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Abstract

Catastrophic forgetting is one of the major challenges
on the road for continual learning systems, which are pre-
sented with an on-line stream of tasks. The field has at-
tracted considerable interest and a diverse set of methods
have been presented for overcoming this challenge. Learn-
ing without Forgetting (LwF) is one of the earliest and most
frequently cited methods. It has the advantages of not re-
quiring the storage of samples from the previous tasks, of
implementation simplicity, and of being well-grounded by
relying on knowledge distillation. However, the prevail-
ing view is that while it shows a relatively small amount
of forgetting when only two tasks are introduced, it fails
to scale to long sequences of tasks. This paper challenges
this view, by showing that using the right architecture along
with a standard set of augmentations, the results obtained
by LwF surpass the latest algorithms for task incremental
scenario. This improved performance is demonstrated by
an extensive set of experiments over CIFAR-100 and Tiny-
ImageNet, where it is also shown that other methods can-
not benefit as much from similar improvements. Our code
is available at: https://github.com/quy—oren/
In defence of LWF

1. Introduction

The phenomenon of catastrophic forgetting (CF) of old
concepts as new ones are learned in an online manner is
well-known. The approaches to overcome it can be catego-
rized, as suggested by De Lange et al. [3]], into three fami-
lies: (i) replay-based methods, which store selected samples
of previously encountered classes, (ii) regularization-based
methods, that limit the freedom to learn new concepts, and
(iii) parameter isolation methods, which directly protect the
knowledge gained in the past, by dividing the network pa-
rameters into separate compartments.

The field of continual learning is very active, with dozens
of methods that have emerged in the last few years. How-
ever, it seems that the growing interest leads to confusion
rather than to the consolidation of knowledge. As practi-

tioners looking to find out which online learning method
would be suitable for a real-world application, we were un-
able to identify the solid methods of the field and could not
infer from the literature the guiding principles for tackling
catastrophic forgetting.

Indeed, reviewing the literature, one can find many in-
sightful ideas and well-motivated solutions. However, little
data regarding the generality of continual learning methods,
the sensitivity of the methods to the specific setting and hy-
perparameters, the tradeoff between memory, run-time and
performance, and so on. Ideally, one would like to find a
method that is not only well-grounded and motivated, but
also displays a set of desired properties: (i) work across
multiple datasets, (ii) be stable to long sequences of on-line
learning tasks, (iii) benefit from additional capacity, (iv) dis-
play flexibility in network architecture that allows the in-
corporation of modern architectures, (v) display an intuitive
behavior when applying regularization, and (vi) present ro-
bustness to hyperparameters.

We demonstrate that these properties hold for one of the
first methods to be proposed for tackling CF, namely the
Learning without Forgetting (LwF) method [22]. This is a
bit surprising, since this method, as a classical method in
a fast-evolving field, has been repeatedly used as an infe-
rior baseline. However, we show that unlike many of the
more recent methods, this scapegoat method can benefit
from residual architectures and further benefits from sim-
ple augmentation techniques. Moreover, while the original
LwF implementation employed techniques such as warmup
and weight decay, we were able to train without these
techniques and their associated hyperparameters. Overall,
we find LwF, which is a simple data-driven regularization
technique, to be more effective than the most promising
regularization-based and parameter-isolation methods.

2. Related work

It is often the case that new methods are presented as
having clear advantages over existing ones, based on em-
pirical evidence. The inventors of these methods have little
incentive to explore the underlying reason for the perfor-
mance gap. Without a dedicated effort to do so, the litera-
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ture can quickly become misleading.

In our work, we demonstrate that the task-incremental
learning methods that have emerged since the 2016 incep-
tion of the LwWF method are not more accurate than this
straightforward method. This demonstration is based on
changing the underlying neural network architecture to a
ResNet [[10] and on employing a simple augmentation tech-
nique during training. Moreover, we show that LwF benefits
from more capacity, width wise.

A recent related attempt by De Lange et al. [3] also ad-
dresses the need to compare multiple continual learning al-
gorithms in task-incremental settings. That study has em-
ployed multiple architectures, and, similar to us, have noted
that the LwF method benefits from the additional capacity
given by extra width but not from extra depth. However,
ResNets or augmentations were not employed and the con-
clusion was that LwF is not competitive with the more re-
cent techniques. This conclusion is in sheer contrast to ours,
demonstrating the challenge of comparing methods in a way
that exposes their full potential, and the need to perform
such comparative work repeatedly.

2.1. Task-incremental learning

CF in neural networks has been observed from the begin-
ning. However, there is no consensus regarding the proper
settings and metrics for comparing different techniques. In
this work, we adopt a setting definition from the work of
[33} [12]], who define three different settings for continual
learning — task incremental, domain incremental, and class
incremental. In all scenarios, the system is presented with a
stream of tasks and is required to solve all tasks that are seen
so far. In task incremental, the task identifier is provided
both in train and inference time. In domain incremental, the
task identifier is provided only in train time, and the classi-
fier does not need to infer the task identifier but rather just
solve the task at hand. In class incremental, the learner also
needs to infer the task identifier in inference time.

We focus on the task incremental setting. Moreover,
we do not consider replay-based methods since these rely
heavily on accessing data retained from the previous tasks,
which is not desirable in real-world scenarios, and depends
on an additional parameter that is the size of the memory.

The literature has a great number of methods, further em-
phasizing the need for comparative work. In this work, we
focus on the methods that are repeatedly reported in the lit-
erature [3, 29, [13| 21]]. These include: Elastic Weight Con-
solidation (EWC; [16], online version), Incremental Mo-
ment Matching (IMM; [20], both Mean and Mode variants),
overcoming CF with Hard Attention to the Task (HAT;
[29]), continual learning with Hypernetworks (Hyper-CL;
[34]]) and Adversarial Continual Learning (ACL; [4]).

Both the EWC and IMM variants, belong to a
regularization-based family and add a structural, weight-

based, regularization term to the loss function to discourage
changes to weights that are important for previous tasks.
IMM performs a separate model-merging step after learn-
ing a new task, which EWC does not. Although this family
of methods is very rich, IMM and EWC are among the lead-
ing methods and are often cited as baselines.

The HAT approach belongs to the parameter isolation
family and applies a light-weight, unit-based, learnable,
and ’soft’ masks per task. HAT is a successor to various
works, including (i) progressive neural networks (PNNs;
[27]), which applies a complete and separate network for
each task (columns) with adapters between columns, (ii)
PathNet [S)] that also pre-assigns some amount of network
capacity per task but, in contrast to PNNs, avoids network
columns and adapters and instead suggests to learn evolu-
tionary the paths between modules, and (iii) PackNet [24]],
which uses weight-based pruning heuristics and a retrain-
ing phase to maintain a binary mask for each task. Since
HAT was shown to have both performance and computa-
tional advantages over (i)-(iii), we focus on it as a represen-
tative method from this line of work.

Hyper-CL [34], a recent addition to the parameter iso-
lation family, belongs to a different branch in this family
than HAT. Instead of using a fixed pre-determined capac-
ity, Hyper-CL suggests learning the weights of a target net-
work for each task. Hyper-CL employs a variant of Hyper-
networks [8], called Chunked-Hypernetworks [25], which
generates different subsets of the target network’s parame-
ters using the same generator. To do so, the method learns
both the task embedding and the “chunk” embedding. This
variant makes it possible to maintain a much smaller hy-
pernetwork than the target network. To overcome CF, they
apply regularization that constrains the weights of the pre-
viously seen target task from changing.

Some methods belong to more than one category.
ACL [4] employs both parameter isolation using a small pri-
vate network for each task, and regularization for a shared
network across tasks. This regularization contains two
parts: an adversarial loss that makes the shared encoding
task-independent [6] and a disentanglement loss that acts
to remove the overlap between the private- and the shared-
encoding [28].

Naturally, given the number of relevant methods, it is not
feasible to compare with all of them. The regularization-
based family presents two additional methods that we con-
sidered: Encoder Based Lifelong Learning (EBLL; [26l])
and Memory Aware Synapses (MAS; [1]). EBLL extends
LwF by adding a per-task auto-encoder, requiring further
hyperparameter tuning. The literature shows that it only
marginally improves over LWF for AlexNet-like architec-
tures [3l 1], and our attempts to apply it together with
ResNets led to poor results. MAS was also shown in [3]
to only slightly improved over LWF.



3. The LwF method and its modifications

The LwF method by Li et al. [22], belongs to the
regularization-based family. However, unlike EWC and
IMM, its regularization is data-driven. The method seeks to
utilize the knowledge distillation loss [11]] between the pre-
vious model and the current model to preserve the outputs
of the previous task. Since maintaining the data of previous
tasks is not desirable and rather not scalable, LwF uses only
the current task data for knowledge distillation.

In the task-incremental setting, the learner is given a new
set of labels to learn at each round. This set of classes is
called a task. In LwF the classifier is composed out of two
parts: the feature extractor f and a classifier head c; per
each task fors =1,2,...,T.

Let {(x%,y5)} be the set of training samples for task t.
The cross-entropy loss is used as the primary loss for train-
ing the classifier ¢; o f:

Lop = =Y loglen(f(x))ly m

J
J

where the subscript y§ is used to denote the pseudo-
probability of the classifier for the ground truth label.

When learning a new task ¢, to maintain previous task
knowledge, we employ knowledge distillation between the
“old” feature extraction and the previous task classifier
heads and the new ones. These are denoted by f° for the
previous feature extractor network (as learned after task
t—1),and ¢ fori =1,2,...,¢t — 1 for the previous heads.
The learned feature extraction is denoted by f and the up-
dated task classifiers are denoted by c;, fori =1,2,...1.

For simplicity, we described the knowledge distillation
process for one previous task and one sample (x,y) €
{(«%, %)} from the current task t. However, the process is
repeated for the classifier heads of all previous tasks and all
samples of task ¢, while summing up the individual losses.
Let Y° := [y%,y3,...] = c?(f°(x)) be the vector of proba-
bilities that the old classifier of task ¢ assigns to sample x.
Similarly, let Y := [y1, y2, ...] be the vector of probabilities
for the same training samples obtained with ¢; o f. To apply
the knowledge distillation loss, these vectors are modified
in accordance with some temperature parameter 6:

s oYk =S T 2

The temperature is taken to be larger than one, to increase
small probability values and reduce the dominance of the
high values. The knowledge distillation loss is defined as:

Laist = — Y _ 3. log(yh) , 3)
k

where the summation is done over all labels of task 7.

We followed the author’s suggestions and in all our ex-
periments and set & = 2 and the regularization weight
to one, i.e., the knowledge distillation loss had the same
weight as the classification loss of the new task. It is worth
mentioning that although the original LwWF work [22]] eval-
uated the method in the two task scenario, it can be readily
extended to any number of tasks by using knowledge distil-
lation loss over all ¢,7 = 1,2...,¢ — 1. This further high-
lights the need for performing our research, since such an
extension was previously done in the context of attempting
to present the preferable performance of a new method. We
also note that it was suggested in [22]] to use a warmup phase
at the beginning of training for each new task, in which both
fand ¢;,i = 1,2,...,t — 1 are frozen and one trains c;
with the cross-entropy loss until convergence. However,
since the effect of this seems negligible even in the origi-
nal paper, we do not perform this. The authors also used
regularization in the form of weight decay during training,
which we remove to avoid the need to fit a regularization
hyperparameter for each experiment. Moreover, in our ini-
tial experiments weight decay tends to hurt the accuracy of
new tasks.

3.1. Architecture

Li et al. [22]] employed AlexNet [18] and VGGNet [30]
to evaluate the performance of the method. Interestingly,
even the recent review work by De Lange et al. [3] uses
AlexNet as a reference network, despite ongoing advances
in network architectures. There is also a key difference be-
tween the different versions of AlexNet-like architectures
employed in [22] and [29]. The latter use Dropout [31],
which as we show empirically, is detrimental.

We also offer to use the ResNet [10] architecture. We are
not the first to attempt to use ResNets for LwF. Mallya et al.
[24] employed LWF with a ResNet-50 network as an under-
performing baseline. However, our experiments demon-
strate that LwF mostly benefits from a Wide-ResNet [35]]
network rather than from deeper ones.

3.2. Data augmentation

Using a method with a shared model presents a chal-
lenge. On the one hand, the shared part must have enough
capacity to learn new tasks. On the other hand, bigger net-
works are more vulnerable to overfitting when training on
the first tasks. The parameter isolation family works around
this problem by dynamically changing the capacity of the
network as in PNNs [27] or learning a specific target net-
work for each task with enough capacity for each task, like
in Hyper-CL [34].

In addition to the capacity needs, another challenge that
the LwF method faces is the need to mitigate the difference
between the input distributions for different tasks. In the



extreme, where the input distributions are very dissimilar,
the knowledge distillation loss is no longer constraining the
network to success on previous tasks.

Data augmentation, which is a well-studied technique for
overcoming overfitting by virtually expending the dataset at
hand, also has the potential to close the gap between differ-
ent input distributions and therefore reduce forgetting. In
our experiments, we employ a very basic set of augmenta-
tion consisting of random horizontal flips, color jitter (ran-
domly change the brightness, contrast, saturation, and hue),
and translation. As it turns out, these are sufficient to reduce
the forgetting almost to zero, while substantially increasing
the average accuracy for all tested settings.

4. Experiments

The common datasets for evaluating CF in classification
problems include permutations of the MNIST data [32], a
split of the MNIST data [20]], incrementally learning classes
of the CIFAR data sets [23], or on considering two datasets
and learning the transfer between them [22]. Serra et al.
[29] points out the limitations of the MNIST setups, since
these do not well represent modern classification tasks. The
two-task scenario is criticized for being limited and does
not enable the evaluation of CF for sequential learning with
more than two tasks. CIFAR-100 splits are criticized for
having tasks that are relatively similar in nature. However,
in our experiments, performance on CIFAR-100 splits dis-
criminates well between different methods and between dif-
ferent settings of the same method.

In addition to CIFAR-100 [17], we employ Tiny-
ImageNet [19] in our experiments. The latter presents a
higher diversity with more classes and the ability to chal-
lenge methods with longer and more meaningful sequences
of tasks. To obtain a generic estimate, we shuffle the order
of classes in each dataset and repeat each experiment setup
five times with different seeds.

A common CIFAR setup, introduced in [36] offers to
use CIFAR-10 as a first task, then split CIFAR-100 into
five distinct tasks with 10 disjoint classes each. However, it
may introduce a bias in evaluating task-incremental meth-
ods, since it makes the first task much larger and, therefore,
conceals the problem of first-task overfitting. In this work,
we consider a different setting, in which CIFAR-100 is di-
vided into 5-Splits (i.e., 5-tasks), 10-Splits, and 20-Splits
with 20, 10, and 5 classes in each task, respectively. Each
class in CIFAR-100 contains 500 training images and 100
testing images. Each image size is 3 x 32 x 32. As a valida-
tion set, we shuffle the training data and use 90% as training
examples and 10% as validation examples.

A recent work by De Lange et al. [3] employed Tiny-
ImageNet as a benchmark using a similar setup to the
CIFAR-100 setup above. However, they split the dataset
to 20 disjoint tasks with 10 classes each. Since we opt for a

longer sequence of tasks while still keeping them meaning-
ful, we split the dataset into 40 disjoint tasks with 5 classes
each. As our results will show, this setting pushes the limits
of the task-incremental methods.

Each class in Tiny-ImageNet contains 500 training im-
ages, 50 validation images, and 50 testing images. The orig-
inal image size for this dataset is 3 x 64 x 64. Since the test
set is not publicly available, we use the validation set as a
test set and as a validation set, we shuffle the training data
and use 90% for training and 10% for validation.

To evaluate performance, we adopt the metrics of [23]]:

T
1
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verage Accuracy: ACC T ;RT, )
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=Y Rri—Ri; (5
T-1 p

Backward Transfer: BWT =
where T is the number of tasks and R; ; is the test accuracy
score for task j after the model learned task 7. We note that
BWT < 0 reports CF, while BWT > 0 indicates that
learning new tasks helped the preceding tasks.

4.1. The effect of the network architecture

We first present experiments for LwWF with various net-
work architectures and no data augmentation. The AlexNet-
like architecture [|18]] we use follows [29] and has three con-
volutional layers of 64, 128, and 256 filters with 4 x 4,
3 x 3, and 2 x 2 kernel sizes, respectively. On top, there
are two fully-connected layers of 2048 units each. This net-
work employs rectified linear units (ReLU) as activations,
and 2 X 2 max-pooling after the convolutional layers. A
Dropout of 0.2 is applied for the first two layers and 0.5
for the rest. All layers are randomly initialized with Xavier
uniform initialization [[7]].

While LwF is commonly used with an AlexNet-like ar-
chitecture [21} 29, 3]], we opt to use more modern archi-
tectures. We choose to use the popular architecture fam-
ily of ResNets. In this work, we use ResNet-20 (RN-20),
ResNet-32 (RN-32) and ResNet-62 (RN-62) [10]], as well
as Wide-ResNet-20 networks with width factors 2 or 5 [35]
(WRN-20-W2 and WRN-20-WS5 respectively). Those net-
works employ ReLU activations and Batch Normalization
layers [14]. All convolutional layers were randomly initial-
ized with Kaiming normal inits with fan-out mode [9]], and
the normalization layers were initialized as constants with
1 and O for weight and bias, respectively. All architecture
tested use separated fully-connected layers with a softmax
output for each task as a final layer. More details can be
found in the appendix.

In all experiments, LwF is trained up to 200 epochs for
each task. We use a batch size of 64 and an SGD optimizer
with a learning rate of 0.01 and a momentum of 0.9. We
used the validation set to schedule the learning rate, where



CIFAR 5-Split

CIFAR 10-Split

CIFAR 20-Split Tiny-ImageNet 40-Split

Arch. #Params BWT ACC BWT

ACC BWT ACC BWT ACC

AlexNet-D  6.50

—39.9+14366+15 —529+12281+13 —544+1.131.3+£08 =50.5£1.0 25.0£04

AlexNet-ND 6.50 —-1.8+06 56.6+1.1 —-29+0.2 670+1.0 -3.1+0.3 75.5£0.6 —2.8+0.3 66.9+0.8
RN-20 0.27 —-04+£0.3 604+07 -1.94+05 672£1.0 —23£04 76.2+08 —-3.0+05 70.8+1.0
RN-32 0.47 —18£0.7 58.8+20 —-1.8+02 67.1+1.1 —-27+£02 75.6+04 —-24+02 709+1.1
RN-62 0.95 —1.7+0.6 589+0.7 —-2.7+0.4 66.0+0.8 —-29+04 75.6+£0.7 =3.1+£0.9 70.3+1.2
WRN-20-W2 1.08 —-1.2+£06 620+03 —-2.1+06 69.6£0.8 —-3.3£04 77.3+04 —-3.8+02 71.5+0.6
WRN-20-W5 6.71 -2.0+05642+11 -29+03 71.2+05 —-3.7+£0.3 794+£06 —45+0.3 72.6+0.8

Table 1. Network results summary for LWF. BWT and ACC in %. #Params in millions and counts only for the shared feature extractor. All
results are averaged over five runs with standard deviations. D=Dropout, ND=No Dropout, RN=ResNet, WRN=WideResNet.

we drop the learning rate by a factor of 3 if there is no im-
provement in the validation loss for five consecutive epochs.
Training is stopped when the learning rate becomes lower
than 10~

The results are depicted in Tab. [l Our clearest and
most significant result is that the underlying network has a
great effect on LWF performance. While LwF with AlexNet
with Dropout architecture greatly suffers from forgetting
which results in low ACC, just removing the Dropout from
the network results in a sizable performance boost. This
makes sense while using Dropout on the teacher side cre-
ates a strong teacher that can be viewed as a large ensem-
ble of models that shares weight [[L1], on the student side,
this weakens the regularization of LwF. Randomly choos-
ing which weights to regularize ignores their importance for
older tasks, which results in high forgetting.

Next, switching to RN-20 with an order of magni-
tude fewer parameters shows preferable performance. This
change reveals the potential of LwF to obtain competitive
ACC and BWT.

Following [3] we investigate the effect of width and
depth of the architecture with the ResNet network on LwF
performance. We used two deeper networks (RN-32 and
RN-62) and two wider networks (WRN-20-W2 and WRN-
20-W5). Our results (Tab.[T)) show that while using a deeper
network gives similar or inferior results compare to RN-20,
using wider networks increases performance.

4.2. The effect of data augmentation

We conjectured in Sec. [3.2] that LwF performance can
be further increased by using data augmentations. In this
section, we conduct experiments on WRN-20-W5, which
is the best performer among the tested architectures, with a
relatively simple set of random augmentations: random hor-
izontal translation of up to 3 pixels with reflection padding,
random horizontal flip, and color jitter (brightness, contrast
and saturation with jitter of 0.3 and hue with jitter of 0.2).

The results are summarized in Tab. 2l As can be ob-
served, applying augmentation in this setting leads to im-
provement in both ACC and BWT. Therefore, there is no

trade-off between accuracy and forgetting. We emphasize
that even though no augmentations protocol search was con-
ducted and that the set of augmentations in use is rather
small and simple, the performance boost is substantial.

4.3. Comparison with other methods

We consider two regularization-based methods:
EWC [16] and IMM [20] and two parameter isolation
methods: HAT [29] and Hyper-CL [34]. ACL [4] is
considered as a recent hybrid method. As an upper bound
for overall performance we consider a joint training method
(JOINT), which for each incoming task, trains on the
data of all tasks seen so far. The hyper-parameters for
EWC, IMM and HAT were the best found in [29] and for
Hyper-CL to the best found in [34]. For ACL, we quote
the results mentioned in the paper, i.e. for AlexNet-like
architecture with Dropout (both private and shared) and no
augmentations at all.

Following our findings for LwF, we opt to use all base-
line methods with WRN-20-W5. However, we found that
none of the baseline methods performs well with it. We
found that some of the baseline methods are tightly coupled
with the architecture originally presented in the paper. The
authors of Hyper-CL [34] did an extensive hyperparameter
search for both the hypernetwork and target architectures.
They conclude that it is crucial to choose the right combi-
nation since it has a great effect on performance. Therefore,
we used the best Hypernetwork-Target pair they found for
the “chunked”, more effective, version. This pair consists
of a hypernetwork which has a linear layer that maps task
and chunk embedding of size 32 each to a chunk of size
7000 of a ResNet-32 target network. Another coupling we
found was for the HAT method, we could not achieve rea-
sonable performance with an underlying ResNet architec-
ture. We conjecture that the masking process in HAT needs
to be adapted for usage with batch normalization layers, and
report results with the AlexNet-like network presented by
Serra et al. [29].

Both EWC and IMM, although not coupled with spe-
cific architecture, were found to be under-performing with



CIFAR 5-Split

CIFAR 10-Split

CIFAR 20-Split Tiny-ImageNet 40-Split

Augmentation  BWT ACC BWT ACC BWT ACC BWT ACC
Without —-20+0564.24+1.1 —294+0.371.2+05 -3.7+£0.379.4+0.6 —4.5+0.3 72.6+0.8
With —0.2+£0.280.3+0.6 —0.6+0.283.7£08 —1.5+£0.386.6+0.4 —2.1£0.2 78.6=+0.6

Table 2. Data augmentation results for LWF with WRN-20-WS5 architecture. BWT and ACC in %. All results are averaged over five runs

with standard deviations.

CIFAR 5-Split

CIFAR 10-Split

CIFAR 20-Split Tiny-ImageNet 40-Split

Method Arch. Aug. BWT ACC BWT

ACC BWT ACC BWT ACC

EWC AlexNet-D

+0.2+0.158.6+£09 +0.7+0.4 641+0.5 +0.0+09 740+1.0 -0.8£04 63.3+0.9

EWC AlexNet-D v 4+0.0£02629+15 4+0.14+04 684+09 —05+1.1 75.2+1.3 —-1.5£2.0 63.8+2.6

IMM-MEAN AlexNet-D

-124+08589+11 -06£0.7586+19 —-0.8+0.3 55.9+1.6 —0.6£0.8 43.6x1.3

IMM-MEAN AlexNet-D v —25+£1.0625+18 —-1.34+0.8 61.4+2.0 —1.3+0.5 57.9+29 —-1.2+£0.5 44.7+1.5

IMM-MODE AlexNet-D

—83£1563.7+£1.5 —21.7+£2958.6+2.9 —-305+3.254.9£3.0 -25.0+1.4 50.6+1.7

IMM-MODE AlexNet-D v —69£03689+09 —19.8+£2.7644+29 -31.1+4.2582+43 —242+24 54.6+29

HAT AlexNet-D +0.0£0.067.1£06 +0.0%+£0.0 7284+0.8 +0.0+£0.0 76.6+:0.6 +0.0£0.0 65.9+1.1
HAT AlexNet-D v’ =0.1£0.070.5+£0.9 +0.0£0.0 76.2+£0.8 +0.0£0.0 784£1.0 +0.0£0.0 67.3£0.9
HyperCL H:Lin, M:RN32 +0.0£0.153.0+23 4+0.0£0.0 629+04 +0.0£0.0 75.5+1.0 -08£0.3 489+1.6
HyperCL H:LinM:RN32 v +0.0£0.069.5+1.1 +0.0£0.0 782£0.6 +0.0+0.0 8.3+0.9 —-0.9+£0.3 60.7£0.3
ACL? AlexNet-D** - - - - +0.0£0.0 78.0+1.2 - -

LwF WRN-20-W5 —20+£05642+11 -29£03 71.2£05 —-3.7£03 794£06 —45+03 72.6+£0.8
LwF WRN-20-W5 v —0.2+0.280.3+0.6 —0.6+0.2 83.7£0.8 —1.54+0.3 86.6+04 —2.1+£02 78.6=+0.6
JOINT* WRN-20-W5 +45£20723+19 +424+£19 8024+20 +3.0+1.1 86.1+£0.9 +3.5+£0.3 80.3£0.3
JOINT* WRN-20-W5 v +2.4+08853+0.5 +23£02 89.9+£04 +1.7+0.6 93.2+04 +22+£05 86.7£04

Table 3. Comparison between multiple methods. BWT and ACC in %. *JOINT does not adhere to the task incremental setup, and is
performed in order to serve as the upper bound for LwF. **Slightly different AlexNet-like architecture than used in HAT with a similar
capacity. “results reported in [4]; all other results are reproduced by us and are averaged over five runs with standard deviations. D=Dropout,
RN=ResNet, WRN=WideResNet, Lin=a linear layer, H=Hypernetwork, M=Target network.

WRN-20-W5, see appendix. We conjecture that the differ-
ence from LwF lies in the type of regularization term used
by each method. LwF employs a ‘soft’ regularization on
the network output for previous tasks, which handles statis-
tical shift due to batch normalization better than the weight-
based regularization. For the comparison table we use the
best evaluated architecture for each method.

All methods, except Hyper-CL and ACL, use separated
fully-connected layers with a softmax output for each task
as a final layer. Hyper-CL employs a separate generated
network for each task, and ACL employs a separate 3-layer
MLP with softmax output for each task on top of private
and shared concatenation.

Training We made an effort to find the best training proto-
col for each method, based on the existing literature and ini-
tial experiments. For all methods except for Hyper-CL we
followed the same training protocol described in Sec. .1}
For Hyper-CL, we use batch size 32 and with the Adam
optimizer [15] with a learning rate of 0.001. As for learn-
ing rate scheduling, Hyper-CL uses a validation accuracy to
schedule the learning rate by dropping the learning rate with
a factor of (1/0.1) ™1, if there is no improvement in the val-
idation accuracy for 5 consecutive epochs. The Hyper-CL

implementation further employs a custom multi-step sched-
uler adapted from Keras [2]. However, there is no early
stopping in Hyper-CL. Also, no other regularization is used
in any of the methods, except to the ones that are inherent
to the method itself.

The Hyper-CL official implementation and the author’s
experiments use the test set for parameter selection in lieu
of a proper validation set. We were able to fix and rerun
the experiments in time only for the Hyper-CL experiments
on CIFAR and not for the Hyper-CL experiments on Tiny-
ImageNet. We observed that moving to an independent val-
idation set reduces the performance of Hyper-CL on CIFAR
by a significant margin. We, therefore, view the results ob-
tained for this method on Tiny-ImageNet as an upper bound
for the method’s performance. We note that (i) Hyper-CL is
by far the slowest method out of all methods tested, and (ii)
On Tiny-ImageNet even though the results of this method
are positively biased, the method is not competitive.

The comparison to the literature methods is provided in
Tab. 3| and summarized in Fig. |1| for the best configuration
for each method. Evidently, in contrast to the picture the
literature paints, when a proper architecture and added aug-
mentations are used, LWF, which is a simple regularization-
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Figure 2. The evolution in time of the accuracy and the forgetting, for the best performing setting of each method average over 5 random
seeds. ACC (Eq.@) after learning task ¢ as a function of t. BWT (Eq. after learning task ¢ as a function of ¢. (a) & (b) ACC & BWT
results over time for CIFAR 20-Split and (c) & (d) similar results over time for Tiny-ImageNet 40-Split.

base method, outperforms all other methods. The results
also show that although IMM has evolved from EWC, both
its variants are not competitive with EWC except for the
smallest split (CIFAR 5-Split). When considering the aug-
mentation mechanism, we have mixed results. Although

augmentations increase ACC, they also increase forgetting
for EWC and IMM-MEAN and only slightly reduce forget-
ting for IMM-MODE, which is still quite high. In contrast,
for LwF, where we show that augmentations help to both
ACC and BWT.



HAT as originally conceived (recall that it is not compat-
ible with ResNets), has a very competitive ACC in CIFAR
and even outperforms Hyper-CL for the longer and more
challenging sequence of tasks from Tiny-ImageNet. It also
further benefits from the augmentation. For Hyper-CL, we
can see that although it has a smaller capacity (consider-
ing only the hypernetwork learnable parameters for capacity
computation) it outperforms all of the baselines for CIFAR
when augmentation is used. However, this advantage does
not generalize to the Tiny-ImageNet dataset, and it falls be-
hind HAT, and even EWC, for a longer sequence, which
further emphasizes the need for comparison over a diverse
set of experiments. To check if this shortcoming is a result
of the capacity of the model, we experimented with larger
models, both for the hypernetwork and target network. We
observed that the performance drops significantly in all ex-
periments for the larger network. This result emphasizes the
need for careful tuning of the Hyper-CL method, which is
challenging since unlike other methods it requires the tun-
ing of two architectures at once, which enlarges the space of
possible hyper-parameters dramatically. We note also that
[34] reported that out of many architectures tried, the small-
est ones showed the best performance-compression ratio.

For ACL, we quote the results for CIFAR 20-Split with
no augmentation from the paper itself [4)]. The network used
in the paper was similar to the one used by HAT. As the
results show, ACL outperforms both HAT and Hyper-CL
when no augmentation is used. LwF is not considered as
a baseline in [4]. However, LWF outperforms ACL with
WRN-20-W5 even without augmentation. We emphasize
that the difference does not come from capacity, since both
networks have a similar capacity as described in Tab.

We further analyze the performance by evaluating ACC
and BWT after learning each task. Fig. [2| shows the re-
sults for the longer sequences of tasks, 20 for CIFAR and
40 for Tiny-ImageNet (the results for the other experiments
can be found in the appendix). One can observe that the
methods differ in substantial ways. First, the non-LwF reg-
ularization methods, namely EWC and IMM, are not com-
petitive with LWF since the early stages of the online train-
ing. The results also indicate that although more careful
tuning between the primary loss and the regularization loss
could be made, there is a high degree of trade-off between
forgetting and new learning in these methods. Where EWC
and IMM-MEAN favor old tasks (low forgetting, low ACC)
and IMM-MODE favors new tasks (high forgetting, com-
parable, or higher, final ACC to IMM-MEAN). Second, the
same trade-off exists for HAT: while almost no forgetting
exists, the accuracy for new tasks is lower. Since HAT is a
parameter isolation method, we conjecture that it struggles
to utilize the underlined architecture for learning new tasks.
Third, while Hyper-CL and LwF seem close on CIFAR, an
important difference is evident in Tiny-ImageNet. Looking

at the profile of ACC for Tiny-ImageNet, Fig. [2] (c), shows
that Hyper-CL struggles to learn new tasks after task 34 is
learned, and the drop of accuracy is not due to forgetting, as
is evident by the BWT plot in Fig. 2] (d). Interestingly, this
drop also enables EWC to outperform Hyper-CL through
more consistent performance after the drop in task 8. Last,
for LwF, in both CIFAR and Tiny-ImageNet, it enjoys the
capability of learning new tasks and almost does not forget
previous tasks. We conclude that, although LwF is a reg-
ularization based method, given the right architecture and
augmentation, it can maintain both the ability to learn new
tasks and to not forget old ones, even at the tails of long
tasks sequence.

This emphasizes the need for a careful evaluation of
each method. While EWC, IMM, HAT, and ACL outper-
form AlexNet-based LwF with Dropout architecture they
fall short when dropout is removed and when selecting more
appropriate architectures. The reason that these other meth-
ods do not suffer from Dropout is that they employ hard
regularization on the weights which considers their impor-
tance. However, as Fig. [2| shows, this type of regularization
quickly results in a network utilization problem for fixed-
size backbones.

5. Conclusions

Many of the recent task-incremental publications [21}
29, [1] compare with LwF and found their method to be su-
perior. These conclusions seem to arise from the little in-
centive authors have to explore the effect of the evaluation
settings on prior work, or to invest effort in modernizing
the form (e.g., architecture) of baseline methods. However,
LwF itself is built on top of solid knowledge-distillation
foundations and, as we show, can be upgraded to become
extremely competitive.

We demonstrate that the LwF method can benefit from a
higher capacity (width-wise) and a network that employs
residual connections as well as from augmentations. It
is not obvious that the method would benefit from these
changes, as many of the other methods cannot benefit from
ResNets due to the challenges of applying batch normaliza-
tion and the need to carefully control the capacity. More-
over, not all methods benefit from augmentations in both
ACC and BWT.

Overall, our contributions are two-fold. First, we provide
strong baselines for task-incremental methods, that form a
solid foundation for comparing future methods. Second, we
show the effect of added capacity, residual architectures,
and regularization in the form of augmentation on task-
incremental methods. Demonstrating sometimes paradox-
ical behavior, expected to improve performance but deteri-
orates it. We believe that LWF’s ability to benefit from such
improvements is a strong indication that this method would
stand the test of time.
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A. ResNets architectures

In section 4.1 of the main paper, we offered to use vari-
ous ResNet architectures for LwF: RN-20, RN-32, RN-62,
WRN-20-W2, and WRN-20-WS5. All these networks share
a common structure but differ in width or depth. This struc-
ture starts with a single convolutional layer of 16 filters with
a kernel size of 3x3 and stride 1, followed by 3 groups of
“blocks”. Each group is parameterized by the number of
blocks, width, and stride for the first block in the group.
The baseline width (width factor equals 1) of each group is
16, 32, and 64, and strides 1, 2, and 2 respectively.

To implement the blocks, the class of BasicBlock from
the PyTorch framework is employed. Each block contains
2 convolutional layers with a kernel size of 3x3 and a skip
connection. The structure ends with an adaptive average
pooling of size 1x1. Moreover, each convolutional layer is
followed by a batch normalization layer and a ReLU activa-
tion function.

The parameters of the architectures in our work:

e RN-20 a width factor of 1 and 3 blocks in each group.

* RN-32 a width factor of 1 and 5 blocks in each group.

RN-62 a width factor of 1 and 10 blocks in each group.

L]

WRN-20-W2 a width factor of 2 and 3 blocks in each
group.

WRN-20-WS5 a width factor of 5 and 3 blocks in each
group.

B. LwF with AlexNet and data augmentations

In the main text the best architecture is tested for LwF
with data augmentations, namely WRN-20-WS5. In this sec-
tion we provide results for AlexNet-like architectures with
augmentations as well, the results are provided in Tab. [
We observe that the data augmentations does not provide re-
covery from the harmful Dropout component in AlexNet-D.
However, it does provide performance boost for AlexNet-
ND, as expected.

C. Width vs. depth for LWF

In Fig. [3| we offer another view on the effect of differ-
ent depth and width for LWF. The results are provided for
the baseline ResNet architecture, RN-20, and two compara-
ble capacity architectures. One with greater depth, RN-62,
and another with greater width, WRN-20-W2. The results
show that although RN-62 and WRN-20-W2 share a simi-
lar amount of forgetting, from task 2 onward RN-62 under-
performs with respect to ACC.

This suggests that LwF with a deeper ResNet network
is struggling to acquire new knowledge while keeping the



CIFAR 5-Split

CIFAR 10-Split

CIFAR 20-Split Tiny-ImageNet 40-Split

Arch. Aug. BWT ACC BWT ACC BWT ACC BWT ACC

AlexNet-D —399+14366+15 —529+1.2281+1.3 —544+1.131.3+£0.8 —=50.5+1.0 25.0+04
AlexNet-D v —46.2+1.838.0+1.7 —56.9+0.830.1 £0.7 —=58.0+£0.531.6 0.3 52.6£0.8 25940.5
AlexNet-ND —18+06 56.6+1.1 —29+£0.2 67.0+1.0 -3.1+0.3 75.5£0.6 —28=+0.3 66.9£0.8
AlexNet-ND v* —-0.5+04 695+1.1 —-0.7£0.3 76.7+£09 —-09+0.2 83.5+05 —-1.4+03 73.2+0.7

Table 4. LwF results with AlexNet-like architecture with data augmentations. all results are produced by us and are averaged over five runs

with standard deviations. D=Dropout, ND=No Dropout.

ACC

—— RN-20
—— RN-62
—— WRN-20-w2

accuracy
~ ~ ~ ~ ~ o
vl = i @ [t} =3

~
I
L

2 4 6 8 10 12 14 16 18 20
tasks

(a)

BWT

accuracy
T
o & w o i« o

|
W
=]
.

|
w
wn

2 a 6 8 10 12 14 16 18 20
tasks

(b)

Figure 3. The evolution in time of the accuracy and the forgetting for CIFAR 20-Split with LwF and different width and depth architectures,
average over 5 random seeds. No augmentation used in these experiments. (a) ACC (Eq. 1) after learning task ¢ as a function of t. (b)

BW'T (Eq. 2) after learning task ¢ as function of ¢.

previous one. Comparing RN-62 with RN-20 highlights
a more severe problem where LwF is struggling to utilize
deeper networks both in terms of ACC and BWT. However,
increased width has a positive effect on performance over
time, even at the price of increased forgetting. Fortunately,
we were able to mitigate this increased forgetting with data
augmentations, which not only reduced forgetting substan-
tially but also increased ACC.

D. EWC and IMM with WRN-20-WS§

In our experiments we found EWC and IMM (both
MEAN and MODE variants) to perform poorly with ResNet
architectures and specifically with WRN-20-W5. The re-
sults, for this architecture, can be found in Tab.[5] As can
be seen, using WRN-20-W5 the methods are not compet-
itive and perform lower than when using the AlexNet-like
architecture, as quoted in the main paper. This performance
gap suggests that the methods require modifications in or-
der to enjoy more modern architecture, like ResNet. We
attribute this to the challenge imposed by the batch normal-
ization layers.

E. ACC and BWT over time

In Fig. 4| we provide the BWT and ACC scores after
learning each task for CIFAR-100 with 5 and 10 splits.
These results were omitted from the main text for brevity
and provided here as complementary results.

Similarly to the results shown in the paper (main text
Fig. 2), the advantage of LWF over the baseline methods
is evident. LwF can learn new tasks with a similar level
of performance to the previous ones while maintaining the
knowledge from the previous tasks. In contrast, both EWC
and IMM fail to do so. For HAT, the difference in perfor-
mance between different CIFAR-100 splits, where the per-
formance is more stable for a short sequence of tasks, could
point to an insufficient per task capacity problem. However,
since LwF can both learn new tasks and maintain old ones
with similar capacity, this points to an under-utilization of
the network capacity. Thus, we suspect that HAT is not
scalable for long task sequences even with larger networks.
Although HyperCL seems to have very competitive results
for these splits, its shortcoming is revealed in the main pa-
per, looking at a longer sequence of tasks, such as Tiny-
ImageNet.



CIFAR 5-Split CIFAR 10-Split CIFAR 20-Split

Tiny-ImageNet 40-Split

Method Aug. BWT ACC BWT ACC BWT ACC BWT ACC

EWC —11.0+2446.8+2.1 —24.8+3.6398+2.6 —33.5+5.5409+£5.3 —31.4+2.0 34.8+1.6
EWC v —11.6+3.960.1+£44 —31.9+2.646.8+£2.4 —45.7+4.1382+34 —45.1+3.1 31.1+3.5
IMM-MEAN —1234+8524.6£87 —35£56 273+44 —-29+13 33.3+2.0 +02+£15 281+1.3
IMM-MEAN v -169+£4.7293+32 —494+252944+31 —-33+£21309+13 —-16+£4.0 26.8+3.0
IMM-MODE —22.74+6.3394+39 -348+4.0345+31 —47.3£4.030.3+3.3 —425+21 275+14
IMM-MODE v' —39.8+2.144.0+2.1 —52.0+3.335.2+£2.7 —58.8+5.430.2+5.2 —52.4+2.7 26.4+2.5

Table 5. EWC and IMM results with WRN-20-W5. all results are produced by us and are averaged over five runs with standard deviations.
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Figure 4. The evolution in time of the accuracy and the forgetting, for the best performing setting of each method average over 5 random
seeds. ACC (Eq. 1) after learning task ¢ as a function of t. BWT (Eq. 2) after learning task ¢ as function of ¢. (a) & (b) results over time
for CIFAR 5-Split and (c) & (d) results over time for CIFAR 10-Split.



