the advances of deep learning, more and more learning-based methods have been
introduced in the literature [12, 13, 19, 26, 28, 36, 45, 51, 52]). Among them, DEC [51] is one of
the most promising method. It is a two stage method that jointly learns the feature embedding and
cluster assignment. The model is first pretrained with an autoencoder using reconstruction loss, after
which the model is trained by constructing a sharpened version of the soft cluster assignment as
pseudo target. This method inspired a few following works such as IDEC [17] and DCED [18].
JULE [53] is a recurrent deep clustering framework that jointly learns the feature representation with
an agglomerative clustering procedure, however it requires tuning a number of hyper-parameters,
limiting its practical use. More recently, several methods have been proposed based on mutual
information [5, 25, 27]. Among them, IIC [27] achieves the current state-of-the-art results on image
clustering by maximizing the mutual information between two transformed counterparts of the
same image. Closer to our work is the DAC [3] method, which considers clustering as a binary
classification problem. By measuring the cosine similarity between predictions, pairwise pseudo
labels are generated from the most confident positive or negative pairs. With the generated pairwise
pseudo labels, the model can then be trained by a binary cross-entropy loss. DAC can learn the
feature embedding as well as the cluster assignment in an end-to-end manner. Our work significantly
differs from DAC as it generates pairwise predictions from a less constrained feature space using
similarity techniques not limited to cosine distance.

Self-supervised representation learning. Self-supervised representation learning has recently at-
tracted a lot of attention. Many effective self-supervised learning methods have been proposed in
the literature [1, 2, 4, 15, 16, 22]. DeepCluster [2] learns feature representation by classification
using the pseudo labels generated from K-means on the learned features in each training epoch.
RotNet [16] randomly rotates an image, and learns to predict the applied rotations. Very recently,
contrastive learning based methods MoCo [22] and SimCLR [4] have achieved the state-of-the-art
self-supervised representation performance, surpassing the representation learnt using ImageNet
labels. Self-supervised learning has been also applied in few-shot learning [14], semi-supervised
learning [42, 54] and novel category discovery [20], which successfully boosts their performance. In
this work we make use of the provably well-conditioned feature space learnt from self-supervised
learning method to initialize our network and avoid degenerative cases.

Pairwise pseudo labeling. Pairwise similarity between pairs of sample has been widely used in the
literature for dimension reduction or clustering (e.g., t-SNE [37], FINCH [44]). Several methods have
shown the effectiveness of using pairwise similarity to provide pseudo labels on-the-fly to train deep
convolutional neural networks. In [24], a binary classifier is trained to provide pairwise pseudo labels
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Figure 1: Overview of LSD-C. Pairwise labels are extracted at the feature level. They are then
used in a clustering loss after the linear classifier. This way, the feature maps will evolve such that
connected samples will be grouped in linearly separated clusters. The MSE loss acts a regularizer
and enforces the consistency of the cluster predictions when data augmentation is applied.

to train a multi-class classifier. In [20], ranking statistics is used to obtain pairwise pseudo labels
on-the-fly for the task of novel category discovery. In [44], the pairwise connection between data
points by finding the nearest neighbour is used to cluster images using CNN features. In our method,
we compute pairwise labels from a neural network embedding. This way we generate pseudo labels
for each pair in each mini-batch and learn cluster assignment without any supervision.

3 Method

Our methods is divided into three stages: (i) self-supervised pre-training, (ii) pairwise connection and
clustering, and (iii) data composition. We provide an overview of our pipeline in figure 1. Our method
processes each input data batch x in two steps, by extracting features f = Φ(x) ∈ RN×D by means
of a neural network Φ, followed by estimating posterior class probabilities p = Ψ(f) ∈ RN×K by
means of a linear layer Ψ and softmax non-linearity. We use the symbol p′ = Φ(Ψ(x′)) to denote
the class predictions for the same mini-batch x′ with data augmentation (random transformations)
applied to it. We use the letters D, K and N to denote the feature space dimension, the number of
clusters and the mini-batch size. We now detail each component of LSD-C.

3.1 Self-supervised pretraining

As noted in the introduction, traditional clustering methods require handcrafted or pretrained features.
More recently, methods such as [27] have combined deep learning and clustering to learn features
and clusters together; even so, these methods usually still require ad hoc pre-processing steps
(e.g. pre-processing such as Sobel filtering [2, 27]) and extensive hyperparameter tuning. In our
method we address this issue and avoid bad local minima in our clustering results by initializing our
representation by means of self-supervised learning. In practice, this amounts to train our model on a
pretext task (detailed in section 4) and then retain and freeze the earlier layers of the model when
applying our clustering algorithm. As reported in [4, 16], the features obtained from self-supervised
pre-training are linearly separable with respect to typical semantic image classes. This property is
particularly desirable in our context and also motivates our major design choice: since the feature
space of self-supervised pre-trained network is linearly separable, it is therefore easier to directly
operate on it to discriminate between different clusters.

3.2 Pairwise labeling

A key idea in our method is the choice of space where pairwise the data connections are established:
we extract pairwise labels at the level of the data representation rather than at the level of the class
predictions. The latter is a common design choice, used in DAC [3] to establish pairwise connections
between data points and in DEC [51] to match the current label posterior distribution to a sharper
version of itself.
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Table 1: Pairwise labeling with adjacency matrices Aij = 1Cij
based on different similarities.

τ is the thresholding hyperparameter for L2, SNE and Cosine. The number of neighbours k is kNN’s
hyperparameter.

L2 dist. SNE Cosine kNN

Cij = ‖fj − fi‖2 < τ
exp(−‖fj−fi‖2/T 2)

H(Zi,Zj)
> τ

f>j fi
‖fj‖‖fi‖ > τ (j ∈ kNN(i)) ∨ (i ∈ kNN(j))

The collection of pairwise labels between samples in a mini-batch is given by the adjacency matrix
A of an undirected graph whose nodes are the samples and whose edges encode their similarities.
DAC [3] generates pseudo labels by checking if the output of the network is above or under certain
thresholds. The method of [34] proceeds similarly in the semi-supervised setting. In our method, as
we work instead at the feature space level, the pairwise labeling step is a separate process from class
prediction and we are free to choose any similarity to establish our adjacency matrix A. We denote
with fi ∈ RD and fj ∈ RD the feature vectors for samples i and j in a mini-batch, obtained from
the penultimate layer of the neural network Φ. We also use the symbol Aij ∈ {0, 1} to denote the
value of the adjacency matrix for the pair of samples (i, j). Next, we describe the different types of
pairwise connections considered in this work and summarize them in table 1.

Cosine and L2 similarity. Let τ ∈ R+ be a threshold hyperparameter and define Cij =
[cos(fj , fi) > τ ] (cosine) or Cij = [‖fj − fi‖2 < τ ] (Euclidean) where cos denotes the dot product
between L2-normalized vectors. We then define Aij = 1Cij

where 1 is the indicator function. These
definitions connect neighbor samples but do not account well for the local structure of the data.
Indeed, it is not obvious that the cosine similarity or Euclidean distance would establish good data
connections in feature space.

Symmetric SNE. A possible solution to alleviate the previous issue is to use the symmetric SNE
similarity introduced in t-SNE [37]. This similarity is based on the conditional probability pj|i of
picking j as neighbor of i under a Gaussian distribution assumption. We make a further assumption
compared to [37] of an equal variance for every sample in order to speed up the computation of
pairwise similarities and define:

pj|i =
exp(−‖fj − fi‖2/T 2)∑

k 6=i
exp(−‖fk − fi‖2/T 2)

=
exp(−‖fj − fi‖2/T 2)

Zi
, (1)

Cij =
pj|i + pi|j

2
> τ ⇐⇒ exp(−‖fj − fi‖2/T 2)

H(Zi, Zj)
> τ. (2)

As shown in equation (1), we introduce a temperature hyperparameter T ∈ R+ and we call Zi the
partition function for sample i. Then the associated adjacency matrix in equation (2) can be written
as a function of the L2 distance between samples and, in the denominator, of the harmonic mean
H of the partition functions. As a result, if sample i or j has many close neighbours, it will reduce
the symmetric SNE similarity and possibly prevent a connection between samples i and j. Such a
phenomenon is shown on the two moons toy dataset in figure 2.

k-nearest neighbors. We also propose a similarity based on k-nearest neighbours (kNN) [8] where
the samples i and j are connected if i is in the k-nearest neighbours of j or if j is in the k-nearest
neighbours of i. With this similarity, the hyperparameter is the minimum of neighbours k and not the
threshold τ .

3.3 Clustering loss and data composition

Now that we have established pairwise connections between each pair of samples in the mini-batch,
we will use the adjacency matrix as target for a binary cross-entropy loss. Denoting with P (i = j)
the probability that samples i and j belong to the same cluster, we wish to optimize the clustering
loss:

Lclus = −
∑
i,j

Aij logP (i = j) + (1−Aij) logP (i 6= j). (3)
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(a) Raw data (b) L2 dist. (c) kNN (d) SNE

Figure 2: Pairwise connections on the two moons toy data. From left to right. We apply our algo-
rithm with different connection techniques on a toy dataset shown in (a) where each color represents
a class. We use the different connections techniques of table 1 such that there are 650 undirected
edges for each similarity. Compared to L2 distance and SNE, kNN produces neighbourhoods of
similar sizes and every sample is connected. SNE captures the local structure of the data: most of the
connections are at the external tails of the moons where there are less points.

0.5 0.2 0.2

A11= 1 A15= 0 A17= 1 A12= 0

0.1

Figure 3: Illustration for equation (6) of a pairwise target between the "pure" image i = 1 and the
composite image j with σ(j) ∈ (1, 5, 7, 2). In this case, the resulting pairwise target equals 0.7.

The left term of this loss aims at maximizing the number of connected samples (i.e. Aij = 1) within
a cluster and the right term at minimizing the number of non-connected samples within it (namely,
the edges of the complement of the similarity graph 1−Aij = 1). Hence the second term prevents
the formation of a single, large cluster that would contain all samples.

The next step is to model P (i = j) by using the linear classifier predictions of samples i and j. As
seen in equation (4), for a fixed number of clusters K, the probability of samples i and j belonging to
the same cluster can be rewritten as a sum of probabilities over the possible clusters. For simplicity,
we assume that samples i and j are independent. This way, the pairwise comparison between samples
appear only at the loss level and we can thus use the standard forward and backward passes of deep
neural networks where each sample is treated independently. By plugging equation (4) in equation (3)
and by replacing pj with p′j to form pairwise comparisons between the mini-batch and its augmented
version, we obtain our final clustering loss Lclus:

P (i = j) =

K∑
k=1

P (i = k, j = k) =

K∑
k=1

P (i = k)P (j = k) = p>i pj , (4)

Lclus = −
∑
i,j

Aij log(p>i p
′
j) + (1−Aij) log(1− p>i p

′
j). (5)

A similar loss is used in [24] but with supervised pairwise labels to transfer a multi-class classifier
across tasks. It is also reminiscent of DAC [3], but differs from the latter because the DAC loss does
not contain a dot product between probability vectors but between L2 normalized probability vectors.
Hence DAC optimizes a Bhattacharyya distance whereas we optimize a standard binary cross-entropy
loss.

In practice Lclus can be used in combination with effective data augmentation techniques such as
RICAP [49] and MixUp [55]. These methods combine the images from the minibatch and use a
weighted combination of the labels of the original images as new target for the cross-entropy loss.
We denote with σ permutation of the samples in the minibatch; RICAP and MixUp require 4 and 2
permutations respectively. RICAP creates a new minibatch of composite images by patching together
random crops from the 4 permutations of the original minibatch, whereas MixUp produces a new
minibatch by taking a linear combination with random weights from 2 permutations. The new target
for a composite image is then obtained by taking a linear combination of the labels in the recombined
images, weighted by area proportions in RICAP and the mixing weights in MixUp. These techniques
were proposed for the standard supervised classification setting, so we adapt them here to clustering.
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In order to do so, we propose to perform a pairwise labeling between the composite images and the
raw original images. Both minibatches of original and composite images are fed to the network.
Then, as illustrated in figure 3, the pairwise label between a composite image and a raw image is the
linear combination of the pairwise labels between the components of both. To sum up, to obtain the
pairwise labels between a minibatch and its composite version we just need to extract the adjacency
matrix A of the minibatch and then do a linear combination of the adjacency matrix A with the
different column permutations σ:

Lclus = −
∑
σ

∑
i,j

wσAiσ(j) log(p>i p̃j) + (1− wσAiσ(j)) log(1− p>i p̃j) (6)

Regarding the predicted probability of the ‘pure’ image i and the composite image j being in the
same cluster, we take the dot product between their respective cluster predictions pi and p̃j .

3.4 Overall loss

The overall loss we optimise is given by
Ltot = Lclus(f ,p,p

′) + Lcons(p,p
′), (7)

where

Lcons =
ω(t)

KN

N∑
i=1

‖pi − p′i‖2, (8)

and ω(t) = λe−5(1−
t
T )2 is the ramp-up function proposed in [32, 50] with t the current training step,

T the ramp-up length and λ ∈ R+. Lcons is a consistency constraint which requires the model to
produce the same prediction p ≈ p′ for an image and an its augmented version. We use it in our
method in a similar way as semi-supervised learning techniques [32, 39, 43, 50], i.e. as a regularizer
to provide consistent predictions. This differs significantly from clustering methods like IIC [27]
and IMSAT [25] where augmentations are used as a main clustering cue by maximizing the mutual
information between different versions of an image. Instead, as commonly done in semi-supervised
learning, we use the Mean Squared Error (MSE) between predictions as the consistency loss.

4 Experiments

Datasets. We conduct experiments on five popular benchmarks which we use to compare our
method against recent state-of-the-art approaches whenever results are available. We use four image
datasets and one text dataset to illustrate the versatility of our approach to different types of data. We
use MNIST [33], CIFAR 10 [30], CIFAR 100-20 [30] and STL 10 [6] as image datasets. All these
datasets cover a wide range of image varieties ranging from 28×28 pixels grey scale digits in MNIST
to 96× 96 higher resolution images from STL 10. CIFAR 100-20 is redesigned from original CIFAR
100 since we consider only the 20 meta classes for evaluation as common practice [27]. Finally we
also evaluate our method on a text dataset, Reuters 10K [35]. Reuters 10K contains 10,000 English
news labelled with 4 classes. Each news has 2,000 tf-idf features. For all datasets we suppose the
number of classes to be known.

Experimental details. We use ResNet-18 [23] for all the datasets except two. For MNIST we use
a model inspired from VGG-4 [46], described in [27] and for Reuters 10K we consider a simple
DNN of dimension 2000–500–500–2000–4 described in [51]. We train with batch-size of 256 for
all experiments. We use SGD optimizer with momentum [48] and weight decay set to 5× 10−4 for
every dataset except for Reuters 10K where we respectively use Adam [29] and decay of 2× 10−3.
When comparing with other methods in table 2 and table 3, we run our method using 10 different
seeds and report average and standard deviation on each dataset to measure the robustness of our
method with respect to initialization. As it is common practice [27], we train and test the methods on
the whole dataset (this is acceptable given that the method uses no supervision). Further experimental
details about data augmentation and training are available in the appendix.

Evaluation metrics. We take the commonly used clustering accuracy (ACC) as evaluation metric.
ACC is defined as

max
g∈Sym(K)

1

N

N∑
i=1

1 {yi = g (yi)} , (9)
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Table 2: Comparison with other methods. Our method almost constantly reaches state-of-the-art
performances by a large margin. Note that [27] report best results over all the heads while we report
results over ten different initializations. This further shows that our method is overall stable and
robust to initialization.

K-means [38] JULE [53] DEC [51] DAC [3] IIC [27] Ours

CIFAR 10 22.9 27.2 30.1 52.2 61.7 81.7 ± 0.9
CIFAR 100-20 13.0 13.7 18.5 23.8 25.7 42.3 ± 1.0
STL 10 19.2 27.7 35.9 47.0 59.6 66.4 ± 3.2
MNIST 57.2 96.4 84.3 97.8 99.2 98.6 ± 0.5

Table 3: Results on Reuters 10K. Our method performs on average on par with state of the art. Note
that for the best seed we reach state-of-the-art results of 83.5%.

K-means [38] IMSAT [25] DEC [51] VaDE [28] FINCH [44] Ours

Reuters 10K 52.4 71.9 72.2 79.8 81.5 79.0 ± 4.3

where yi and yi respectively denote the ground-truth class label and the clustering assignment
obtained by our method for each sample in the dataset. Sym (K) is the group of permutations with
K elements and following other clustering methods we use the Hungarian algorithm [31] to optimize
the choice of permutation.

4.1 Results on standard benchmarks

We compare our method with the K-means [38] baseline and recent clustering methods. In table 2,
we report results on image datasets. We use RotNet [16] self-supervised pre-training for each dataset
on all the data available (e.g including the unlabelled set in STL-10). Our method significantly
outperforms the others by a large margin. For example, our method achieves 81.5% on CIFAR 10,
while the previous state-of-the-art method IIC [27] gives 61.7%. On CIFAR 10, our method also
outperforms the leading semi-supervised learning technique FixMatch [47] which obtains 64.3% in
its one label per class setting. Similarly, on CIFAR 100-20 and STL 10, our method outperforms
other clustering approaches respectively by 14.7 and 6.8 points. On MNIST, our method and IIC
both achieve a very low error rate around 1%.

These results clearly show the effectiveness of our approach. Unlike the previous state-of-the-art
method IIC that requires to apply Sobel filtering and very large batch size during training, our method
does not require such preprocessing and works with a common batch size. We also note that our
method is robust to different initialization, with a maximum 3.2% of standard deviation across all
datasets.

To analyse further the results on CIFAR 10, we can look at the confusion matrix resulting from
our model’s predictions.We note that most of the errors are due to the ‘cat’ and ‘dog’ classes being
confused. If we retain only the confident samples with prediction above 0.9 (around 60% of the
samples), the accuracy rises to 94%. We assume that the two classes ‘cat’ and ‘dog’ are are more
difficult to discriminate due to their visual similarity.

In table 3, we also evaluate our method on the document classification dataset Reuters 10K to show
its versatility. We compare with different approaches than in table 2 as clustering methods developed
for text are seldom evaluated on image datasets like CIFAR and vice versa. Following existing
approaches applied to Reuters 10K, we pretrain the deep neural network by training a denoising
autoencoder on the dataset [28]. Our method works notably better than the K-means baseline, and
is on par with the best results methods FINCH [44] and VaDE [28]. Most notably one run of our
method established state-of-the-art results of 83.5%, 2 points above the current best model.

4.2 Ablation studies

In order to analyze the effects of the different components of our method, we conduct a three parts
ablation study on CIFAR 10 and CIFAR 100-20. First, we compare the impact of different possible
pairwise labeling methods in the feature space. Second, as one of our key contribution is to choose

7



Table 4: Ablation study. We analyse the effect of different pairwise labeling methods but also the
impact of where the labeling is done (feature vs prediction space). We also show the paramount
importance of data augmentation for clustering some datasets like CIFAR 10.

Pairwise labeling Using the pred. space Data augmentation

L2 Cosine kNN SNE Cosine kNN SNE RICAP MixUp None

CIFAR 10 70.2 81.1 81.7 81.5 63.7 64.7 67.0 81.7 75.3 53.7
CIFAR 100-20 26.1 34.4 42.3 40.4 20.4 32.8 30.4 42.3 37.1 35.4

the space where the pairwise labeling is performed, we test doing so at the level of features and
predictions (i.e. after the linear classifier but before the softmax layer like DEC [51] or DAC [3]).
Third, we analyse the importance of data augmentation in clustering raw images. Results are reported
in table 4 and discussed next.

Pairwise similarity. We compare, in feature space, pairwise labeling methods based on L2 distance,
cosine similarity, kNN and symmetric SNE as described in table 1. For kNN, we set the number of
neighbors k to 20 and 10 for CIFAR 10 and CIFAR 100-20 respectively. For the cosine similarity, we
use respectively thresholds 0.9 and 0.95. For the L2 distance, we ran a grid search between 0 and 2 to
find an optimal threshold. For SNE, we set the threshold to 0.01 and the temperature to 1 and 0.5, for
CIFAR 10 and CIFAR 100-20 respectively. Further details about the hyperparameters are available in
the supplementary. We observe that kNN, SNE and cosine similarity perform very well on CIFAR 10
with values around 81%. It is interesting to note that cosine similarity performs noticeably worse
than kNN and SNE on CIFAR 100-20 with around 6 points less. We also notice that L2 distance
performs consistently worse than the other labeling methods. We can conclude that kNN and SNE
are the best labeling methods empirically with consistent performance on these two datasets.

Feature space embedding. Instead of using these labeling methods before the linear classifier, we
apply them after it. In this case, our overall approach becomes more similar to standard pseudo-
labeling methods such as [3, 34, 51], which aim to match the network predictions output with a
‘sharper’ version of it. We observe that the performance drops considerably for all labeling methods
with an average decrease of 16.3 points for CIFAR 10 and 10.6 points for CIFAR 100-20. Hence, this
shows empirically that where pseudo labeling is applied plays a major role in clustering effectiveness
and that labeling at the feature space level is noticeably better than doing so at the prediction space
level.

Data augmentation. We compare RICAP, MixUp, and the case without data composition (denoted
as None). As can it can be seen in table 4, data composition is crucial for CIFAR 10 where RICAP
and MixUp surpass None by respectively 28 and 22 points. On CIFAR 100-20, the differences are
smaller but using data composition still brings a clear improvement with a 5.1 points increase when
using RICAP. Interestingly, RICAP clearly outperforms MixUp in both cases.

5 Conclusions

We have proposed a novel deep clustering method, LSD-C. Our method establishes pairwise connec-
tions at the feature space level among different data points in a mini-batch. These on-the-fly pairwise
connections are then used as targets by our loss to regroup samples into clusters. In this way, our
method can effectively learn feature representation together with the cluster assignment. In addition,
we also combine recent self-supervised representation learning with our clustering approach to boot-
strap the representation before clustering begins. Finally, we adapt data composition techniques to the
pairwise connections setting, resulting in a very large performance boost Our method substantially
outperforms existing approaches in various public benchmarks, including CIFAR 10/100-20, STL 10,
MNIST and Reuters 10K.
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Broader Impact

Our method considers the task of unsupervised clustering from unlabeled data. We mainly consider
two types of data: images and text document. While we make significant advances in terms of
clustering accuracy compared to previous work, we believe the data we used to be at low risk since
we consider datasets wide-spread around the community for sometimes decades.

While the data we used are not at risk we believe there is an inherent risk of misuse with clustering
particularly when learnt from raw data. As any learning algorithm the clustering also depends on the
data bias and could lead to misinformation or misinterpretation of results obtained from our model.

However we believe our method and clustering in general to be of interest for future years as it would
reduce the need of heavy data annotations and processing.
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LSD-C: Linearly Separable Deep Clusters
Supplementary Material

In this supplementary material, we provide our implementation details, the confusion matrices on
CIFAR 10 using our method with kNN labeling and some additional ablation studies. We also include
the code to run our method on CIFAR 10 together with the network pretrained with RotNet [16].

A Implementation details

Self-supervised pretraining. We train the RotNet [16] (i.e. predicting the rotation applied to the
image among four possibilities: 0◦, 90◦, 180◦, and 270◦) on all datasets with the same configuration.
Following the authors’ released code, we train for 200 epochs using a step-wise learning rate starting
at 0.1 which is then divided by 5 at epochs 60, 120, and 160.

Main LSD-C models. After the self-supervised pretraining step, following [20] we freeze the first
three macro-blocks of the ResNet-18 [23] as the RotNet training provides robust early filters. We
then train the last macro-block and the linear classifier using our clustering method. For all the
experiments, we use a batch size of 256. We summarize in table 5 all the hyperparameters for the
different datasets and labeling methods.

Table 5: Hyperparameters. Optimizer, ramp-up function and parameters of different labeling
methods on different datasets.

Optimizer Ramp-up Cosine SNE kNN

Type Epochs LR steps LR init λ T τ τ Temp k

CIFAR 10 SGD 220 [140, 180] 0.1 5 100 0.9 0.01 1.0 20
CIFAR 100-20 SGD 200 170 0.1 25 150 0.95 0.01 0.5 10
STL 10 SGD 200 [140, 180] 0.1 5 50 - 0.01 0.5 -
MNIST SGD 15 - 0.1 5 50 - - - 10
Reuters 10K Adam 75 - 0.001 25 100 - - - 5

Data augmentation techniques. We showed in the main paper that data composition techniques
like RICAP [49] and MixUp [55] are highly beneficial to our method. For RICAP, we follow the
authors’ instructions to sample the width and height of crops for each minibatch permutation by
using a Beta(0.3, 0.3) distribution. Regarding MixUp, we note that using a Beta(0.3, 0.3) distribution
for the mixing weight works better in our case than the Beta(1.0, 1.0) advised for CIFAR 10 in the
MixUp paper. Furthermore, we have to decrease the weight decay to 10−4 to make MixUp work.

Miscellaneous. Our method is implemented with PyTorch 1.2.0 [40]. Our experiments were run on
NVIDIA Tesla M40 GPUs and can run on a single GPU with 12 GB of RAM.

B Confusion matrices on CIFAR 10

In figure 4, we show some confusion matrices on CIFAR 10 to analyse how our clustering method
performs on the different classes. We notice that there are 8 confident clusters with a very high
clustering accuracy of 94.0% for confident samples. The "dog" and "cat" clusters are not well
identified possibly due to a huge intra-class variation of the samples.
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Figure 4: Confusion matrices on CIFAR 10 using our method with kNN labeling. Figure 4a
shows that most of the errors are due to the "cat" and "dog" classes. When taking the samples with
prediction above 0.9 (60% of the samples) in Figure 4b, there are less than 2000 predictions on
classes "cat" and "dog" whereas there are more than 3500 for each of the other classes. Our method
manages to ignore the problematic classes when taking the confident samples. Indeed, the accuracy
for confident samples is 94.0%.

C Additional ablation studies

We report in table 6 the results of some additional ablation studies to evaluate the impact of more
components of our method. For example, we apply K-means [38] on the feature space of the
pretrained RotNet model and we note very poor performance on CIFAR 10 and CIFAR 100-20. We
can conclude that before training with our clustering loss, the desired clusters are not yet separated in
the feature space. After training with our clustering loss, the clusters can be successfully separated.
Moreover, if we only use the clustering loss and drop the consistency MSE loss, the performance
decreases on both CIFAR 10 and CIFAR 100-20 by 1.5 and 1.3 points respectively, showing that the
MSE provides a moderate but clear gain to our method. Finally, if we replace the linear classifier by
a 2-layer classifier (i.e. this corresponds to a non-linear separation of clusters in the feature space), it
results in a small improvement on CIFAR 10 but a clear decrease of 1.9 points on CIFAR 100-20.
Hence using a linear classifier provides more consistent results across datasets.

Table 6: Additional ablation studies. From the first column, we observe that the desired clusters
are not yet separated in the feature space after the RotNet pretraining. The second column shows that
the MSE consistency loss provides a boost of more than 1 point to our method. Finally, we see that
using a non-linear classifier harms the performance on CIFAR 100-20.

K-means + RotNet Ours (kNN) Ours (kNN) w/o MSE Ours (kNN) w/ non-lin.

CIFAR 10 14.3 81.7 80.2 82.0
CIFAR 100-20 9.1 40.5 39.2 38.6
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