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Abstract

In this paper, we present a novel neural network using multi scale feature fusion
at various scales for accurate and efficient semantic image segmentation. We
used ResNet based feature extractor, dilated convolutional layers in downsampling
part, atrous convolutional layers in the upsampling part and used concat operation
to merge them. A new attention module is proposed to encode more contextual
information and enhance the receptive field of the network. We present an in depth
theoretical analysis of our network with training and optimization details. Our
network was trained and tested on the Camvid dataset and Cityscapes dataset using
mean accuracy per class and Intersection Over Union (IOU) as the evaluation
metrics. Our model outperforms previous state of the art methods on semantic
segmentation achieving mean IOU value of 74.12 while running at >100 FPS.

1 Introduction

Convolutional neural networks has seen a lot of success in tasks involving classification, detection and
segmentation. These include bounding box object detection, pose estimation, keypoint prediction and
image segmentation. CNN-based neural networks advances, such as dropout (Srivastava et al., 2014)
and batch normalization (Ioffe and Szegedy, 2015) have helped avoid some of the common challenges
faced earlier like the curse of dimensionality and vanishing gradient problem while training neural
networks.

Convolutional networks are now leading many computer vision tasks, including image classification
(Deng et al., 2009), object detection (Girshick et al., 2014), (Zhu et al., 2015) and (Liu and He,
2015) and semantic image segmentation (Chen et al., 2014), (Li et al., 2014) and (Zhao et al., 2017).
Semantic segmentation is also known as scene parsing, which aims to classify each and every pixel
present in the image. It is one of the most challenging and important tasks in computer vision. The
famous fully convolutional network (FCN) (Long et al., 2015) for semantic segmentation is based on
VGG-Net (Simonyan and Zisserman, 2014), which is trained on the famous ImageNet dataset (Deng
et al., 2009).

Segmentation task is different from classification task because it requires predicting a class for each
and every pixel of the input image, instead of only discrete classes for the whole input images. In
order to predict what is present in the image for each and every pixel, segmentation needs to find
not only what is in the input image, but also where it is. It has a number of potential applications
in the fields of autonomous driving, video surveillance, medical imaging etc. This is a challenging
problem as there is often a tradeoff between accuracy and speed. Since the model eventually needs to
be deployed in real world setting, hence both accuracy and speed should be high.
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2 Related Work

State-of-the-art methods on semantic segmentation have heavily relied on CNN models trained on
large labeled datasets. Fully convolutional networks (FCN) trained pixels-to-pixels using skip con-
nections that combines semantic information from a deep, coarse layer with appearance information
from a shallow, fine layer to produce accurate and detailed segmentations. Convolution layers with a
kernel size of 1×1 take the place of fully connected layers, followed by unpooling layers to recover
the spatial resolution of the feature maps. The success of FCN is due to the great improvements
in performance and because it showed that CNN can efficiently learn how to make dense class
predictions for semantic segmentation.

After FCN, recently proposed models are mainly designed by (1) bringing out novel decoder structure
of the networks (Girshick et al., 2014) and (Badrinarayanan et al., 2017); (2) adopting more efficient
basic classification models (Liu et al., 2015) and (Bittel et al., 2015); (3) adding integrating context
knowledge with some independent modules (Zhu et al., 2015) and (Ronneberger et al., 2015). SegNet
(Badrinarayanan et al., 2017) used an alternative decoder variant, in which an encoder decoder
convolution path was proposed. Another deconvolution network was used in (Noh et al., 2015) with a
similar decoder path as SegNet, but they adopted deconvolution modules to implement upsampling
operations.

(Ronneberger et al., 2015) added a 2×2 up-convolution layer, with a concatenation with corresponding
pooling layer in U-Net. FCCN (Lin et al., 2016) could also be regarded as an alternative decoder
structure. (Chen et al., 2018) used atrous spatial pyramid pooling to embed contextual information at
various scales which consist of parallel dilated convolutions with different dilation rates. (Zhao et al.,
2017) used multi-scale contextual information by combining feature maps generated using different
dilated convolutions and pooling operations.

(Lin et al., 2017) proposed to fuse mid-level and high-level semantic features using an encoder
decoder architecture. (Paszke et al., 2016) reduced the number of downsampling times to get an
extremely tight fusion structure. (Zhao et al., 2018) uses multi-scale images as input and a cascade
network to raise efficiency. (Li et al., 2019) uses Subnetwork Aggregation and Sub-stage Aggregation
to achieve very high FPS and high accuracy using modified Xception bottleneck. (Yu et al., 2018a)
uses spatial path to recover spatial information and to implement real-time calculation.

We summarize our main contributions as follows:

• We propose a new model architecture which used dilated convolutional layers in downsampling
part and atrous convolutional layers in upsampling at multiple scales.

• Concat operator is used for merging the feature maps for context encoding. We also propose
our very own attention module which encodes channel wise information to model more contextual
information and enlarge the receptive field.

• We present the layer wise details, optimization and ablation study of our neural network.

• On evaluating our network using Camvid dataset and Cityscapes dataset using mean accuracy
per class and IOU as evaluation metrics, our model outperforms previous state of the art model
architectures while running at > 100 FPS.

3 Background

3.1 Feature Fusion

Feature fusion have been used successfully in semantic segmentation networks. As the increase of
the depth of network, the fusion and reuse of features show significant advantages. The upsampling
in decoder recovers the spatial information from the downsampling in encoder. (Lin et al., 2017)
proposes a refine network module to finely fuse features. (Li et al., 2019) proposes two feature fusion
methods (Sub-network Aggregation and Substage Aggregation) to enhance feature extraction capabil-
ities. Using feature fusion, the interaction between different layers in terms of spatial information
and semantic information improves thus obtaining better results. A depthwise separable convolution
layer with kernel size k = 3 is used for feature fusion.
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3.2 Context Encoding

(Hu et al., 2018) used channel wise attention to take into account channel wise information. This
work achieved state of the art results in image classification. The challenge in semantic segmentation
is to enhance the receptive field and the classification ability. The goal is to extract more contextual
information using multi scale feature maps. We present our own attention based module which
handles the aforementioned problem well.

3.3 Attention Modules

The advantage of using attention based models are that they are very effective in modelling long
range dependencies. (Vaswani et al., 2017) first used self attention module for machine translation.
(Wang et al., 2018b) used attention module for images and video using non local operation. In this
work, we use attention module for more efficient image segmentation by taking into account more
contextual information thus enlarging the receptive field.

4 Proposed Method

4.1 Dataset

1. Camvid dataset: The Cambridge-driving Labeled Video Database (CamVid) is a collection of
videos with object class semantic labels, complete with metadata. The database provides ground truth
labels that associate each pixel with one of 32 classes. The images are of size 360×480. The original
images are taken as ground truth. For any algorithm, the metrics are always evaluated in comparison
to the ground truth data. The ground truth information is provided in the dataset for the training and
test set. A sample image from dataset is shown in Figure 1:

Figure 1: Sample image from dataset.

For semantic segmentation problems, the ground truth includes the image, the classes of the objects
in it and a segmentation mask for each and every object present in a particular image. Since there is a
lot of overlaps in between the labels, hence for the sake of convenience we have gone with 12 labels
in this work. These images are shown in binary format for each label separately in Figure 2:

Figure 2: Sample image converted to binary class mask.

The classes chosen from the dataset are Sky, Building, Pole, Road, Pavement, Tree, SignSymbol,
Fence, Car, Pedestrian and Bicyclist.
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2. Cityscapes dataset: This dataset contains urban street scenes images from 50 different cities. The
images are divided into 5,000 finely annotated images and 19,998 coarsely annotated images. The
total number of classes in the dataset is 30, but we have only used 19 classes for both training and
evaluation. The images in training, validation and test set are 2,975, 500, 1,525 respectively.

4.2 Network Architecture

We split the dataset into 2 parts with 85 percent images in the training set and 15 percent images
in the test set. The loss function used is categorical cross entropy. We used dilated convolutions in
downsampling part to reduce the feature maps and atrous convolutions in upsampling part to recover
back the features. Concat operation is used to merge the features at different scales thus encoding
more contextual information. We use our very own designed attention module for enlarging the
receptive field and encode more contextual information. The attention module used in this work is
shown in Figure 3:

Figure 3: Illustration of our attention module. Here x denotes matrix multiplication and + denotes
element wise sum. C, W and H respectively denotes channel, width and height of a layer respectively.

For the dilated convolutional layer we didn’t use any padding, used 3×3 filter and use relu as the
activation function. For the max pooling layer, we used 2×2 filters and strides of 2×2. ResNet is
used as the backbone and the feature extractor. In the upsampling path we used atrous convolutions
layers with 4×4 kernel size and strides of 4×4. Softmax is used as the activation function in the last
layer to output discrete probabilities of whether an object is present in a particular pixel location or
not. We used Adam as the optimizer for training our network. The network architecture used in this
work is shown in Figure 4:

Figure 4: Illustration of our neural network architecture. Here dil-conv represents dilated convolutions
and atr-conv represents atrous convolutions. attention1 and attention2 are the two channel wise
attention modules used in this work.
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4.3 Optimization

Suppose given a local feature C, we feed it into a convolution layers to generate two new feature
maps B and C respectively. After that we perform a matrix multiplication between the transpose of
A and B, and apply a softmax layer to calculate the spatial attention map as shown in Equation 1:

sji =
exp (Ai ·Bj)∑N
i=1 exp (Ai ·Bj)

(1)

We then perform a matrix multiplication between the transpose of X and A and reshape their results.
Then we multiply the result by a scale parameter β and perform an element-wise sum operation with
A to obtain the final output as shown in Equation 2:

Ej = α

N∑
i=1

(sjiDi) + Cj (2)

The Equation 2 shows that the resultant feature of each channel is a weighted sum of the features of
all channels and models the semantic dependencies between feature maps at various scales. For a
single backbone φn(x), a stage process, the stage in the previous backbone network and sub-stage
aggregation method can be formulated as shown in Equation 3:

xin =

{
xi−1n + φin

(
xi−1n

)[
xi−1n , xin−1

]
+ φin

([
xi−1n , xin−1

]) (3)

Here i refers to the index of the stage.

4.4 Loss Functions

The loss function used is Softmax loss as shown in Equation 4:

Loss =
1

N

∑
i

− log

(
epi∑
j e

pj

)
(4)

where p is the output prediction of the network, i and j are stages in the network.

4.5 Ablation Studies

The effect of the number of pooling layers on Intersection Over Union(IOU) using Camvid dataset is
shown in Table 1. As can be noted, using more pooling layers increases IOU but it’s effect is not
consistent.

Table 1: Results on Camvid dataset with different numbers of pooling in each stage of the backbone,
“×N” means the number of pooling.

Number of pooling mIoU(%)

Pooling ×0 70.4
Pooling ×1 71.3
Pooling ×2 73.8
Pooling ×3 73.4
Pooling ×4 74.9
Pooling ×5 75.6

The effect of varying the number of branches and fusion methods used in model architecture on IOU
using Cityscapes dataset is shown in Table 2. Using more number of branches and concat fusion
instead of not using one increases the IOU.

We investigate the effect of each component in our proposed network. We use VGG16 and ResNet50
as the base network and evaluate our method on the Camvid validation dataset as shown in Table 3:
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Table 2: Results on Cityscapes dataset with with different number of branches and fusion methods.

Number of branches Fusion methods mIoU(%)

1 None 74.4
1 concat 75.8
2 None 75.7
2 concat 77.5

Table 3: Accuracy and parameter analysis of our baseline model: VGG16 and ResNet50 on Camvid
validation dataset. Here we use FCN-32s as the base structure. FLOPS are estimated for input of size
3×640×360.

Method BaseModel FLOPS Parameters Mean IOU(%)

FCN-32s VGG16 47.5M 1.4M 61.28
FCN-32s ResNet50 12.5G 22.5M 61.73

4.6 Implementation Details

The initial learning rate was set to 0.001 in all our experiments. Momentum and weight decay
coefficients are set to 0.9 and 0.0001 respectively. Batch size of 8 was chosen for all our experiments.
Data augmentation operations like shearing, cropping and flipping was performed to artificially
increase the dataset size.

5 Results

In this section we present the results of our work and compare the results we achieved with previous
state of the art. The model is trained for 40 epochs and reaches a training mean pixel accuracy of 93
percent and validation mean pixel accuracy of 88 percent. The loss and pixel wise accuracy (both
training and test) are plotted as a function of epochs in Figure 5:

Figure 5: a) Loss vs epochs b) Accuracy vs epochs

For evaluating the performance of our model architecture, we used two evaluation metrics:

1. Mean Accuracy per-class - This metric outputs the class wise prediction accuracy per pixel.

2. Mean IOU - It is a segmentation performance parameter that measures the overlap between two
objects by calculating the ratio of intersection and union with ground truth masks. This metric is also
known as Jaccard Index.

The class wise IOU values were calculated using Equation 5.
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IoU =
TP

(TP + FP + FN)
(5)

Where TP denotes true positive, FP denotes false positive, FN denotes false negative and IOU
denotes Intersection over union value.

We present the class wise IOU values for all the twelve classes present using CamVid dataset in Table
4.

Table 4: IOU values for all classes

Class 1 2 3 4 5 6 7 8 9 10 11 12

IOU 0.923 0.905 0.232 0.947 0.831 0.344 0.569 0.792 0.283 0.261 0.457 0.527

The effect of using multiple blocks, FLOPS and parameters on IOU using Cityscapes dataset is
shown in Table 5. Here FLOPS and parameters are a measure of computation required by our model
architecture.

Table 5: Detailed performance comparison of our proposed aggregation strategy on Cityscapes
dataset. ’×N’ means that we replicate N backbones to implement feature aggregation

Model FLOPs(G) Params(M) mIoU(%)

Backbone A 1.4 2.2 64.7
Backbone A ×2 2.3 4.5 65.3
Backbone A ×3 2.7 7.4 62.1
Backbone A ×4 2.9 10.6 57.8
Backbone B 0.8 1.4 59.5
Backbone B ×2 1.2 3.3 61.5
Backbone B ×3 1.4 4.7 56.4
Backbone B ×4 1.5 6.1 52.7

A comparative analysis using CamVid dataset achieved by previous state of the art model architectures
vs ours is shown in Table 6.

Table 6: Accuracy and speed analysis on CamVid test dataset. Ours is 512×768 input and others are
768×1024 input.

Model Frame(fps) mIoU(%)

DPN (Yu et al., 2018b) 1.2 60.1
DeepLab (Chen et al., 2017) 4.9 61.6
ENet (Paszke et al., 2016) - 51.3
ICNet (Zhao et al., 2018) 27.8 67.1
BiSeNet1 (Yu et al., 2018a) - 65.6
BiSeNet2 (Yu et al., 2018a) - 68.7
DFANet A (Li et al., 2019) 120 64.7
DFANet B (Li et al., 2019) 160 59.3
SwiftNet pyr (Orsic et al., 2019) - 72.85
SwiftNet (Orsic et al., 2019) - 73.86
Ours 124 74.12

A comparative analysis using Cityscapes dataset achieved by previous state of the art model architec-
tures vs ours is shown in Table 7.

The results comparing the predicted segmentations and ground truth segmentation using CamVid
dataset is shown in Fig 6.
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Table 7: Accuracy and speed analysis on Cityscapes test dataset.

Model InputSize FLOPs Params Time(ms) Frame(fps) mIoU(%)

PSPNet (Zhao et al., 2017) 713 × 713 412.2G 250.8M 1288 0.78 81.2
DeepLab (Chen et al., 2017) 512 × 1024 457.8G 262.1M 4000 0.25 63.1
SegNet (Badrinarayanan et al., 2017) 640 × 360 286G 29.5M 16 16.7 57
ENet (Paszke et al., 2016) 640 × 360 3.8G 0.4M 7 135.4 57
CRF-RNN (Zheng et al., 2015) 512 × 1024 - - 700 1.4 62.5
FCN-8S (Long et al., 2015) 512 × 1024 136.2G - 500 2 63.1
FRRN (Pohlen et al., 2017) 512 × 1024 235G - 469 0.25 71.8
ICNet (Zhao et al., 2018) 1024 × 2048 28.3G 26.5M 33 30.3 69.5
BiSeNet1 (Yu et al., 2018a) 768 × 1536 14.8G 5.8M 13 72.3 68.4
BiSeNet2 (Yu et al., 2018a) 768 × 1536 55.3G 49M 21 45.7 74.7
DFANet A (Li et al., 2019) 1024 × 1024 3.4G 7.8M 10 100 71.3
DFANet B (Li et al., 2019) 1024 × 1024 2.1G 4.8M 8 120 67.1
Ours 1024 × 1024 1.8G 5.5M 6 134 72.4

Figure 6: Results using CamVid dataset. First column: input image from dataset, second column:
predicted segmentation from our network and third column: ground truth segmentation.

6 Conclusions

In this paper, we proposed a semantic segmentation network using multi scale attention feature maps
and validated its performance on Camvid dataset and Cityscapes dataset. We used a downsampling
and upsampling structure with dilated and atrous convolutional layers respectively with combinations
between corresponding pooling and unpooling layers. We also propose our own attention module
to enlarge the receptive field and encode more contextual information. Multi scale feature maps are
merged using concat operator for encoding more contextual information. We present loss function,
optimization details, ablation studies and evaluation metrics used. Our network achieves mean IOU
value of 74.12 which is better than the previous state of the art on semantic segmentation while
running at >100 FPS.
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