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Abstract

This paper presents a closed form solution for the prob-
lem of computing a set of projective cameras from the fun-
damental matrices of a given viewing graph. The approach
is incremental, exploits trifocal constraints, and does not
rely on either image or structure points. Represented by
a vector of four parameters that uniquely ensure its consis-
tency with the local trifocal geometry, each newly computed
camera is automatically coherent with the projective frame
chosen as global reference, thus not needing any a pos-
teriori synchronization. Results of experiments made un-
der controlled conditions show that the proposed approach
is relatively resilient to noise, and faster by three orders
of magnitude than classical camera resectioning solutions,
while reaching a comparable accuracy. This makes our
closed form approach a good candidate for camera initial-
ization in scenarios involving large-scale viewing graphs.

1. Introduction
Uncalibrated computer vision is a way to keep low the

number of parameters being estimated (which is quite use-
ful in large-scale scenarios) and to deal efficiently with
missing data and outliers [12]. Several computer vision ap-
plications encompass an uncalibrated reconstruction step,
in which motion and/or structure are estimated up to a pro-
jective transformation. Bundle adjustment in uncalibrated
settings is known to be less prone to local minima, with
respect to the calibrated case [16]. Estimates are subse-
quently upgraded to metric by means of self-calibration [15]
[13]. Some applications such as image-based rendering and
view synthesis do not even require that calibration matri-
ces be known at all [2]. Started in the early nineties [4]
[7], research on uncalibrated vision flourished at the turn
of the milennium, with formulations based on fully projec-
tive concepts and representations such as fundamental ma-
trices [10], trifocal tensors [1], and rank conditions [11]. In
modern projective Structure from Motion scenarios, typi-

cally working with huge collections of images, views are
often endowed with a graph structure, referred to as viewing
graph, whose nodes are cameras and edges are fundamental
matrices [9] [18]. Several works have addressed problems
connected with viewing graphs, such as finding the missing
edges [14] [22] or establishing an optimal configuration for
the nodes [6] [3] [20].

In this paper, a closed form solution is presented for ob-
taining a coherent set of projective cameras from a given,
possibly incomplete, viewing graph. The main idea is to
leverage basic theory on trifocal geometry and linear al-
gebra in order to calculate in advance the expression for
camera parameters, thus limiting to a minimum the com-
putations at run time. Camera set optimization is left as
a subsequent step. Starting from an arbitrary pair of cam-
eras consistent with the fundamental matrix between them,
the approach incrementally computes a new camera using
the two additional fundamental matrices of the triplet. At
each iteration, the four parameters that make the new cam-
era fully consistent with the local trifocal geometry and with
the global projective frame chosen, are computed without
relying on either 2D or 3D points. The approach is ex-
perimentally validated on a minimal graph of four images
under controlled noise conditions. A comparison is also
carried out with the standard camera resectioning method
based on scene point reprojection and numerical minimiza-
tion [21]. Results show that the proposed approach is quite
noise-resilient, with comparable performance both in terms
of reprojection and projective 3D reconstruction errors, and
remarkably faster computational speed. This makes our
closed form solution quite promising for initializing cam-
eras in applications requiring large-scale viewing graphs.

2. Theory

2.1. The third camera problem

Given two views with camera matrices P1 and P2, the
fundamental matrix between them is uniquely determined
as

F21 ∼ [e21]×P2P
+
1 , (1)
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where e21 such that F⊤21e21 = 0 is the epipole on view
2. (The symbol ‘∼’ denotes equality up to scale, P+ is the
pseudo-inverse of P and [u]×v

.
= u × v.) If P1

.
= [A1 a1]

and F21 are given instead, then P2 is not unique, as it is
determined up to a 4 degrees of freedom transformation. Its
general expression is

P2 ∼
[
[e21]×F21 e21

] [
A1 a1

1ρ⊤
2

1σ2

]
, (2)

where 1ρ2 is a (possibly zero) 3-vector and 1σ2 is a nonzero
scalar. One can easily verify that eq. 1 is satisfied what-
ever the choice of the four parameters, which is equivalent
to say that the matrix P⊤2 F21P1 is skew-symmetric. The lat-
ter condition is a practical way to test the consistency of a
camera pair and a fundamental matrix. Notice that, if the
canonical camera [I 0] is chosen as P1, then eq. 2 reduces
to P2 ∼

[
[e21]× F21 + e21

1ρ⊤
2

1σ2e21
]
, which is the usual

expression for the second camera in textbooks [5] [8].
Assume now that a third view is given, together with

the fundamental matrices relating it to the first and second
views, respectively. The three fundamental matrices F21,
F31 and F32, are not independent, as they must meet the
three trifocal compatibility constraints

ϵijk = e⊤ikFijejk = 0, i ̸= j ̸= k . (3)

The problem arises of computing an expression for the third
camera given the first two, such that all camera pairs are
consistent with the associated fundamental matrix. Using
P1 as reference, the third camera can be written in the same
form used in eq. 2 for the second camera, thus obtaining
P3 ∼

[
[e31]× F31A1 + e31

1ρ⊤
3 [e31]× F31a1 +

1σ3e31
]
.

While this form automatically ensures the consistency of
the camera pair (P1, P3) with F31 whatever the choice of
the four parameters, there is actually only one choice of the
vector

[
1ρ⊤

3
1σ3

]⊤
which guarantees that also the last con-

sistency constraint, i.e., P⊤3 F32P2+
(
P⊤3 F32P2

)⊤
= 0, is met.

A closed form solution to this problem is derived hereafter.
Since e⊤31F32e21 = 0 by eq. 3, some of the mixed terms
cancel out and the matrix P⊤3 F32P2 can be written as

P⊤1 QP1 + P⊤1 q
[
1ρ⊤

2
1σ2

]
+
[
1ρ⊤

3
1σ3

]⊤
r⊤P1 , (4)

with Q
.
=−F⊤31[e31]×F32[e21]×F21,q .

= −F⊤31[e31]×F32e21,
and r⊤

.
= e⊤31F32[e21]×F21.

A geometrical interpretation of the vectors q and r is
easily obtained by considering the trifocal plane passing
through the three camera centers. In the following we will
assume, as in Fig. 1, that the centers are not aligned, so that
this plane is unique, and the three epipole pairs (eij , eik) are
distinct. The trifocal plane intersects the image plane i in
the trifocal line li

.
= [eij ]×eik/∥[eij ]×eik∥, i.e., the epipo-

lar line passing through the local epipole pair (the condition

Figure 1. Trifocal geometry.

j < k fixes the sign of li). Notice that

li ∼ Fijejk ∼ Fij [eji]×lj ∼ Fij [ejk]×lj , (5)

where the last two equalities hold since [eji]×lj ∼ eji ×
eji × ejk = µeji + νejk for some µ and ν. Recalling that
Fij = F⊤ji, and noting that l⊤i li

.
= 1, it is clear from the

above that q and r are both representations of the trifocal
line l1, and in particular

q = χl1 , χ
.
= −l⊤1 F

⊤
31[e31]×F32e21 (6)

r = ξl1 , ξ
.
= −l⊤1 F

⊤
21[e21]×F

⊤
32e31 . (7)

The matrix Q = −F⊤31[e31]×F32[e21]×F21 can also be ex-
pressed in terms of the trifocal line l1. Indeed, it is a rank 2
matrix with e12 and e13 respectively in its right and left null
spaces: Qe12 = Q⊤e13 = 0. Moreover, using again eq. 5,
it is easy to show that Qe13 ∼ Q⊤e12 ∼ l1, so that Q is a
solution of the following system, linear in M:

Me12 = 0
e⊤13M = 0⊤

e⊤12M = hl⊤1
Me13 = kl1 ,

(8)

with scale factors h .
= −l⊤1 F

⊤
21[e21]×F

⊤
32[e31]×F31e12, and

k
.
= −l⊤1 F

⊤
31[e31]×F32[e21]×F21e13. The solution of the

associated homogeneous system is the rank 1 matrix λΛ1,
where Λ1

.
= l1l

⊤
1 and λ is a free parameter. A par-

ticular solution of the non-homogeneous system above is
λ2Λ1[e12]× + λ3[e13]×Λ1 with λ2

.
= k/∥[e12]×e13∥ and

λ3
.
= h/∥[e12]×e13∥, as one can verify by direct substitu-

tion. The general solution [19] of the system is therefore

M(λ) = λΛ1 + λ2Λ1[e12]× + λ3[e13]×Λ1 , (9)

from which the scalar λ1 such that M(λ1) = Q can be deter-
mined as λ1 = trace(Q), since Λ1[e12]× and [e13]×Λ1 are
both traceless and trace(Λ1) = 1.
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Figure 2. A view triplet from a larger viewing graph built using
view 1 as global reference.

Now that a convenient representation has been estab-
lished for Q, q and r, it is only a matter of algebraic com-
putation to derive the closed form expression for the unique
set of four parameters that force the matrix in eq. 4 to be
skew-symmetric and ensure that (P2, P3) be consistent with
F32. This evaluates as

[1ρ⊤
3

1σ3] = −ξ−1
(
l⊤1 BP1 + χ[1ρ⊤

2
1σ2]

)
, (10)

where B .
= λ1I+ λ2[e12]× − λ3[e13]×.

2.2. Extension to larger viewing graphs

Once a camera, say P1, has been chosen as reference, the
formula of eq. 10 allows one to obtain the unique parameter
vector [1ρ⊤

s
1σs] for camera Ps from a triplet of compatible

fundamental matrices Fr1, Fs1, Fsr and the parameter vec-
tor [1ρ⊤

r
1σr] for camera Pr (without loss of generality, the

formula uses the indexes r = 2 and s = 3).
Suppose now to have a new view, say t, for which to

compute Pt from the already known cameras Pr and Ps,
and the compatible triplet Fsr, Ftr, Fts. This situation, de-
picted in Fig. 2, is common when constructing large view-
ing graphs, in which a triplet of cameras may have no points
in common with the global reference view (hereafter iden-
tified with view 1). Let us arbitrarily choose Pr

.
= [Ar ar]

as local reference for the new triplet. In order to exploit
the formula of eq. 10 for obtaining [rρ⊤

t
rσt] and even-

tually Pt, we need the parameter vector [rρ⊤
s

rσs] relat-
ing view s with view r. However, this is not immedi-
ately available, since Ps

.
= [As as]

.
= 1Ps is expressed in

terms of the 4-vector [1ρ⊤
s

1σs], that relates view s with
view 1. In other words, what is missing here is the lo-
cal representation (relative to view r) of Ps, for which
only the global representation (relative to view 1) is cur-
rently known. (Notice, in passing, that a given camera

can admit multiple, equivalent 4-vector representations ac-
cording to the reference camera at hand. This does not
contradict, of course, the fact that a camera requires ex-
actly four parameters to be uniquely specified within a
given triplet.) Recovering the local camera representation
4-vector can be done as follows. Let us define rPs

.
=

rηs
[
[esr]× FsrAr + esr

rρ⊤
s [esr]× Fsrar +

rσsesr
]
: This

expression explicitly includes the overall scale factor rηs
of the camera matrix, which is also unknown, and must
be computed together with rρs and rσs. This goal can be
reached by constraining the two matrices to be identical,
i.e.

rPs =
1Ps . (11)

After some algebraic passages, we get

[rρ⊤
s

rσs] = ζ−1e⊤sr
1Ps , (12)

where ζ
.
= rηs∥esr∥2 =

(
a⊤s [esr]×Fsrar

)−1 ∥[esr]×as∥2.
Notice that, thanks to the special definition of consistency
given in eq. 2, the camera matrix rPt, although computed
using the formula of eq. 10 by means of the local refer-
ence Pr, is automatically coherent with the projective frame
chosen for the global reference P1 (usually [I 0]), without
needing any further adjustment. Hence, all the cameras of
the viewing graph computed as above are expressed, as it
should be, in a unique, global projective frame. If desired,
the formula of eq. 12 can be used to recover [1ρ⊤

t
1σt] from

rPt and P1. Similarly, if missing and required, the funda-
mental matrix between the views t and 1, Ft1, can also be
obtained with the formula of eq. 1, with epipole PtC1, the
camera center of view 1 being the null vector of P1. Re-
working the formula in eq. 12 leads to an expression which
is formally similar to that of eq. 10:

[rρ⊤
s

rσs] = ζ−1
(
l⊤s CP1 + x[1ρ⊤

s
1σs]

)
, (13)

with C .
= −∥[es1]×esr∥Fs1 and x

.
= e⊤s1esr. The difference

is that while eq. 10 connects the representations of two dis-
tinct cameras relative to the same reference, eq. 13 connects
two distinct representations of the same camera.

3. Evaluation
The closed form solution described in the previous Sec-

tion is based on the key hypothesis that the compatibility
constraints of eq. 3 are perfectly met for each camera triplet
at hand. However, in real situations, noisy point measure-
ments are to be expected, which would result in an inaccu-
rate set of fundamental matrices, and determine a loss in tri-
focal compatibility. Such loss would affect the estimates of
all the third cameras of the triplets, and alter the consistency
of camera pairs with respect to the associated fundamental
matrix. Eventually, the partially incorrect camera estimates
would result in erroneous 3D estimates.
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Figure 3. Camera configuration for setup #1. The 3D point cloud is
shown in cyan dots. The four cameras P1, P2, P3, and P4 surround
the point cloud. Camera axes are shown in red, green, and blue,
respectively for the x-axis, y-axis, and z-axis (optical ray).

In order to experimentally validate the proposed method
in the presence of noise, an essential simulation setup using
four cameras was devised, and several tests were done, as
described in the following.

3.1. Experimental setup

A 3D point cloud MGT was created by uniformly sam-
pling random points XGT = [X,Y, Z]⊤ from a three-
dimensional volume with dimensions ∆X = 60, ∆Y = 60,
∆Z = 50. Then four calibrated cameras P̃i, with i =
{1, . . . , 4}, were defined, using a common calibration ma-
trix K. P̃1 was set in the origin of the coordinate system,
i.e. P̃1

.
= K[I 0]. Camera centers for P̃2, P̃3, and P̃4 were

then sampled randomly so as to have the four cameras ar-
ranged around the 3D point cloud with similar distances to
each other. Once the camera centers were obtained, each
rotation matrix was defined to have the optical ray point-
ing toward the center of the point cloud, and the other two
axes arranged in a random configuration so as to form an
orthonormal basis (see Fig. 3). In order to run the tests on
multiple random camera configurations, 25 setups were cre-
ated using the same procedure.

For each setup, the 3D points were projected onto the
four cameras (neglecting occlusions), and matches among
corresponding 2D points were obtained. Using the corre-
spondences, the fundamental matrices Fji were computed
for each pair of cameras Pi, Pj . In all the experiments,
we set the first projective camera as P1

.
= [I 0], and

P2
.
= [[e21]×F21 e21]. P

(c)
3 and P

(c)
4 were then obtained

from the computed fundamental matrices using the closed
form expressions presented in Sect. 2.

To compare the proposed approach with a classical so-
lution, P(r)3 and P

(r)
4 were also estimated by minimizing the

reprojection error between a set of 3D points and the respec-
tive 2D projections [21]. In particular, to compute P(r)3 , 3D
points triangulated from P1 and P2 were used, while for P(r)4

the point cloud generated from P2 and P
(r)
3 was employed.

Notice that, while our closed form approach requires at least
7 matches on two cameras to compute the fundamental ma-
trices, the method based on the reprojection of 3D points
needs at least 6 matches on three cameras (i.e., the two pro-
ducing the 3D and the one to be estimated), which limits
its applicability in a more general and realistic scenario—
similar considerations apply for trifocal tensor based solu-
tions [6].

Tests for each of the 25 different setups were repeated
injecting Gaussian noise with µ = 0 and σ ∈ [0, 5], with
steps of 0.1 (i.e., 51 noise sets were generated) to observe
the behaviour of the approaches in presence of not perfect
correspondences. The noise was independently sampled for
each of the four images, and added to the 2D points. For the
sake of uniformity, the same noise sets were used for all the
setups. In total 25x51=1275 configurations were evaluated.

3.2. Error metrics

In order to evaluate the performance of the four projec-
tive cameras, three types of error were considered.

Firstly the consistency of all camera pairs w.r.t. the asso-
ciated fundamental matrix were evaluated using the consis-
tency error αij

.
= ||Dij ||F , i.e., the Frobenius norm of the

matrix
Dij

.
= (P⊤j FjiPi) + (P⊤j FjiPi)

⊤ . (14)

In the case of perfect consistency, all entries of Dij should
be 0, and so the error αij . The higher the value of αij , the
worse is the consistency of the matrices.

A second metric was the mean 2D reprojection error
among the pairs of cameras {P1, P3}, {P1, P4}, {P2, P3},
{P2, P4}, {P3, P4}. Let Sij = {X̃ij} be the set of 3D points
estimated by triangulation from Pi and Pj using the matched
2D points xi ∈ Pi, and xj ∈ Pj . The error is computed as

βi
ij =

1

|Sij |
∑

X̃ij∈Sij

xi∈Pi

√
(xi − PiX̃ij)2 , (15)

where |S| is the cardinality of S. A similar error βj
ij is

obtained for the j-th camera.
Finally, a 3D reconstruction error was also measured.

Exploiting the knowledge of the metric ground-truth 3D
point cloud MGT , each 3D point set Sij was promoted to a
metric reconstruction estimating a 4x4 transformation Hij ,
as done in [17]. The promoted point cloud Mij = HijSij
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β
1(c)
13 β

3(c)
13 β

1(c)
14 β

4(c)
14 β

2(c)
23 β

3(c)
23 β

2(c)
24 β

4(c)
24 β

3(c)
34 β

4(c)
34 γ

(c)
13 γ

(c)
14 γ

(c)
23 γ

(c)
24 γ

(c)
34

1.29 1.52 1.33 1.46 1.42 1.37 1.37 1.46 1.35 1.46 0.38 0.57 0.54 0.44 0.44

Table 1. Errors obtained in the tests using ground-truth F’s, averaged on all the setups and all the noise σ’s.

(a) (b)

(c) (d)
Figure 4. Average errors on all setups for increasing values of σ. (a) and (c) show the errors obtained using ground-truth F’s, while (b)
and (d) report results using noisy fundamental matrices. The scale of the y-axes of the plots in the same row is the same, so as to ease the
comparison. Best viewed in colour. The reader is invited to zoom in the electronic version of the paper in order to appreciate finer details.

was then compared with the ground-truth and its error was
evaluated as

γij =
1

|Mij |
∑

Xij∈Mij ,
XGT∈MGT

√
(Xij −XGT )2 . (16)

Since Hij was obtained by solving an over-constrained lin-
ear system that minimizes a similar error, γij would par-
tially hide the effect of the introduced noise. To be more
fair in the comparison, we decided to estimate a unique and
perfect Ĥij from each noiseless setup (i.e., σ = 0), and ap-
ply it to the noisy estimates of the same camera pair Pi and
Pj .

For the purpose of comparison, the metrics above were
evaluated using both the projective cameras obtained with
the proposed method (i.e., P(c)3 and P

(c)
4 ), and those esti-

mated with the reprojection based solution (i.e., P(r)3 and
P
(r)
4 ).

Finally, in order to observe how trifocal compatibility
degrades with noise, and better explain the inferior perfor-
mances in the presence of noise for our solution, we also
measured the overall trifocal compatibility error

δijk =
|ϵijk|+ |ϵjki|+ |ϵkij |

3
, (17)

where ϵijk is defined in eq. 3 .

3.3. Results using ground-truth F matrices

Before presenting the comparative results, since the pro-
posed approach performances are based on the estimation
accuracy of the F matrices, a test using perfect F’s was con-
ducted and reported hereafter. Using perfect fundamental
matrices, obtained from noiseless matches, the projective
P
(c)
3 and P

(c)
4 matrices are perfectly recovered, and the noise

only affects the triangulation process, which uses inexact
matches.

In Table 1 the β
(c)
ij and γ

(c)
ij errors were reported, aver-

aged on all the setups and all the noise σ’s. (In this case
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α
(c)
13 α

(c)
14 α

(c)
23 α

(c)
24 α

(c)
34 α

(r)
13 α

(r)
14 α

(r)
23 α

(r)
24 α

(r)
34

0.00000 0.16657 0.10525 0.00000 0.42145 0.09039 0.01988 0.06028 0.06206 0.00542

Table 2. Mean camera consistency errors, obtained by averaging on all the setups and on all the noise σ’s.

we did not report the results obtained by the reprojection
method, since it will be an unfair comparison. Note also
that we did not present tables for the α

(c)
ij and δijk errors,

since using perfect F matrices these errors are all zero.) Us-
ing ground-truth F’s, both the errors are quite stable for each
camera pair. This is due to the fact that the consistency of
the camera matrices is guaranteed by construction, and no
particular pair suffers from inconsistency issues.

Nevertheless, the noise has an appreciable effect on the
triangulation and, as a consequence, on both the errors. As
can be seen in Figs. 4a and 4c, representing respectively the
β
(c)
ij and γ

(c)
ij errors averaged on all the setups at different

values of σ, both the errors grow almost linearly with the
noise. In the absence of noise (σ = 0), all error metrics give
a zero value, thus experimentally confirming the correctness
of the formulas provided in Sect. 2. As noises increases, the
errors increase in a similar way for each camera pair.

3.4. Comparative results

In this Section, comparative results between the pro-
posed approach and the reprojection based method are pre-
sented. In this case, also the F matrices were estimated from
noisy matches.

Firstly, in Tab. 2 camera consistency errors for all the
pairs (i.e., α(c)

ij and α
(r)
ij ) are reported. As it can be noticed,

the consistency error for cameras P(c)3 and P(c)4 is unchanged
from the previous case only for the pairs {1, 3}, and {2, 4}:
This is due to the fact that P(c)3 was built to be perfectly
consistent with P1, and, similarly, P(c)4 was built with per-
fect consistency w.r.t. P2. For the other pairs, consistency
is not guaranteed by construction, and they suffer from the
introduction of noise in the F estimation, particularly the
pair {3, 4}. Indeed, the loss of consistency was due to the
decreased trifocal compatibility among the estimated F ma-
trices. Looking to Fig. 5—that reports the mean δijk for
the triplets {1, 2, 3}, {2, 3, 4}, and {1, 2, 4} averaged on all
setups for different values of noise σ’s—the compatibility
decreases as the noise increases. On the other hand, us-
ing the reprojection method, camera consistencies reached
similar error values for all the pairs, since in estimating the
cameras their consistency was implicitly optimized by min-
imizing the reprojection error.

The worst consistencies α
(c)
14 , α(c)

23 , and α
(c)
34 produced

the worst results on the reprojection errors β(c)
ij for the rel-

ative camera pairs. As can be seen in Fig. 4b (where a plot
similar to that of Fig. 4a was reported, by averaging the er-

Figure 5. Average trifocal compatibility errors on all setups for
increasing values of σ, using F’s estimated on noisy matches. Best
viewed in colour. The reader is invited to zoom in the electronic
version of the paper in order to appreciate finer details.

rors on all the setups for different values of σ) β(c)
14 , β(c)

23 ,
and β

(c)
34 were higher than β

(c)
13 and β

(c)
24 . However, this ef-

fect is not generally reflected on the γ
(c)
ij errors—excluding

some peaks for γ(c)
14 (see Fig. 4d). In our opinion, this is

due to the fact that transformation matrices Ĥij , being esti-
mated independently for each pair, reduced the effect of low
consistency for pairs {1, 4}, {2, 3}, and {3, 4}.

The overall results averaged on all the setups and all
σ’s, are finally reported in Tables 3a and 3b, giving re-
spectively the scores for our solution and for the reprojec-
tion approach. From a comparison of Tab. 3a and Tab. 1
(where ground-truth F’s were used) the most relevant dif-
ferences are appreciable for the pairs {1, 4}, {2, 3}, and
{3, 4}, which are those whose consistency degrades more
with noise. Comparing instead the scores for the closed
form and the reprojection based approaches, both methods
obtained similar error values, indicating that our approach
does not suffer of particular drawbacks w.r.t. the more clas-
sical reprojection solution which is based on error mini-
mization. However, some particular results can be pointed
out. Considering the average scores, our solution obtained
lower βij errors for the camera pairs {1, 3} and {2, 4}: In-
deed, while β

1(c)
13 and β

3(c)
13 reached respectively the values

of 1.28 and 1.51, β1(r)
13 and β

3(r)
13 obtained 1.59 and 1.85.

More pronounced is the difference for the pair {2, 4}, with
β
2(c)
24 = 1.36 and β

4(c)
24 = 1.45, while β

2(r)
24 = 2.45 and

β
4(r)
24 = 2.50. For the remaining pairs ({1, 4}, {2, 3}, and

{3, 4}) the βij errors were quite similar, only slightly lower
for the reprojection based approach. This behaviour indi-
cates again that the proposed solution is particularly reli-
able for camera pairs with good consistency, and suggests
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β
1(c)
13 β

3(c)
13 β

1(c)
14 β

4(c)
14 β

2(c)
23 β

3(c)
23 β

2(c)
24 β

4(c)
24 β

3(c)
34 β

4(c)
34 γ

(c)
13 γ

(c)
14 γ

(c)
23 γ

(c)
24 γ

(c)
34

1.28 1.51 2.24 2.39 2.04 1.97 1.36 1.45 2.41 2.44 0.66 1.13 0.80 0.82 0.82
(a) Closed form method

β
1(r)
13 β

3(r)
13 β

1(r)
14 β

4(r)
14 β

2(r)
23 β

3(r)
23 β

2(r)
24 β

4(r)
24 β

3(r)
34 β

4(r)
34 γ

(r)
13 γ

(r)
14 γ

(r)
23 γ

(r)
24 γ

(r)
34

1.59 1.85 2.24 2.50 1.74 1.68 2.45 2.50 2.10 2.54 0.55 1.07 0.81 1.30 1.07
(b) Reprojection based method

Table 3. Average errors obtained using F’s estimated from noisy matches.

that in a practical application the α
(c)
ij score could be used

to choose from which camera pairs to compute the 3D re-
construction. Concerning the γij errors, the main differ-
ence can be observed for γ

(c)
24 = 0.82 and γ

(r)
24 = 1.30,

favourable toward the proposed approach. The other pairs
obtained mostly similar scores.

Tables 4a and 4b report the errors obtained for the setup
#1, for all values of σ. As can be seen, the errors grow lin-
early with the noise, and both methods obtain comparable
results.

3.5. Computational times

In this section, some indication on the average compu-
tational times for the compared approaches are reported.
Times were measured using a non optimized Matlab code
on a PC with an Intel Core i7-10510U CPU with 16GB
of RAM. On average, the proposed method used about
3× 10−5 s to compute a camera, while the reprojection ap-
proach took about 3× 10−2 s, hence was about 1000 times
slower. Note additionally that, for the reprojection method,
most of the time was required for point triangulation, which
has an increasing complexity related to the number of 3D
points estimated. Indeed, this is another favourable aspect
of the closed form solution, that not only has fast computa-
tional times, but also does not require to triangulate points
in order to estimate the camera matrices.

4. Conclusions and future work

In this paper, a closed form solution for the estimation of
projective camera matrices on a viewing graph was given.
Exploiting only matches on pairs of cameras to compute the
fundamental matrices, using our formulas is it possible to
obtain all the camera matrices in an unique coordinate sys-
tem, without the need of any a posteriori synchronization.
The use of closed form expressions limits to a minimum the
amount of run time calculations. This is particularly desir-
able in applications requiring large viewing graphs.

Results on a simulated environment confirmed the cor-
rectness and demonstrated the noise resilience of the formu-
las, thanks to which the proposed approach obtains similar,

if not superior, performances w.r.t. a classical solution based
on the minimization of the reprojection error. Moreover, as
it does not require any point triangulation, our solution is
faster than the standard approach by three orders of magni-
tude.

Future work will encompass extending the theory to the
degenerate case of collinear camera centers, addressing the
problem of camera set optimization, and performing further
tests on real images and larger viewing graphs, in order to
better evaluate the performances in a practical, realistic ap-
plication scenario.
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σ β
1(c)
13 β

3(c)
13 β
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14 β

4(c)
14 β

2(c)
23 β

3(c)
23 β

2(c)
24 β

4(c)
24 β

3(c)
34 β

4(c)
34 γ

(c)
13 γ

(c)
14 γ
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23 γ
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24 γ
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Avgs 1.19 1.57 1.32 1.73 1.35 1.46 1.30 1.55 1.73 1.22 0.55 0.78 0.71 0.67 0.66

(a) Closed form method
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14 β

4(r)
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2(r)
23 β
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23 β

2(r)
24 β

4(r)
24 β

3(r)
34 β

4(r)
34 γ

(r)
13 γ

(r)
14 γ

(r)
23 γ

(r)
24 γ

(r)
34

0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.1 0.05 0.07 0.05 0.07 0.05 0.06 0.06 0.07 0.07 0.05 0.02 0.03 0.03 0.02 0.02
0.2 0.11 0.14 0.10 0.14 0.10 0.11 0.11 0.13 0.15 0.11 0.04 0.05 0.05 0.05 0.05
0.3 0.16 0.21 0.18 0.22 0.16 0.18 0.16 0.19 0.21 0.15 0.05 0.08 0.07 0.07 0.07
0.4 0.20 0.26 0.21 0.27 0.20 0.22 0.23 0.28 0.27 0.20 0.08 0.11 0.10 0.09 0.09
0.5 0.25 0.32 0.24 0.32 0.28 0.30 0.26 0.32 0.35 0.24 0.09 0.14 0.12 0.10 0.11
0.6 0.29 0.39 0.33 0.43 0.34 0.36 0.33 0.39 0.46 0.32 0.11 0.16 0.15 0.14 0.14
0.7 0.34 0.45 0.35 0.46 0.41 0.45 0.35 0.43 0.51 0.36 0.18 0.24 0.23 0.21 0.21
0.8 0.42 0.55 0.41 0.56 0.44 0.49 0.52 0.62 0.65 0.48 0.16 0.27 0.22 0.22 0.22
0.9 0.46 0.60 0.46 0.60 0.52 0.57 0.47 0.56 0.63 0.46 0.24 0.31 0.29 0.29 0.26
1.0 0.50 0.66 0.52 0.67 0.58 0.62 0.53 0.64 0.72 0.51 0.28 0.34 0.35 0.31 0.29
1.1 0.57 0.75 0.58 0.78 0.62 0.70 0.66 0.78 0.87 0.63 0.19 0.31 0.28 0.23 0.24
1.2 0.63 0.82 0.58 0.75 0.66 0.72 0.62 0.74 0.82 0.59 0.26 0.37 0.35 0.32 0.34
1.3 0.64 0.85 0.78 1.02 0.73 0.79 0.84 0.95 1.01 0.74 0.27 0.44 0.36 0.40 0.38
1.4 0.70 0.92 0.75 0.99 0.77 0.86 0.74 0.89 0.98 0.68 0.23 0.36 0.33 0.31 0.30
1.5 0.76 0.99 0.83 1.06 0.87 0.94 0.84 0.99 1.05 0.74 0.28 0.42 0.39 0.34 0.37
1.6 0.75 0.99 0.80 1.06 0.95 0.99 0.86 1.04 1.21 0.90 0.35 0.44 0.44 0.38 0.38
1.7 0.87 1.16 0.88 1.10 0.99 1.06 0.94 1.12 1.20 0.88 0.29 0.48 0.39 0.38 0.37
1.8 0.89 1.20 0.99 1.31 1.01 1.08 1.02 1.22 1.33 0.95 0.48 0.63 0.61 0.57 0.56
1.9 0.97 1.30 0.92 1.23 1.11 1.19 1.06 1.30 1.28 0.91 0.35 0.51 0.50 0.43 0.47
2.0 0.99 1.31 1.09 1.39 1.18 1.23 1.14 1.34 1.38 1.01 0.35 0.54 0.47 0.47 0.45
2.1 1.02 1.32 1.09 1.43 1.13 1.23 1.23 1.47 1.57 1.15 0.56 0.60 0.64 0.61 0.63
2.2 1.08 1.41 1.14 1.52 1.17 1.26 1.38 1.60 1.78 1.29 0.59 0.71 0.78 0.75 0.74
2.3 1.03 1.35 1.13 1.44 1.32 1.43 1.28 1.51 1.50 1.08 0.39 0.60 0.56 0.47 0.49
2.4 1.14 1.52 1.27 1.71 1.25 1.33 1.52 1.74 1.94 1.43 0.47 0.69 0.62 0.60 0.60
2.5 1.25 1.69 1.30 1.65 1.49 1.63 1.47 1.74 1.92 1.41 0.42 0.67 0.65 0.63 0.56
2.6 1.28 1.67 1.36 1.71 1.39 1.53 1.56 1.80 1.91 1.36 0.49 0.69 0.67 0.62 0.62
2.7 1.42 1.84 1.57 2.00 1.52 1.63 1.43 1.69 1.96 1.42 0.93 1.10 1.04 1.03 1.01
2.8 1.45 1.89 1.46 1.87 1.50 1.66 1.59 1.84 2.20 1.62 0.48 0.80 0.73 0.64 0.64
2.9 1.38 1.86 1.47 1.91 1.64 1.75 1.51 1.79 1.98 1.40 0.52 0.82 0.73 0.61 0.62
3.0 1.52 2.03 1.59 2.02 1.70 1.83 1.71 2.05 2.13 1.48 0.64 0.92 0.81 0.73 0.73
3.1 1.45 1.96 1.61 2.16 1.87 2.08 2.05 2.31 2.41 1.75 0.89 1.03 1.05 0.98 1.06
3.2 1.52 2.00 1.65 2.12 1.56 1.68 1.68 2.02 2.20 1.58 0.53 0.83 0.76 0.70 0.68
3.3 1.53 1.97 1.64 2.15 1.80 1.99 2.11 2.41 2.77 2.02 0.55 1.05 0.81 0.86 0.82
3.4 1.74 2.29 1.93 2.47 1.94 2.13 1.69 2.05 2.32 1.66 0.92 1.26 1.12 1.08 1.01
3.5 1.79 2.27 1.95 2.48 1.83 1.94 1.94 2.32 2.37 1.69 0.99 1.32 1.22 1.20 1.20
3.6 1.82 2.33 1.92 2.56 1.96 2.16 1.88 2.19 2.70 1.92 0.65 1.07 0.91 0.82 0.82
3.7 1.82 2.38 1.90 2.51 2.05 2.17 2.20 2.54 2.81 2.06 0.71 1.18 0.96 0.87 0.83
3.8 1.80 2.33 2.01 2.63 2.09 2.25 2.21 2.63 2.67 1.87 0.78 1.12 1.04 0.98 1.00
3.9 2.09 2.68 2.23 2.92 2.20 2.34 2.30 2.74 3.10 2.21 0.89 1.18 1.28 1.21 1.23
4.0 1.93 2.54 2.18 2.93 2.27 2.48 2.28 2.69 3.02 2.08 0.84 1.27 1.10 1.03 1.05
4.1 2.01 2.61 2.28 2.92 2.24 2.35 2.55 3.00 2.95 2.16 0.79 1.33 1.12 1.11 1.13
4.2 2.13 2.80 2.15 2.72 2.40 2.65 2.33 2.74 2.82 2.05 0.91 1.22 1.16 1.09 1.10
4.3 2.00 2.69 2.88 3.42 2.26 2.57 2.51 2.93 3.58 2.75 1.47 1.94 1.66 1.78 1.73
4.4 2.21 2.86 2.30 2.99 2.32 2.57 2.50 2.99 3.07 2.26 0.91 1.33 1.15 1.08 1.05
4.5 2.29 3.03 2.66 3.38 2.29 2.44 2.90 3.37 3.96 3.13 1.38 2.02 1.60 1.63 1.59
4.6 2.18 2.91 2.64 3.23 2.59 2.74 2.83 3.39 3.19 2.40 0.92 1.33 1.20 1.18 1.18
4.7 2.39 3.12 2.21 2.97 2.64 2.77 2.52 3.07 3.17 2.30 1.96 2.21 2.05 2.00 2.01
4.8 2.34 3.14 2.53 3.25 2.58 2.92 2.87 3.42 3.87 2.90 0.93 1.63 1.25 1.27 1.23
4.9 2.47 3.20 2.64 3.48 2.81 2.97 2.87 3.46 3.49 2.53 1.03 1.53 1.49 1.37 1.42
5.0 2.30 3.04 2.50 3.28 2.73 2.85 2.89 3.36 3.56 2.64 0.87 1.41 1.23 1.19 1.19

Avgs 1.23 1.62 1.34 1.73 1.38 1.50 1.44 1.70 1.84 1.34 0.56 0.81 0.73 0.70 0.69

(b) Reprojection based method

Table 4. Results for all the σ’s values for setup #1.
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