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Abstract— In this paper, we propose Attention Based Decom-
position Network (ABD-Net), for point cloud decomposition
into basic geometric shapes namely, plane, sphere, cone and
cylinder. We show improved performance of 3D object clas-
sification using attention features based on primitive shapes
in point clouds. Point clouds, being the simple and compact
representation of 3D objects have gained increasing popularity.
They demand robust methods for feature extraction due to
unorderness in point sets. In ABD-Net the proposed Local
Proximity Encapsulator captures the local geometric variations
along with spatial encoding around each point from the input
point sets. The encapsulated local features are further passed
to proposed Attention Feature Encoder to learn basic shapes
in point cloud. Attention Feature Encoder models geometric
relationship between the neighborhoods of all the points
resulting in capturing global point cloud information. We
demonstrate the results of our proposed ABD-Net on ANSI
mechanical component and ModelNet40 datasets. We also
demonstrate the effectiveness of ABD-Net over the acquired
attention features by improving the performance of 3D object
classification on ModelNet40 benchmark dataset and compare
them with state-of-the-art techniques.

Index Terms— Point cloud decomposition, Self-attention
mechanism, Point cloud classification, 3D processing

I. INTRODUCTION

In recent days 3D point cloud is making its ground
in every field like, CAD modeling, 3D printing, AR/VR
entertainment and self driving cars. There is a need for
methods to analyze, process and derive this huge volume
of 3D point clouds efficiently. A basic capability of human
visual system is to derive relevant structures and their
relation from 3D objects. Unlike human vision, supervising
a machine to derive such geometrical information is a
challenging task. However, representing a 3D object with a
set of basic geometric parts simplifies its geometric surface.
This simpler representation of a 3D object is vital for better
shape understanding, shape information processing and
shape analysis tasks.

Unlike images, which have a defined regular grid, 3D
point clouds are irregular and unordered, restricting the
direct use of standard and powerful convolution techniques.
Some point set processing approaches transform 3D
points to voxel grid representations [1], [2] or image
projections [3], [4]. However, this transformation leads to
loss of information and also suffers from high processing
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Fig. 1. Overview of Attention Based Decomposer (ABD-Net) where basic
shape features are used for 3D object classification. Point color indicates
the shape to which it belong. [Black for Planar, Blue for Spherical and
Green for Cylindrical].

complexity. To address these issues, considerable amount of
work has been done on point based methods that directly
act on 3D points. The main idea is to process each point
individually using many filters of unit size, and sharing
these filters amongst all points capturing point set features
[5], [6]. However, these approaches use down-sampling step
for defining local neighborhood, which causes costly point
correspondence search during interpolation. However, if
the task demands to estimate point features for all the
original number of points, down-sampling might hinder
the feature representation of the 3D object.

To address the issue of lack of surfacial information
in 3D point clouds, some works try to decompose a
3D point cloud into meaningful parts and try to infer
a topological graph by modeling relations between these
parts [7]. However, this decomposition is highly dependent
on the perceptual points selected. While some approaches
try to reconstruct a parametric form of the input point
clouds, considering fixed geometric shapes [8], [9]. This
task of fitting basic geometric shapes suffers from high
computational complexity.

In this work, we tackle the problem of missing surfacial
information by representing the inherent geometry of 3D
point cloud using 4 basic shapes namely, plane, sphere,
cone and cylinder. We perform decomposition by assigning
per-point labels from one of the four shapes, making
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it a simpler problem than basic shape fitting. Towards
this, an essential factor is, learning the local topological
information of the point sets as we want to represent a 3D
object at its lowest geometric abstraction. To address this,
we propose Local Proximity Encapsulator, a permutation
invariant module, which encapsulates both local geometric
variation and spatial encoding around each point. Here,
to overcome the limitation of costly point correspondence
search, we use k-nearest neighbors around each point
to define the local neighborhood. However, learning only
these local topological information is not sufficient. The
relationship between local neighborhood should not be
overlooked, as they are not independent, but represent
a whole 3D object. This problem is similar to that of in
Natural Language Processing (NLP) where in, relationship
between words is to be modeled [10], [11], [12], [13]. We
propose Attention Feature Encoder, to model relationships
between neighborhood and capture the underlying shape
of the whole 3D object. We use these two modules to
train a 3D object decomposer which is vital for any shape
understanding and shape analysis tasks. We show improved
3D object classification performance by using ABD-Net as
a pre-processing step and provide extensive study.

To summarize, the main contributions of our work are
as follows:

• We propose ABD-Net that captures the inherent
geometry of a 3D point cloud and represents it using
basic shapes namely, plane, sphere, cone and cylinder
helping various 3D analysis tasks. Towards this:

– We propose Local Proximity Encapsulator (LPE)
to capture local geometry with spatial encoding
around each point, thus incorporating local at-
tention.

– We propose Attention Feature Encoder (AFE) to
learn basic shapes in point cloud by modeling
geometric relationship between the neighborhood
of all the points, and call this as global attention
which is based on basic shapes.

• We train ABD-Net to learn basic shape features using
ANSI mechanical components dataset, which has
shape labels assigned to each point in a point cloud.
We use these features on a different dataset for a
different task, specifically 3D classification.

– We evaluate the performance of proposed ABD-
Net for decomposition task on ANSI mechanical
components dataset achieving an accuracy of
99.3%.

– We test the proposed ABD-Net on ModelNet40
dataset and demonstrate the performance of point
cloud decomposition.

• We show effectiveness of the ABD-Net by showing
improved classification performance of a 3D classifier
having 3 times less trainable parameters than state-
of-the-art and achieve comparable results.

• We provide exhaustive evaluation and ablation study
to demonstrate the effectiveness of ABD-Net for both,

decomposition and classification.

The organization of this paper is as follows. In Section
II, we study various methods proposed for point cloud
processing and point cloud decomposition as a part of
literature review. In Section III, we discuss the proposed
ABD-Net architecture that captures the inherent geometry
of a 3D point cloud and represents it using basic shapes.
In Section IV, we discuss the usage of ABD-Net as a plug-
in network for 3D classification. Implementation details
are discussed in Section V. In Section VI, we present
experimental results and analysis of the proposed network.
In Section VII, we provide concluding remarks.

II. RELATED WORKS

In this section we discuss methods related to our
work. We categorize them into 3D point cloud processing
methods and 3D point cloud decomposition methods.

A. Point cloud processing methods

We classify learning based approaches for 3D point cloud
processing into view-based, voxel-based and point-based
networks.

1) View-based networks: Considering the success of
CNNs, one simple way to process 3D point sets is projecting
these points onto a 2D image plane to exploit the potential
of CNNs [4], [14], [15], [16]. The concept here is to
transform irregular points to a regular form. In order to
consider whole object information, multi-view images are
generated which are then passed to 2D-CNNs to extract
object features from all directions. This is followed by
multi-view feature fusion, where in the network tries to
find relations between all views and gives a final 3D object
representation. However, because of this transformation,
the network only looks at the textural information resulting
in loss of the underlying geometric shape information of
the 3D point cloud. Thus, these methods are difficult to
scale-up for scene understanding or point cloud analysis
tasks. Also, the choice of projection plane may heavily
influence the recognition performance and occlusion may
cause complications.

2) Voxel-based networks: Another approach to transform
irregular point set of regular form is 3D voxelization,
follwed by 3D convolutions [3], [1], [2]. These method
establishes enormous amount of memory storage and
computational power, as both occupied and non-occupied
parts of the scene is represented. There is a cubic growth
in the number of voxels which is a function of resolution,
making it non-scalable for high resolution data. Some
works reduce the complexity of this method by applying
convolution only on occupied voxels using sparse convo-
lutions [17]. However, these methods suffer from loss of
local geometry of 3D object due to quantization onto the
voxel grid.

3) Point-based networks: Instead of projecting or quan-
tizing irregular point sets into 2D plane or 3D grids, another
method is to directly work of irregular points. PointNet
[5] is the first proposed strategy in this approach, where
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Fig. 2. Proposed ABD-Net architecture for 3D point cloud decomposition.

features are learnt for each point followed by a symmetric
function, giving a global signature of the point set. However,
local context is overlooked in this method. PointNet++ [6]
exploits hierarchical spacial structure, thus learning local
geometric layout. The symmetric function mentioned is
a universal approximator for any set function [18]. This
hinders the capacity of the feature vector to capture
important geometric features. We address this issue by
modeling relationship between local and global geometric
features towards encoding the entire point cloud.

B. Point cloud decomposition methods

We classify 3D point cloud decomposition methods into
two classes, namely classical feature learning and deep
feature learning methods.

1) Classical feature learning: Previous works in computer
vision for shape decomposition and basic shape detection
were performed using RANSAC [19] and its variants [20],
[21], [22]. [23], tries to decompose a point cloud by
considering it as a problem of basic shape fitting. [24]
improves on this by optimizing on extracted shapes, based
on their relations. However, weakness of RANSAC based
approaches are that, the manual parameter tuning is
labour-intensive. This demands for careful supervision
and makes it non-scable for larger datasets. Another
traditional way is to extract hand-crafted features [25],
where the authors propose a novel set of hand-crafted
features namely metric tensors and christoffel symbols.
These features are further used for decomposition using
SVM as point classifier. They also show applications of
basic shape representation on 3D object super resolution
[26], 3D inpainting [27], 3D object categorization [25] and

3D object hole filling [28]. We think that performance of
this method may be constrained over the representational
power of the features defined.

2) Deep feature learning: Recent advances in deep
learning have eliminated the need of hand-crafted features.
Many works use deep learning models to extract feature
representation of point cloud. [7] propose a boundary-
based feature extractor, with curvature-based and variation
of normal vector constraints, to decompose 3D object into
meaningful parts based on perceptual points. Later using
this part information, they construct a semantic graph
giving explicit shape information. However, this decom-
position is highly dependent on the perceptual points
selected by the algorithm. [29] propose to extract curve
skeletons with a idea that these can lead to point cloud
decomposition. They estimate point normals and local-
adaptive thresholds to detect all the possible candidate
parts of a point cloud. Then skeleton representations of
all optimal parts are predicted followed by linking part
skeletons. SPFN [8] and ParSeNet [9] propose methods for
basic shape fitting to point clouds. [8] proposes a super-
vised method by first predicting per-point segment labels,
shape types and normals, and then uses a differentiable
module to estimate shape parameters. With this [9] also
include B-spline patch as a basic shape and propose a
differentiable spline-fitting network.

III. ATTENTION BASED DECOMPOSITION NETWORK

In this section, we discuss the proposed Attention
Based Decomposition Network (ABD-Net) for 3D point
cloud decomposition as shown in Figure 2. The goal
is to represent the inherent geometry of a 3D point
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cloud using a set of geometric features revealing surfacial
information using basic shapes. This is achieved through
two modules namely Local Proximity Encapsulator (LPE)
and Attention Feature Encoder (AFE) to extract local and
global features using attention based on basic shapes.
The first module of our architecture is LPE whose goal
is to extract representation for each point using features
of its neighborhood. Next, the AFE learns basic shapes
in a point cloud by estimating attention point features
which provides global point cloud information. The learnt
attention features are discriminative and can be used for
many 3D analysis tasks like 3D classification, hole-filing,
upsampling and inpainting. ABD-Net can process input
point clouds of various densities.

Consider 3D objects represented as point clouds. Let
O be the set of M point clouds O = {Pm}, 1 ≤ m ≤ M .
Let each point cloud Pm contain Nm number of points
defined by 3D space point in x, y and z direction, Pm = {pi },
1 ≤ i ≤ Nm , where pi ∈ R3.

Uniformization theorem [30] says that any 3D object can
be decomposed into four basic shapes viz. plane, sphere,
cone and cylinder. For our work, we formulate mapping
of uniformization theorem as a function of point clouds.
To capture the shape information of a 3D point cloud
in terms of basic shapes, we propose a function defined
as f : O →Ψ. Here Ψ is set of the same M point clouds
with a parameter for basic shape added to each pi in
the set of 3D objects Ψ= {P

′
m}, 1 ≤ m ≤ M and P

′
m = {p

′
i },

1 ≤ i ≤ Nm , where p
′
i ∈ R4. The extra dimension in p

′
i is

the decomposition parameter l indicating the basic shape
to which the point pi belongs to. Here, l takes value 1
for plane, 2 for sphere, 3 for cylinder and 4 for cone. We
redefine Ψ as, set of point clouds containing 4 sub sets,
1st being planar which contains all the planar points from
M point clouds, similarly, 2nd , 3r d and 4th for spherical,
cylindrical and conical shapes Ψ = {Ψl }, where 1 ≤ l ≤ 4.
Example, Ψ1 is set of pi with label 1 corresponding to
planar points of all M objects. Similarly for Ψ2, Ψ3 and Ψ4

corresponding to spherical, cylindrical and conical points
of all M point clouds respectively.

The input to our model is a point cloud Pm = {pi }. The
proposed architecture works for pi ∈ R3 or pi ∈ R6, by
considering normals in addition to X , Y , Z coordinates.
For each point cloud the surface information is vital in
capturing the geometry which depends on both local
as well as global variations. The local and and global
geometric variations are captured by LPE and AFE using
basic shapes as attention features. The proposed modules
LPE and AFE are explained in detail in the following
sections.

A. Local Proximity Encapsulator (LPE)

The first module shown in Figure 2, extracts represen-
tation of each point considering features of its neighbor-
hood, capturing fine grain details of local point sets. LPE
defines patches on point cloud and processes each patch
individually extracting local geometric information along

with spatial encoding, thus incorporating local attention.
The module consists of convolution layers (shared MLPs)
and average pooling layer. The average pooling layer is a
symmetric function [5] used to aggregate features along a
set of points.

Similar to convolution operations in 2D images that
capture spatial variations, these shared weights capture
the spatial encoding in 3D point clouds.

LPE initially transforms the points to higher dimensional
space using shared MLPs learning spatial encoding of
each point pi by adding C dimensional features. As each
point is represented with C dimensional features, we call
it (N ×C ). To account for local geometric information, k-
nearest neighbors around each point pi in Euclidean space
R3 are considered giving (N ×K ×3). The number of points
required to define the neighborhood vary according to the
density of the point cloud. The neighborhood interaction
of each point pi is defined with neighborhood Ni in the
local coordinate system of pi as pi j = pi j −pi .

The neighborhood information from R3 is transferred
to higher dimensional feature space for defining neighbor-
hood points in RC , giving (N ×K ×C )

To encapsulate these spatial encoding and local geomet-
ric information, LPE concatenates local coordinates from
R3 and their corresponding feature points in RC giving
(N ×K × (C +3)). Each point is further processed using set
of shared MLPs, where shared MLPs act as the local feature
learners. In order to deal with unordered nature of points
in the neighborhood, LPE uses symmetric average pooling
function to aggregate the features of the neighborhood.

We set C = 64 and K = 32 and C ‘ = 512. After each
convolution layer we use batch normalization to reduce
the covariance shift and use rectified linear unit (ReLU)
activation function to add non-linearity to the network
for controlling the vanishing gradient problem. After the
local geometry with spatial encoding around each point
is captured, AFE extracts basic shapes in point cloud and
provides global features.

B. Attention Feature Encoder (AFE)

AFE models geometric relationship between the local
neighborhood of all the points incorporating global atten-
tion as shown in Figure 2. This module takes in the local
neighborhood information provided by LPE, and extracts
global features of point cloud Pm which are attention
features. The attention mechanism used here is known as
"Scaled Dot-Product Attention" given by: [10]

At tenti on(Q,K ,V ) = so f tmax(
QK T√

dk

)V (1)

where Q, K and V are queries, keys and values matrices
and dk is dimension of keys. Here, Q, K and V are
abstractions of the input in transformed space. The query
matrix represents the target input point which is to be
processed, key matrix represents key features of the input
and value matrix is a representation of the input. Attention
mechanism has been first proposed and widely used in NLP
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tasks [10] to give importance to selected words depending
on the language context. Here, we aim to bring attention
mechanism in point clouds to model relationship between
the neighborhoods of all the points resulting in capturing
global point cloud information. The attention features are
extracted based on basic shapes in a point cloud. The idea
is whenever we are required to calculate the attention of a
target point with respect to the input points, we should use
the query of the target and the key of the input to calculate
a score. The score is then multiplied with the value matrix
to keep intact the values of the points we want to focus on,
and diminish irrelevant points. The attention mechanism
is performed in different representational sub-spaces, each
sub-space is referred as head. AFE consists of two sub-
layers. The first is a multi-headed attention layer and the
second is a fully connected feed-forward network. Attention
mechanism is used to find the set of points that should
influence the target encoding of the query point. AFE is
equipped with multiple attention mechanism (termed as
head: h) to directly model geometric relationships between
all the points in a point cloud in different representational
sub-spaces, regardless of their respective position.

AFE first embeds the local features provided by LPE
in 3 different spaces to get respective query, key and
value matrices using 3 independent linear layers. These
linear layers learn the transformation from the local feature
space to Q, K, V spaces. The dot-product of query and
key matrices are passed to softmax function to generate
attention weights which are further multiplied with value
matirx to get attention features. The following process is
performed parallelly across multiple heads dealing with
different representational sub-spaces. The multi-headed
attention features are then refined by a set of fully
connected layers to output global attention features. The
attention features captures the inherent geometry of a 3D
point cloud and represents it using basic shapes namely,
plane, sphere, cone and cylinder which is vital for 3D
shape analysis. Therefore attention features can be used
as geometrical features for the various 3D analysis task
like 3D classification, 3D hole-filling and 3D upsampling.

We use 3 Attention Feature Encoders connected con-
secutively in our model architecture. In each AFE, we set
h = 4. After each fully connected layer in our network, we
use batch normalization and Rectified Linear Unit (ReLU)
activation function. LPE and AFE together capture local
and global geometric variations using basic shapes as
attention features. The attention features can be used for
classification of 3D objects.

IV. 3D CLASSIFICATION

The ABD-Net is trained only on ANSI mechanical
components dataset which has 3D point clouds with
basic shape label assigned to each point. ABD-Net learns
attention features based on basic shapes present in 3D
point clouds of ANSI mechanical components dataset.
Representing a point cloud with basic shapes can improve
the performance of 3D classification. The classification of
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3D objects is carried out on ModelNet40 dataset with the
attention features acquired by pre-trained ABD-Net. Similar
to transfer learning, the weights of ABD-Net are freezed
while training the 3D classifier. A set of 4 shared MLPs
are used to classify 3D objects based on their attention
features. To each MLP in the 3D classifier we additionally
provide the point coordinate information of the input point
cloud.

V. EXPERIMENTAL DETAILS

In this section we discuss about the dataset used for
training our ABD-Net and 3D object classifier, with their
implementation details while training.

A. Datasets

We use American National Standards Institute mechani-
cal component dataset, provided by Traceparts [31] to train
our ABD-Net. It includes 3D models of mechanical tools
such as nuts, bolts with basic shape labels, as shown in
Figure 4. We use a train/test split of 12984/3172 respectively.
The categories are different in both sets, making training
and testing sets disjoint. Each object has 8096 points,
with their coordinates and normals. The associated groud
truth basic shape labels for each object in the dataset is
provided by Traceparts. As data preparation procedure, we
uniformly sample 1024 points from each point cloud with
the associated normal vectors. We keep normal vectors
as optional additional feature for training ABD-Net. We
exclude the point clouds from train and test set, having
more than 90% planar shape category to prevent dataset
skewness towards planar shape.

We use ModelNet40 [2] dataset to train a 3D classifier
with pre-trained ABD-Net as a pre-processing unit. Mod-
elNet40 consists of 12,311 CAD models with a total of
40 categories, where 9,843 objects are used for training
and 2,468 for testing. As data preparation procedure, we
uniformly sample 1024 points from each CAD model with
the normal vectors from the object meshes. We keep
normal vectors as optional additional feature for training
3D object classification.
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Fig. 4. Visualization of results of basic shape decomposition using our proposed ABD-Net architecture on ANSI mechanical components dataset.
The top row shows the original point clouds, the middle row shows the ground-truth point cloud decomposition, and the bottom row shows the
decomposition result of our architecture. The points in black represents planar shape, the points in blue represents spherical shape, the points in
green represents cylindrical shape and points in magenta represents conical shape.

Fig. 5. Visualization of results of basic shape decomposition using our pre-trained ABD-Net on ModelNet40 dataset. The top row shows the original
point clouds and the bottom row shows the decomposition result of our architecture. The color coding of decomposition remains the same as that of
results shown in the Figure 4. Even though ABD-Net is trained on ANSI dataset, these results show generalizability for decomposition on completely
diverse set of objects from ModelNet40.

128 points 256 points 512 points 1024 points 2048 points 4096 points 8094 points

Fig. 6. Visualization of results of basic shape decomposition using proposed ABD-Net on a sample point cloud from ANSI dataset with varying
point density. The color coding of decomposition remains the same as that of results shown in the Figure 4.
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B. Implementation details

During training both decomposer and classifier, we
augment the networks input by random rotation, scaling. In
addition to these augmentation we also use random points
dropout for classifier training. We train our decomposer
network for 50 epochs and classifier network for 200
epochs. For training, we use Adam optimizer [32] with
batch size 16 and learning rate 0.001 with learning rate
decay of 0.5. We train our decomposer ABD-Net on NVIDIA
Corporation GV100GL [Quadro GV100] 230 Volta GPU with
32GiB memory and classifier on NVIDIA GeForce RTX 3090
ICHILL X4 GPU with 24GiB memory. Both the networks
are implemented in PyTorch framework [33].

VI. RESULTS AND DISCUSSIONS

In this section, we show the results of proposed ABD-
Net architecture using ANSI mechanical components and
ModelNet40 dataset. We also compare the results of 3D
object classification with state-of-the-art techniques and
show comparable results.

A. Shape decomposition

We show decomposition results on ANSI mechanical
components dataset in Figure 4 and on ModelNet40 dataset
in Figure 5. Our proposed ABD-Net achieves an overall
accuracy of 99.3% for basic shape decomposition on
ANSI test set. In Figure 4, we can see that there is clear
demarcation at the edges of all objects, demonstrating the
ability of our model to predict inherent shape of the model
by looking at its surface. For objects from ModelNet40 as
shown in Figure 5, the transition between basic shapes is
smooth, thus increasing the difficulty of decomposition.
We can observe that, our model retains its decomposition
performance even when the surface complexity of the
objects increases. Also, the object shapes are totally diverse
as compared to the object on which our ABD-Net is trained
on, showing generalizability for decomposition. We provide
ablation study for shape decomposition in Section (VI-C).

B. Shape classification

We use a 3D classifier with 4 shared MLPs followed
by a max-pooling layer, with a pre-trained ABD-Net for
point cloud decomposition as a pre-processing step. The
trainable weights of pre-trained ABD-Net are freezed while
training this classifier. We compare the performance of
the classifier with and without the decomposition method,
demonstrating the effectiveness of ABD-Net. Table I shows
improved classification performance using our pre-prained
ABD-Net as a plug-in network before 3D classifier. We can
observe, that the classification accuracy of 3D classifier
increase from 92.1% to 92.8% by incorporating ABD-Net as
a pre-processor. This shows that, the shape decomposition
features are well exploited by the 3D classifier increasing
the classification performance. This also implies, that the
basic shape representation of a point cloud is well suited
for better 3D visual analysis tasks.

TABLE I

RESULTS OF 3D OBJECT CLASSIFICATION OF MODELNET40 BENCHMARK

DATASET AND COMPARISON WITH STATE-OF-THE-ART TECHNIQUES WITH

1024 POINT CLOUD DENSITY (NOR: NORMAL).

Method input #params acc.
PointNet xyz 3.50M 89.2
PointNet++ xyz 1.48M 90.7
KCNet xyz - 91.0
MRTNet xyz - 91.2
Spec-GCN xyz - 91.5
Spec-GCN xyz, nor - 91.8
∗ 3D Classifier xyz, nor 500K 92.1
DGCNN xyz - 92.2
PCNN xyz 8.20M 92.3
PointWeb xyz - 92.3
∗ ABD-Net+3D classifier xyz 500K 92.2
PointConv xyz, nor - 92.5
Point Transformer xyz, nor 13.5M 92.8
∗ ABD-Net+3D classifier xyz, nor 500K 92.8
RSCNN xyz 1.41M 92.9
PCT xyz 2.88M 93.2
PointTransformer xyz - 93.7
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and neighborhood points (k) on ANSI Dataset. The graph depicts the
dependency of number of neighbourhood points (k) on density of the
input point cloud.

The quantitative comparisons with the state-of-the-art
techniques is shown in Table I. Our proposed classifier
achieves improved results over many techniques. Point
transformer [34] based classifiers are current state-of-the-
art techniques that directly work on raw point cloud.
However, the number of trainable parameters in these
methods are quite high. The 3D classifier achieves 92.8%
overall classification accuracy on ModelNet40 dataset with
500K trainable parameters, which is 3 times less than the
other methods.

C. Ablation study

1) Robustness test for shape decomposition: To test the
robustness of our proposed ABD-Net for point cloud
decomposition, we perform point density variation and
point perturbation test as a part of ablation study.

Affect of neighborhood. In Figure 7, we show an analysis
of point density and neighborhood points (k) variation
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Input point cloud Decomposed point cloud Head 1 Head 2 Head 3 Head 4 All heads combined

Fig. 8. Visualization of the attention weights extracted by four heads, from the third AFE module. The star represents the query point for which
attention is computed.
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Fig. 9. Decomposition analysis of ABD-Net for varying point density
on sample point cloud from ANSI dataset shown in Figure 6. This graph
depicts that even though ABD-Net is trained on 1024 points, it maintains
good performance on varying densities of input point cloud.

against decomposition accuracy on whole ANSI test
dataset. We perform this experiment with a pre-trained
ABD-Net on 1024 points with k = 32. We show the
dynamic nature of ABD-Net over number of points that it
can process as input. We can observe that, with k = 32
the decomposition accuracy starts dropping as the point
density increases. This behaviour is observed because, as
point density increases the spread of neighboring points
over the surface starts decreasing, making the defined
local patches too small to capture local geometrical
information. To handle this, a simple way is to increase the
number of points defining a neighborhood as the density
of points in a point cloud increases. Also, decomposition
accuracy is low when k = 128 with 1024 number of
points in a point cloud. This is observed, as the patch
defined exceeds the local context, and ABD-Net is wrongly
influenced by global features. In Figure 7, we can observe
this intuitive pattern of accuracy against point density
and neighborhood points as explained. We use k as 32,
64, 96 and 128 for point clouds with 1024, 2048, 4096 and
8096 points.

Affect of density. We sample 128, 256, 512, 1024, 2048,
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Fig. 10. Decomposition analysis of ABD-Net for various degrees of point
perturbation on sample point cloud from ANSI dataset shown in Figure
11. The graph depicts good performance of ABD-Net even with rigorous
point perturbations.

4096 and 8096 as shown in Figure 6, and demonstrate
robust decomposition by ABD-Net for varying sampling
density. Figure 9, shows the instance decomposition
accuracy of our proposed ABD-Net on a sample from
ANSI dataset shown in Figure 6. We can observe that
decomposition accuracy is 100% when number of points
is 1024. It also maintains good performance for 8096, 4096,
2048, 512 and 256 point densities. However, we observe a
23.8% drop in decomposition accuracy with point density
as 128. This is observed because, with increase in sparsity
of the point clouds, there is proportional increase in
difficulty for surface prediction and thus, increasing the
difficulty for basic shape decomposition. Even though our
ABD-Net is trained on 1024 points, it manages to keep
up its performance with varying densities exhibiting its
density-invariant property.

Point perturbation. We also show decomposition per-
formance of our proposed ABD-Net with input point
perturbations. Gaussian noise is randomly added to each
point independently as shown in Figure 11, with standard
deviation of noise being 0.0, 0.02, 0.03, 0.04 respectively.
Figure 10, shows quantitative analysis of decomposition
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Fig. 11. Visualization of results of basic shape decomposition using
proposed ABD-Net on a sample point cloud from ANSI dataset with
various degrees of point perturbations.
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Fig. 12. Comparison of density variation test between 3D classifier and
ABD-Net + 3D classifier on random sample point cloud from airplane
class in ModelNet40. This graph shows constant better performance in
classification by ABD-Net + 3D classifier for different density input point
clouds.

accuracy with addition of noise to input point cloud having
1024 points. Our ABD-Net achieves an decomposition
accuracy of about 91% even when the point clouds are
distorted with severe noise with a standard deviation of
0.05. Similar to point cloud sparsity, with increase in point
cloud distortion, there is proportional increase in surface
prediction making the task of basic shape decomposition
difficult. These results indicate that our proposed ABD-Net
is robust to point distortions, thus exhibiting its noise-
invariant property.

2) Attention visualization: In Figure 8, we visualize the
attention weights given by our attention mechanism in
AFE for a target (query) point. We call these attention
as the importance score given by the our model to all
the points. The query point embedding is computed by
considering each point, in accordance with its importance.
We show the top 100 points selected for the query point,
extracted by each head from the third AFE module. Figure
8 shows a sample 3D point cloud from ANSI dataset
and its corresponding basic shape decomposition with
100% instance accuracy, followed by the visualization of
attention points from each head. We can observe that each
head models different kind of importance relationship. The
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Fig. 13. Comparison of point perturbation test between 3D classifier
and ABD-Net + 3D classifier. This graph depicts remarkable increase in
classification performance using ABD-Net as a pre-processing step for
3D classifier with rigorous point perturbation.

head 1 is trying to capture points having planar property,
where as head 2 is trying to capture an overall geometry
by relating points from each basic shape. The head 3
refines the planar points captured by head 2. At last head
4 captures points having conical property. In this way all
the head combinedly capture the whole point cloud shape
information, thus incorporating global attention.

3) Robustness test for shape classification: We
demonstrate the robust performance of our proposed
architecture ABD-Net by showing the classification
accuracy on variation in input point clouds.

Point density variation. In Figure 12, we show an analysis
of point density variation. It shows instance classification
confidence of 3D classifier and 3D classifier with a
pre-trained ABD-Net as pre-processor (ABD-Net + 3D
classifier). This experiment is done on a random sample
3D point cloud from airplane class in ModelNet40 dataset.
We sample 8096, 4096, 2048, 1024, 512, 256 and 128
points and show performance of both the classifiers. We
can observe that, the classification confidence remains
constant of ABD-Net + 3D classifier, where as 3D classifier
alone struggles with varying point densities. This implies
that the basic shape representation of the point cloud
acquired by ABD-Net is better for classification task.
Also, the extracted significant features are not affected
by point point density, which helps for better classification.

Point perturbation. In Figure 13, we show an analysis
of point perturbation. It shows instance classification
confidence of 3D classifier and 3D classifier with a pre-
trained ABD-Net as pre-processor (ABD-Net + 3D classifier).
We use the same point cloud which was used for the
density variation test. Gaussian noise is randomly added
to each point independently, with standard deviation of
noise varying from 0.01 to 1.0. We can observe that even
with severe point cloud distortion with a noise having
standard deviation of 1.0, ABD-Net + 3D classifier performs
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exceedingly well than that of 3D classifier alone. The 3D
classifier starts to struggle when standard deviation of
noise approaches to 0.06, where as ABD-Net + 3D classifier
maintains its confidence score above 94% at all noise levels.
This implies that the basic shape representation of the
point cloud acquired by ABD-Net is in-variant to noise
which improves the classifier performance to a large extent.

VII. CONCLUSION

In this paper, we have proposed ABD-Net, a deep
architecture that captures the inherent geometry of a
3D point cloud and represents it using basic shapes
namely, plane, sphere, cone and cylinder. The proposed
model contains LPE to capture local geometry with spatial
encoding around each point. The next module in ABD-
Net is AFE to learn basic shapes in point cloud using
attention features based on basic shapes. AFE models
geometric relationship between the neighborhoods of
all the points resulting in capturing global point cloud
information. We demonstrated the results of the proposed
ABD-Net on ANSI mechanical components dataset and
ModelNet40 dataset. Further, we have also shown that the
basic shape representation acquired by ABD-Net is better
for 3D classification task. We have demonstrated improved
classification results of using attention features acquired by
proposed ABD-Net and compared with other classification
methods.
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“Parsenet: A parametric surface fitting network for 3d point clouds,”
2020.

[10] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” 2017.

[11] F. Wu, A. Fan, A. Baevski, Y. N. Dauphin, and M. Auli, “Pay less
attention with lightweight and dynamic convolutions,” 2019.

[12] Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. V. Le, and R. Salakhutdinov,
“Transformer-xl: Attentive language models beyond a fixed-length
context,” 2019.

[13] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT:
Pre-training of deep bidirectional transformers for language
understanding,” in Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers). Minneapolis, Minnesota: Association for
Computational Linguistics, Jun. 2019, pp. 4171–4186. [Online].
Available: https://www.aclweb.org/anthology/N19-1423

[14] B. Li, T. Zhang, and T. Xia, “Vehicle detection from 3d lidar using
fully convolutional network,” 2016.

[15] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia, “Multi-view 3d object
detection network for autonomous driving,” 2017.

[16] A. Kanezaki, Y. Matsushita, and Y. Nishida, “Rotationnet: Joint
object categorization and pose estimation using multiviews from
unsupervised viewpoints,” 2018.

[17] B. Graham, M. Engelcke, and L. van der Maaten, “3d semantic
segmentation with submanifold sparse convolutional networks,”
2017.

[18] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. Salakhutdinov,
and A. Smola, “Deep sets,” 2018.

[19] M. A. Fischler and R. C. Bolles, “Random sample consensus: A
paradigm for model fitting with applications to image analysis and
automated cartography,” Commun. ACM, vol. 24, no. 6, p. 381–395,
Jun. 1981. [Online]. Available: https://doi.org/10.1145/358669.358692

[20] P. Torr and A. Zisserman, “Mlesac: A new robust estimator with
application to estimating image geometry,” Comput. Vis. Image
Underst., vol. 78, pp. 138–156, 2000.

[21] J. Matas and O. Chum, “Randomized ransac with td,d test,” Image
and Vision Computing, vol. 22, pp. 837–842, 09 2004.

[22] O. Chum and J. Matas, “Matching with prosac - progressive sample
consensus,” 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05), vol. 1, pp. 220–226 vol. 1,
2005.

[23] R. Schnabel, R. Wahl, and R. Klein, “Efficient ransac for point-cloud
shape detection,” Computer Graphics Forum, vol. 26, no. 2, pp.
214–226, Jun. 2007.

[24] Y. Li, X. Wu, Y. Chrysanthou, A. Sharf, D. Cohen-Or, and N. J.
Mitra, “Globfit: Consistently fitting primitives by discovering global
relations,” ACM Transactions on Graphics, vol. 30, no. 4, p. to appear,
2011.

[25] S. A. Ganihar, S. Joshi, S. Setty, and U. Mudenagudi, “Metric
tensor and christoffel symbols based 3d object categorization,” in
Computer Vision - ACCV 2014 Workshops - Singapore, Singapore,
November 1-2, 2014, Revised Selected Papers, Part III, ser. Lecture
Notes in Computer Science, C. V. Jawahar and S. Shan, Eds.,
vol. 9010. Springer, 2014, pp. 138–151. [Online]. Available:
https://doi.org/10.1007/978-3-319-16634-6_11

[26] ——, “3d object super resolution using metric tensor and christoffel
symbols,” in Proceedings of the 2014 Indian Conference on Computer
Vision Graphics and Image Processing, ser. ICVGIP ’14. New York,
NY, USA: Association for Computing Machinery, 2014. [Online].
Available: https://doi.org/10.1145/2683483.2683571

[27] S. Gangisetty and M. Uma, “Example-based 3d inpainting of point
clouds using metric tensor and christoffel symbols,” Machine Vision
and Applications, vol. 29, 02 2018.

[28] S. Setty, S. A. Ganihar, and U. Mudenagudi, “Framework for 3d object
hole filling,” in 2015 Fifth National Conference on Computer Vision,
Pattern Recognition, Image Processing and Graphics (NCVPRIPG),
2015, pp. 1–4.

[29] V. Jayadevan, E. Delp, and Z. Pizlo, “Skeleton extraction from 3d
point clouds by decomposing the object into parts,” 2019.

[30] W. Abikoff, “The uniformization theorem,” The American
Mathematical Monthly, vol. 88, no. 8, pp. 574–592, 1981.
[Online]. Available: http://www.jstor.org/stable/2320507

[31] S. Kim, H.-g. Chi, X. Hu, Q. Huang, and K. Ramani, “A large-scale
annotated mechanical components benchmark for classification and
retrieval tasks with deep neural networks,” in Proceedings of 16th
European Conference on Computer Vision (ECCV), 2020.

[32] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
International Conference on Learning Representations, 12 2014.

[33] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison,
A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An
imperative style, high-performance deep learning library,” in

10

http://dx.doi.org/10.1109/CVPR.2019.00276
https://www.aclweb.org/anthology/N19-1423
https://doi.org/10.1145/358669.358692
https://doi.org/10.1007/978-3-319-16634-6_11
https://doi.org/10.1145/2683483.2683571
http://www.jstor.org/stable/2320507


Advances in Neural Information Processing Systems, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, Eds., vol. 32. Curran Associates, Inc., 2019.
[Online]. Available: https://proceedings.neurips.cc/paper/2019/file/
bdbca288fee7f92f2bfa9f7012727740-Paper.pdf

[34] H. Zhao, L. Jiang, J. Jia, P. Torr, and V. Koltun, “Point transformer,”
2020.

11

https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf

	I Introduction
	II Related works
	II-A Point cloud processing methods
	II-A.1 View-based networks
	II-A.2 Voxel-based networks
	II-A.3 Point-based networks

	II-B Point cloud decomposition methods
	II-B.1 Classical feature learning
	II-B.2 Deep feature learning


	III Attention Based Decomposition Network
	III-A Local Proximity Encapsulator (LPE)
	III-B Attention Feature Encoder (AFE)

	IV 3D classification
	V Experimental details
	V-A Datasets
	V-B Implementation details

	VI Results and discussions
	VI-A Shape decomposition
	VI-B Shape classification
	VI-C Ablation study
	VI-C.1 Robustness test for shape decomposition
	VI-C.2 Attention visualization
	VI-C.3 Robustness test for shape classification


	VII Conclusion
	References

