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Abstract

We present a novel approach for unsupervised road seg-
mentation in adverse weather conditions such as rain or
fog. This includes a new algorithm for source-free domain
adaptation (SFDA) using self-supervised learning. More-
over, our approach uses several techniques to address vari-
ous challenges in SFDA and improve performance, includ-
ing online generation of pseudo-labels and self-attention as
well as use of curriculum learning, entropy minimization
and model distillation. We have evaluated the performance
on 6 datasets corresponding to real and synthetic adverse
weather conditions. Our method outperforms all prior
works on unsupervised road segmentation and SFDA by at
least 10.26%, and improves the training time by 18−180×.
Moreover, our self-supervised algorithm exhibits similar
accuracy performance in terms of mIOU score as compared
to prior supervised methods.

1. Introduction
Research in autonomous driving continues to advance

in terms of improving the perception capabilities of self-
driving cars for greater safety. This includes detecting both
static and dynamic obstacles such as pedestrians [16], track-
ing and predicting the trajectories of other vehicles [4, 7,
6, 5], and scene segmentation [18, 62]. Immense progress
along these lines has led to the deployment of level 2 and
almost level 3 autonomous vehicles (AVs) in urban traf-
fic environments [13]. However, these advances in percep-
tion technology have been primarily designed to work well
in safe and clear weather conditions. Driving in adverse
weather and lighting conditions such as snow, rain, or fog is
challenging not just for autonomous vehicles but even for
humans. These conditions result in a degradation in ac-
curacy of perception techniques including road segmenta-
tion [43, 42]. Consequently, AVs are unable to distinguish
drivable regions of the road from the non-driveable region
(which may be affected by snow, rain, or fog), thereby in-
creasing the likelihood of road accidents [36]. In this pa-

Figure 1: We highlight the results generated by SS-SFDA on
night [42] and fog benchmarks [43], compared to the baseline
source model pre-trained on clear weather CityScapes. The pur-
ple regions (right) denote the segmented road pixels. The over-
all accuracy of our self-supervised algorithm in terms of mIoU is
(88− 96%) of supervised methods.

per, we address the problem of road segmentation in adverse
weather conditions.

The road segmentation [17, 48] problem corresponds to
identifying the pixels in an RGB image or video that be-
long to the ‘road’ class. While general models designed for
semantic segmentation in computer vision can be directly
used for road segmentation, they suffer from the inability
to capture semantic relationships between different objects
due to the lack of unique labels for each class. The use of
self-attention techniques [18, 60] can mitigate this issue by
capturing long-range dependencies.

However, one major challenge in road segmentation in
adverse weather is the lack of ground-truth annotations
for road pixels. A common approach in deep learning
for handling lack of training data is domain adaptation
(DA) [22, 52]. However, DA-based methods assume ac-
cess to source datasets (clear weather dataset in our con-
text) at all times which can be prohibitive in terms of stor-
age, memory, data corruption and privacy concerns. Re-
cently, [26, 37] have proposed source-free domain adap-
tation (SFDA) in which deep neural networks (DNNs) do
not require access to the source dataset during the adap-
tation stage; instead, DNNs are pre-trained on a source
dataset (clear weather dataset) and the pre-trained model is
directly used to adapt to the unlabeled target domain (ad-
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verse weather dataset).
Current methods for SFDA are used for image classifi-

cation [28, 24, 29, 56] and may not work well for semantic
segmentation due to the inherent differences between the
classification and segmentation tasks. Moreover, many cur-
rent SFDA methods use GANs to produce a “copy” of the
original source domain distribution. In addition to being
computationally intensive due to the difficulty in training
GANs, image generation for segmentation requires GANs
to capture contextual information and semantic relation-
ships between multiple objects and the background, which
can be complicated in road scenes. As a result, prior SFDA
techniques have not been used for road segmentation.

1.1. Main Contributions
We present a new approach for road segmentation in

adverse weather conditions. Our approach is based on a
novel algorithm for SFDA using self-supervised learning.
We initialize our model with an auto-encoder baseline net-
work using self-attention to generate a pre-trained model
on the clear weather source dataset. Using self-attention
improves the overall model by capturing long-range depen-
dencies within the image (Section 3.1). Our novel contribu-
tions include:

1. We present a novel two-step self-supervised SFDA ap-
proach called SS-SFDA. In the first step, our method
uses entropy minimization to enrich the noisy pseudo-
labels generated by the pre-trained auto-encoder. In
the second step, we use a novel self-training method
that generates pseudo labels in an online manner, as
opposed to iterative self-training use by prior meth-
ods (Section 3.2). We use curriculum learning to im-
plement these two steps. This results in the following
benefits compared to prior GAN-based approaches:

• SS-SFDA directly exploits the pre-trained model
and trains via curriculum learning to progres-
sively bridge the domain gap between the pre-
trained source domain and target domain and
achieve faster training times.

• Our online self-training scheme overcomes the
saturation issues.

2. For heterogeneous adverse weather datasets, we pro-
pose a method that extends SS-SFDA by leveraging a
few labeled images from the target domain to improve
the accuracy using model distillation (Section 3.3).

We have evaluated our approach on 6 datasets corre-
sponding to real and synthetic adverse weather conditions.
Overall, our mIoU score is 88 − 96% of prior supervised
methods. We also improve the training time over prior
SFDA approaches by 18−180×. Finally, our improvement
in terms of mIoU over the best SFDA approach is 10.26%
on real adverse weather data.

2. Related Work
We discuss recent work related to road segmentation,

domain adaptation and source-free domain adaptation, and
self-supervised learning.

2.1. Road Segmentation
Research in deep learning for semantic segmenta-

tion [34, 57, 8, 9, 62, 18, 49] has paved the way for segmen-
tation in urban traffic scenes like CityScapes [12]. These
methods have been extended for supervised road segmenta-
tion [54, 64, 17, 48]. Our approach based on self-supervised
learning is complimentary to these methods.

2.2. Domain Adaptation and Source Free Domain
Adaptation

Traditional domain adaptation [23, 22, 45, 53, 50, 10]
methods have achieved remarkable success in adapting
models from one domain to another for clear weather con-
ditions. However, these methods need access to the source
data. Many domain specific solutions have been proposed
for adverse weather conditions, including specific solutions
for driving in rain, fog, etc. [40, 36, 43, 14, 44, 39] In con-
trast, we propose a generic method that neither relies on
specific details from each domain, nor requires access to
source data during the adaptation stage.

In source-image free domain adaptation (SFDA), a deep
neural network (DNN) pre-trained on a source dataset is
required to directly make predictions on the target domain
dataset in an unsupervised manner. This approach has been
primarily used for image classification tasks. In SFDA, gen-
erative approaches [28, 24, 29, 56, 31] are used to either
emulate the source data by using the feature representa-
tions of the pre-trained model or create a negative source
dataset during the pre-training stage. Non-generative ap-
proaches [26, 55, 33, 25] rely on computing adaptive class
specific prototypes, and progressively learn on the target
images. While generative approaches work well for classi-
fication tasks, they have not been effective for urban scene
segmentation. This is because segmentation, being a pixel
level task, requires the network to encode context, inter-
class semantic relations, structure, and intricate bound-
aries [15, 59, 63]. In addition, training a generator for a
complex segmentation task can lead to memory and com-
putational overheads, and thereby adds to the difficulty of
training GANs. While non-generative classification meth-
ods are easier to adapt for segmentation, the computation
of prototypes results in similar issues due to the inherent
differences between classification and segmentation tasks.
Bateson et al. [1] explored SFDA in the context of medi-
cal segmentation and minimized entropy by the incorpora-
tion of class priors [1]. However, preservation of class pri-
ors does not extend well to urban road scenes because the
number of road pixels in each image in the dataset can vary



Figure 2: Our Approach: In stage 1, our model is pre-trained on a clear weather source dataset. In stage 2, our model is initialized with
the pre-trained model from stage 1 and trained using our self-supervised algorithm, SS-SFDA, on the unlabeled adverse weather dataset.
For heterogeneous weather datasets, we perform additional refinement steps based on model distillation (stage 3).

quite drastically. In contrast, we present a new method for
SFDA using self-supervised learning that overcomes issues
related to training and convergence that are freq generative
processes. Our method is designed to be complimentary to
GAN-based SFDA.

2.2.1 Self-Supervised Learning

Self-supervised learning has been used in semi-supervised
learning [32, 3] and domain adaptation [46]. Most self-
supervised learning methods are centered around the ideas
of pseudo labeling [30, 11, 35, 65, 27], entropy minimiza-
tion [52, 19], and curriculum learning [61]. Domain adap-
tation methods have access to source domain images. In
contrast, we propose a novel self-training routine for SFDA
and a completely unsupervised problem setting, where we
have access to only a pre-trained model, and target domain
images.

3. Our Approach
In this section, we present our approach for source-image

free domain adaptive (SFDA) road segmentation based on
self-supervised learning. Our approach consists of three
main components:

1. Pre-training using the self-attention auto-encoder:
During this stage, we train the self-attention auto-
encoder architecture on a clear weather dataset. This
generates a model that encapsulates knowledge about
road pixels.

2. SS-SFDA : A Self-Supervised learning algorithm
for SFDA: During this stage, we initialize the model
using the pre-trained model from the previous step
and the target domain images. We use a combina-
tion of curriculum learning and entropy minimization
to bridge the domain gap between the pseudo-labels
and the target domain images. We first sort the target
domain images in the increasing order of entropy, and

create mini-batches of the dataset. The next task is to
execute the following steps on each mini-batch to pro-
gressively self-train the model:

• Optimize the model with an entropy minimiza-
tion constraint to bridge the domain gap.

• Self-train the model by generating enriched
pseudo-labels in an online manner.

3. Few-Image Regularization: For heterogeneous
weather datasets, we use a very small number of la-
beled images (5− 10) from the target domain to boost
the performance of SS-SFDA via model distillation.
(Section 3.3)

3.1. Pre-Training Baselines Using Self-Attention
The first step in SFDA is to pre-train a DNN on the

source dataset for the task of road segmentation. In our
case, the source dataset corresponds to traffic videos with
clear weather conditions. While networks developed for se-
mantic segmentation [49, 62, 8, 9] can be directly used for
road segmentation, there is loss of context i.e. the model
is unable to capture relationships between various semantic
classes in the images like cars and roads, pedestrians and
roads, sky and roads, etc. The loss of such context can lead
to local ambiguities in classifying pixels [15, 59, 63].

Self-attention benefits from its capability to capture
long-range dependencies between various regions of the im-
age. Thus, using self-attention in road segmentation can al-
low neural networks to alleviate the degradation in perfor-
mance due to loss of context. We use a simple autoencoder
self-attention architecture that can be combined with any
“off-the-shelf” segmentation network. We begin by taking
an input RGB image I ∈ Rw×h×3, which is passed through
an encoder E to generate feature maps Fen (Fen = E(I)).
Next, we apply self-attention SA [60] on these features
maps to obtain attention maps Fsa (same dimensions as
Fen). These feature maps encapsulate the semantic rela-
tionships between various parts of the image. These fea-



ture maps Fsa are used to learn the final predictions Pout

∈ Rw′×h′×1, which corresponds to the probability that each
pixel is classified as ‘road’. In the supervised setting where
ground-truth labels Y ∈ Zw′×h′×1 are available, the net-
work is optimized with a binary cross-entropy loss function,

LCE = −
∑
h,w

Y log(Pout) + (1− Y) log(1− Pout). (1)

We use this pre-trained model for SFDA on the adverse
weather datasets [43, 42, 58, 21, 51].

3.2. SS-SFDA
In this section, we describe our two-step self-supervised

learning algorithm for unsupervised source-image free do-
main adaptive road segmentation in adverse weather condi-
tions. We use the pre-trained model from the previous step.
The pseudo-labels generated by the model are noisy lead-
ing to a domain gap between the pseudo-labels generated
by the pre-trained model (on the source dataset) and the tar-
get domain images. Thus, directly self-training using the
pseudo labels can hamper the performance of the model.
To counter this, we propose an entropy minimization step
(Section 3.2.1) which encourages the network to generate
more accurate pseudo labels.

In addition, to bridge the domain gap between the pre-
trained model and the target domain, we use curriculum
learning [2, 20] in which the DNN is allowed to train on
samples progressively in their increasing order of entropy of
predictions. Given a probability map P denoting the proba-
bility that pixels are classified as road pixels, the entropy is
computed as −ΣP × log(P ) This is because learning from
samples with low entropy (low rain, for example) yields
better pseudo labels on samples with higher entropy (high
rain, for example) [14, 61, 61]. We create mini-batches of
the dataset characterizing the difficulty of the images. For
datasets which provide labels on the intensity (light rain vs
heavy rain) of the weather condition, mini-batches can be
created directly. For other datasets, we sort the images in
increasing order of the entropy and then split them into m
(m ∼ 4 − 5, determined by hyperparameter tuning) equal
mini-batches. The model is self-trained on the mini-batches
in a sequential manner. For the first mini-batch, the model
is initialized with the pre-trained model from Section 3.1.
For subsequent mini-batches, our model is initialized with
weights obtained by training the network on the previous
mini-batch. For each mini-batch, the network is trained in
two stages, as described below:

3.2.1 Step 1: Bridging the Domain Gap via Entropy
Minimization

The pre-trained model from Section 3.1 has a low entropy
(i.e. high prediction probability or better generalization)

on images that are similar (for example, similar geogra-
phy, light rain, light fog) to source domain images [42]
and vice versa. Thus, initializing the network with these
pre-trained weights, followed by training by entropy mini-
mization [19, 41] allows the network to generate enriched
pseudo-labels. The inputs to the network are images from
the target domain. Let the predictions of the network be de-
noted by Pout ∈ Rw′×h′×1, corresponding to the probabil-
ity that each pixel is classified as ‘road’. The cost function
for entropy minimization is given by,

LEM = −
∑
∀pixels

Ph,w logPh,w, (2)

where Ph,w is the probability that a pixel belongs to a class
‘road’ at a given location, and −Ph,w log, Ph,w is the en-
tropy.

3.2.2 Step 2: Online Self-Training Using Enriched
Pseudo-Labels

The network trained in Step 1 generates enhanced pseudo
labels with high probability, and is thus a better representa-
tive of the target domain than the pre-trained source model
from Section 3.1. These enriched pseudo labels which can
be used to self-train the model further to improve perfor-
mance. A traditional method of self-training using pseudo-
labels is iterative [38] in which the network is trained to con-
vergence (validation loss less than a given threshold) over
multiple iterations. In each iteration, pseudo labels from the
trained model in the previous iteration are used to set up the
binary segmentation cost function. We show (Table 10) that
iterative self training does not lead to any improvement in
performance. This is because, the pre-training step, which
is imperative for acquiring initial knowledge about road pix-
els since the problem is unsupervised in the target domain,
causes the network to saturate quickly. Hence, we generate
the pseudo labels in an online manner, i.e. the pseudo labels
are generated from the network that is being trained. This
allows the network to self-train from the improved pseudo
labels as they are learnt.

The network in this stage is initialized with the weights
obtained in Step 1. The inputs to the network are images
from the target domain. Pseudo labels are generated in an
online fashion from the network being trained as follows,

Ypseudo =

{
1 if Ph,w ≥ τ,
0 otherwise,

where Ph,w is the probability that a pixel belongs to the
class ‘road’ at a given location and τ is a threshold. The
network is optimized with these pseudo-labels using a bi-
nary cross entropy loss term, (similar to Equation 1).



Dataset Syn./Real Weather

Rainy CityScapes [21] Syn Varying intensities (1mm - 200mm) of rain
Foggy CityScapes [21] Syn Varying intensities (750m - 30m) of fog

Foggy Zurich [43] Real Light and medium Fog
Dark Zurich [42] Real Twilight, Night
Raincouver [51] Real Rain, night

BDD [58] Real Snow, Fog, Rain, Night

Table 1: List of datasets: The second column categorizes the
datasets as synthetic or real and the third column describes the
images contained in the dataset.

3.3. Few-Image Fine-Tuning via Model Distillation
Some heterogeneous weather datasets like Raincouver

[51] and Berkeley Deep Drive (BDD) [58] contain a mix-
ture of adversities within the same image (for instance
night+rain in Raincouver, see Table 1). Furthermore, these
datasets are captured from different geographic conditions
(i.e., source and target datasets may be from different re-
gions). To make our model robust against such factors, we
use ground truth labels for a few images (order of 5 − 10
images) from the target dataset in a final refinement step
described below. In a nutshell, given a model trained on
the unlabeled target dataset using SS-SFDA, and k ≤ 10
labeled images from the target domain images, our goal is
to learn enhanced feature maps for the target domain in the
presence of adversarial factors such as mixtures of adversi-
ties and different geographical regions.

We empirically observe that directly fine-tuning the SS-
SFDA model on the k images is sub-optimal due to over-
fitting. To prevent overfitting, we propose a model dis-
tillation [31] regularizer. Let the weights of the SS-
SFDA model be denoted by ωSS-SFDA, and the weights of
the model being currently trained be denoted by ωfewIm. The
cost function for model distillation is given by,

Lmodel-distil = C(ωSS-SFDA, ωfewIm),

where C represents a distance function such as MSE dis-
tance or L1 distance. In our benchmarks, MSE distance
works best.

The network is first initialized with weights of the SS-
SFDA model. The model distillation term Lmodel-distil with
weight parameter λmodel-distil is applied in conjunction with
the binary cross entropy loss function (Equation 1) to con-
strain the probability predictions and ground-truth labels for
k images. The λmodel-distil term balances between extract-
ing domain specific characteristics from the k images (such
as mix of adverse weather, geographical features etc.) and
prevents the weights of the model from diverging from the
SS-SFDA weights (for better generalization). The overall
equation follows as,

Loverall = LCE + λmodel-distilLmodel-distil (3)

Model Acc.(%) (w/o. SA) Acc.(%) (w. SA)

DeepLabv2 [8] 89.59 90.54 (+0.95)
DeepLabv2 (E-1) [8] 87.50 90.78 (+3.28)
DeepLabv2 (E-2) [8] 88.13 88.62 (+0.49)

DRN-D-105 [57] 83.92 85.32 (+1.40)
DRN-D-38 [57] 90.69 91.44 (+0.75)

Table 2: Effect of self-attention: We show for various back-
bone architectures that self-attention improves the accuracy.
DeepLabv2 (E-1) and DeepLabv2 (E-2) denote the removal of 1
and 2 layers from DeepLab respectively. We select DRN-D-38
with self-attention (bolded) as the baseline for all further experi-
ments.

4. Experiments and Results
We use the CityScapes dataset as the clear weather

source domain. We conduct evaluation experiments on 6
datasets captured in adverse environmental conditions, de-
scribed in Table 1. We evaluate our model using four met-
rics: mean Intersection over Union (mIoU), Recall (or ac-
curacy), Precision, and F1 score. All our models are trained
using one NVIDIA GeForce GPU, and we implement the
model using the PyTorch framework. We will make all
code publicly available. The hyperparameters generalize
across our experiments on all datasets. For the segmenata-
tion model, we use the SGD optimizer with a learning rate
of 2.5e − 4, and momentum of 0.9 and weight decay of
0.0005. Dataset specific details are provided in the table be-
low. Images are downsampled (by a factor of 2, where nec-
essary) by bilinear sampling, and the corresponding ground-
truth labels are downsampled by nearest neighbour down-
sampling.

In this section, we highlight our main results which we
summarize as follows,

• The self-attention auto-encoder is comparable
(94.7% − 101.25% of second best SOTA mIoU) to
more complex and sophisticated architectures for road
segmentation (Tables 2 and 3).

• We empirically show that our method approximates
supervised learning-based models (88−96% of super-
vised mIoU) across all 6 datasets (Tables 4,4,6,7,8,9).

• We demonstrate an improvement of at least 10.26%
over prior work in SFDA (Table 10).

• We improve training time over prior SFDA approaches
by 18− 180×.

4.1. Analysing Pre-Trained Self-Attention-based
AutoEncoder

In this section, we analyse the performance of our self-
attention auto-encoder model (described in Section 3.1 and
benchmark its performance on various datasets in the su-
pervised setting. In Table 2 (I), we show that the usage
of self-attention within various conventional semantic seg-
mentation models to encode semantic relationships via cap-
turing long-range dependencies improves performance over



Intensity mIoU Recall Prec. F1

I. Synthetic Rain [21]

1mm 93.23 96.13 96.86 96.49
5mm 94.06 96.95 96.92 96.93
17mm 93.92 96.87 96.85 96.86
25mm 93.07 96.4 96.42 96.41
50mm 92.45 95.72 96.43 96.08
75mm 92.05 96.25 95.47 95.86
100mm 91.57 96.66 94.56 95.60
200mm 90.57 95.69 94.42 95.05

II. Synthetic Fog [21]

750m 95.53 97.46 97.97 97.71
375m 94.74 97.08 97.51 97.30
150m 92.72 95.71 96.74 96.22
75m 91.64 96.12 95.15 95.63
50m 90.59 94.97 95.16 95.06
40m 90.21 95.68 94.03 94.85
30m 89.00 94.33 94.02 94.18

III. Real datasets

Raincouver [51] 71.88 80.36 87.19 83.64
BDD [58] 89.19 92.86 95.76 94.29

IV. SOTA Comparisons

Dataset Method mIoU Recall F1

CityScapes

FCN [34] 89.90 95.70 94.68
CA [18] 88.93 94.05 94.14
BoT [47] 76.55 85.82 86.72

DeepLabv3 [9] 90.87 95.35 95.21
s-FCN-loc [54] 91.04 96.11 95.36
Zohourian [64] 86.34 96.76 92.44

RBA [48] 96.00 98.13 98.00
Ours 91.44 96.34 95.52

100mm Rain SNE-Seg [17] 90.80 96.80 95.80
Ours 91.57 96.66 95.60

100mm Rain SNE-Seg [17] 90.50 93.00 94.47
Ours 91.64 96.12 95.63

Table 3: Benchmarking and comparing the self-attention based
pre-trained model: We train our self-attention model from Sec-
tion 3.1 on various datasets in a supervised manner. These super-
vised numbers help us conduct a relative study of the performance
of SS-SFDA , which is unsupervised in the target domain. Addi-
tionally, we observe that our pre-trained model is comparable to
the state-of-the-art (Experiment IV). Best results are in bold fonts,
second best results are in blue).

the corresponding baseline. We use the DRN-D-38 model
[57] with self-attention in all further experiments. In Ta-
ble 3 (I,II,III), we benchmark the model on various weather
datasets in the supervised setting. We use these supervised
numbers in the following subsections to perform a compar-
ative study of our self-supervised model (See Figure 1 for a
summary). In Table 3 (IV), we show that the self-attention
autoencoder is comparable to the state-of-the-art on various
datasets.

4.2. Results on Synthetic Datasets: Rain and Fog
We perform three evaluation experiments. Experiment

A corresponds to testing the pre-trained CityScapes model
on varying intensities of rain and fog. Experiment B cor-
responds to results obtained by training SS-SFDA without
curriculum learning (i.e. by initializing with the CityScapes

Intensity Experiment mIoU Recall Prec. F1

I. Synthetic Rain

1 mm A 94.73 97.16 97.42 97.29
5 mm A 94.09 97.01 96.90 96.95

17 mm A 93.95 96.83 96.93 96.88
25 mm A 93.01 96.30 96.46 96.38
50mm A 89.82 93.71 95.58 94.64

75mm A 87.15 90.92 95.45 93.13
75mm B 88.08 93.94 93.38 93.66

100mm A 82.97 86.88 94.84 90.69
100mm B 86.67 92.88 92.84 92.86

200mm A 65.98 68.94 93.90 79.50
200mm B 80.25 86.96 91.22 89.04
200mm C 81.58 88.55 91.20 89.85

II. Synthetic Fog

750m A 94.90 96.68 98.09 97.38
375m A 92.71 94.60 97.88 96.21

150m A 85.55 87.57 97.38 92.21
150m B 89.74 94.59 94.59 94.59

75m A 70.81 72.51 96.79 82.9
75m B 80.67 83.01 96.62 89.30
75m C 87.48 92.99 93.65 93.32

50m A 57.29 58.92 95.39 72.85
50m B 71.64 73.69 96.24 83.47
50m C 85.47 90.75 93.63 92.16

40m A 46.27 48.45 91.12 63.27
40m B 52.62 53.94 95.57 68.96
40m C 83.65 89.19 93.09 91.10

30m A 35.04 38.05 81.59 51.90
30m B 22.24 22.92 88.29 36.39
30m C 80.82 85.96 93.11 89.39

Table 4: Results on synthetic rain and synthetic fog [21]: We
evaluate our model under three settings - A: (Baseline) Testing the
clear weather CityScapes model, B: SS-SFDA without curriculum
learning, C: SS-SFDA. We show that the CityScapes model gen-
eralizes well to light synthetic rain and fog, and its performance
degrades as the intensity of rain and fog increases, which is re-
stored by SS-SFDA. Comparison to supervised results: On syn-
thetic rain, SS-SFDA achieves 90.07%-90.8% and 92.53%-97.6%
of supervised mIoU and recall, respectively. On synthetic fog, SS-
SFDA achieves 90.8%-96.78% and 91.12%-98.82% of supervised
mIoU and recall respectively.

pre-trained model and training on higher intensities of rain
and fog directly), and experiment C corresponds to results
obtained by training SS-SFDA as proposed in Section 3.2
(i.e. with curriculum learning).
Results on Synthetic Rain: The results of SS-SFDA on
Synthetic Rainy CityScapes [21] are shown in Table 4
(I). For low intensities of rain, the performance of the
CityScapes model is more or less preserved (Table 3 (I)).
For higher intensities of rain, there is a degradation in
performance. We observe that the decrease in perfor-
mance is highest for 200mm rain, at 27.15%. For 75mm,
100mm, and 200mm, Experiment B imparts an improve-
ment of 1.03%, 4.45%, and 21.63% respectively over the
corresponding baselines. Experiment C leads to a cumula-



tive improvement of 23.64% over the corresponding base-
line. Furthermore, we demonstrate that the mIoU and re-
call of our SS-SFDA, which is completely unsupervised, is
90.07%−90.80% and 92.53%−97.60% of the counterpart
supervised mIoU.
Results on Synthetic Fog: The results of our SS-SFDA on
Synthetic Foggy CityScapes [21] are shown in Table 4II.
Similar to synthetic rain, the performance of the CityScapes
model on light fog is more or less preserved (Table 3 (II)).
For higher intensities of fog, there is a degradation in perfor-
mance. We notice that the degradation is very high for visi-
bility distances less than 150m, and is the highest at 60.6%
for 30m fog. Experiment B leads to an improvement of
4.89%, 13.9%, 25.04%, 13.7% on 150m, 75m, 50m, and
40m fog respectively. Direct application of the self-training
algorithm on 30m fog (without curriculum learning) de-
grades performance since the generalization of CityScapes
on 30m is very poor. Experiment C (Training SelfTr-Road
Seg by curriculum learning i.e. progressively from 150m
fog to 30m fog) cumulatively improves performance over
the baselines (Experiment A) by 23.54%, 28.18%, 80.78%
and 130.65% on 75m, 50m 40m, and 30m fog respectively.
Furthermore, we demonstrate that the mIoU and recall of
our SS-SFDA, which is completely unsupervised, is 90.8%-
96.78% and 91.12%-98.82% of the supervised mIoU.
Benefits of Curriculum Learning: On a given dataset, the
performance of our self-training algorithm depends heavily
on the generalization capabilities of the pre-trained model
used for initialization. Therefore, progressively initializ-
ing and training the model on increasing intensities of rain
and fog will lead to the best accuracies (Table 4, Table 4).
This implies that progressively training from low intensi-
ties to high intensities of rain and fog improves the qual-
ity of pseudo labels and prediction probabilities on high in-
tensities of rain and fog. In simpler terms, for the 100mm
rain dataset, a model trained on 75mm rain will work bet-
ter than the CityScapes clear weather model. Similarly, for
the 200mm rain dataset, a model trained on 100mm rain
will work better than the 75mm rain model, which in turn
will generalize better the CityScapes clear weather model.
A similar intuition can be drawn for synthetic fog too. We
validate this hypothesis in Table 5. The first and second
columns correspond to the datasets that the model is trained
and tested on respectively. We observe that curriculum
learning progressively improves performance, which results
in high quality pseudo labels with high confidence, a boon
for self-training.
Generalization trends: We observe that our self-
supervised SS-SFDA preserves the accuracy on the clear
weather source dataset, CityScapes. The mIoU and accu-
racy of the fog model on clear weather CityScapes are at
96.9% and 99.00% of the supervised CityScapes model, re-
spectively. The corresponding accuracy numbers for syn-

Training Testing mIoU Recall Prec. F1

CS 100mm rain 82.97 86.88 94.84 90.69
75mm rain 100mm rain 86.31 92.63 92.68 92.65

CS 200mm rain 65.98 68.94 93.9 79.5
75 mm rain 200mm rain 78.97 85.86 90.77 88.25

100 mm 200mm rain 79.61 86.27 91.15 88.65

CS 75m fog 70.81 72.51 96.79 82.9
150m fog 75m fog 83.82 87.44 95.28 91.19

CS 50m fog 57.29 58.92 95.39 72.85
150m fog 50m fog 76.07 79.49 94.64 86.41
75m fog 50m fog 84.38 89.44 93.71 91.52

CS 40m fog 46.27 48.45 91.12 63.27
150m fog 40m fog 65.6 69.98 91.28 79.22
75m fog 40m fog 78.17 83.51 92.43 87.74

CS 30m fog 35.04 38.05 81.59 51.9
150m fog 30m fog 53.61 59.62 84.17 69.8
75m fog 30m fog 68.49 75.21 88.45 81.3

Table 5: Curriculum learning improves performance by im-
proving the accuracy of pseudo labels: The first and second
columns correspond to the datasets our model is trained and tested,
respectively. Evaluating on 30m fog reveals that a model finetuned
to 75m fog performs better than the counterpart 150m fog model,
which in turn performs better than that the CityScapes model.
Similar conclusions can be drawn for other intensities of rain/fog.

Experiment mIoU Recall Prec. F1

I. Baseline: CityScapes pre-trained model

- 36.91 57.04 51.13 53.92

II. SS-SFDA on Light Fog; Init: CS model

Step 1 59.1 68.27 81.48 74.29
Step 2 60.9 69.09 83.7 75.7

III. SS-SFDA on Medium Fog; Init: Light fog model;

Step 1 73.34 76.22 95.1 84.62
Step 2 74.5 76.74 96.23 85.39

Table 6: Results on the real fog dataset, Foggy Zurich. We
observe that SS-SFDA improves mIoU by 101.84% over the cor-
responding baseline. We notice that training the model on light
fog followed by medium fog imparts the model with improvised
self-training abilities, the mIoU improves by 22.3%. Additionally,
the ablations on each minibatch indicate that the two step training
procedure in SS-SFDA is indeed helpful.

thetic rain are 98.11% and 98.72%, respectively.

4.3. Results on Real datasets: Foggy Zurich and
Dark Zurich

Analysis: Foggy Zurich The results are presented in Table
6. The pre-trained CityScapes model fails to generalize (Ta-
ble 6 (I)) to the real fog dataset due to the domain gap. In
accordance with the curriculum learning strategy, the self-
training algorithm is first applied on images with light fog,
and then on images with medium fog. We show results
for each of the two stages of SS-SFDA to demonstrate how
the two-step training procedure gradually improves perfor-
mance. Training with light fog improves the mIoU by
64.99% over the corresponding clear weather baseline. Ini-



(a) Fog 50m (b) Baseline (c) Ours (d) GT (e) Dark Zurich (f) Baseline (g) Ours (h) GT

(i) Rain 100mm (j) Baseline (k) Ours (l) GT (m) Foggy Zurich (n) Baseline (o) Ours (p) GT

Figure 3: Qualitative results. Our model generates results that closely resemble the ground-truth (GT) compared to the baseline CityScapes
pre-trained model. Purple indicates the segmented road region. More results can be found in the supplementary material.

Experiment mIoU Recall Prec. F1

I. Baseline: CityScapes pre-trained model

- 54.9 63.89 79.6 70.88

II. SS-SFDA on Twilight Zurich; Init: CS model

Step 1 69.11 74.75 90.15 81.74
Step 2 69.13 74.77 90.16 81.74

III. SS-SFDA on Night Zurich; Init: Twilight model

Step 1 71.75 76.22 92.44 83.55
Step 2 72.18 76.51 92.72 83.84

Table 7: Results on the night driving dataset, Dark Zurich. We
observe that SS-SFDA improves mIoU by 31.47. We observe
that our two-stage training routine within the curriculum learning
algorithm helps the network perform well.

Experiment mIoU Recall Prec. F1

I. SS-SFDA 52.42 93.96 54.25 68.78

II. Results on FewIm-FT (Section 3.3)

k=1 54.71 90.7 57.96 70.74
k=2 56.74 90.45 60.36 72.4

k=10 63.85 79.39 76.54 77.93

III. Effect of model distillation (MD); k=10

Without MD 57.08 70.99 74.45 72.67
With MD 63.85 79.39 76.54 77.93

Table 8: Results on Raincouver: SS-SFDA achieves 72.9% of
supervised mIoU. We demonstrate the effectiveness of FewIm-FT
(Section 3.3) over varying values of k in Experiment II. k = 10
results in an improvement of 21.8% over SS-SFDA , which is
88.82% of supervised mIoU. Additionally, we show the benefit
of model distillation in Experiment III.

tializing the model trained on light fog, and fine-tuning on
medium fog using SS-SFDA further improves the perfor-
mance by 22.3%, thus resulting in a cumulative improve-
ment of 101.84%. We do not show comparisons with su-
pervised methods due to a lack of labeled datasets.
Analysis-Dark Zurich: The results are presented in Table
7. Table 7 (I) shows that the CityScapes pre-trained model
does not work well on Dark Zurich. SS-SFDA first trains
on the twilight images, and then on the night images. Train-
ing with twilight images improves the mIoU by 24.91%

Experiment mIoU Recall Prec. F1

CS pre-trained model 70.28 74.49 92.54 82.54
SS-SFDA 75.29 83.3 88.7 85.92

FewIm-FT, k=10 83.05 93.06 88.53 90.74

Table 9: Results on BDD: SS-SFDA improves baseline mIoU by
7.12%. Experiments on FewIm-FT (Section 3.3) demonstrate an
improvement of 10.30% over SS-SFDA for k=10, which is 93.11%
of supervised mIoU.

Experiment Method Source Data mIoU %(sup)

I. Synthetic Dataset: 100 mm rain

Domain Adaptation ADVENT [52] X 85.96 93.87%
Domain Adaptation PrDA [26] X 86.12 94.04%

Self-training CBST [65] 78.64 85.87%
SFDA PrDA [26] 84.77 92.57%
SFDA Ours 86.67 94.64%

II. Heterogeneous Real Dataset: Berkeley Deep Drive

SFDA PrDA [26] 75.32 82.43%
SFDA Ours 83.05 93.11%

Table 10: Comparisons against the state-of-the-art: We adopt
the state-of-the-art methods in self-training, domain adaptation,
and SFDA classification to road segmentation, and present the re-
sults on Rain 100mm. We pick the best performing source-free
model and conduct experiments on BDD. We observe an improve-
ment of 10.26%.
over the corresponding clear weather baseline. Initializing
the model with the model trained on twilight images, and
fine-tuning on night images further improves performance
by 4.41%, thus resulting in a cumulative improvement of
31.47%. We do not show comparisons to supervised accu-
racies due to the unavailability of training labels.

4.4. Heterogeneous Real Datasets: Raincouver and
Berkeley Deep Drive

Raincouver [51] and Berkeley Deep Drive (BDD) [58]
are complex datasets with images containing a mix of
weather conditions in addition to scenes from different ge-
ographical regions. Raincouver consists of images captured
under rain during the night. BDD consists of images in
snow, fog, low light, glare, rain, etc. We show that SS-
SFDA benefits from supervised finetuning with just 5− 10
images using the procedure discussed in Section 3.3. The
models converge in 40 iterations, which takes 2 minutes to



train on one NVIDIA GeForce GPU with 11GB memory.
Analysis-Raincouver: The results are shown in Table 8.
SS-SFDA results in an mIoU of 52.42, which is 72.9% of
supervised mIoU. In Table 8 (II), we show the effectiveness
of the fine-tuning step. As k (number of supervised im-
ages used by the algorithm) increases, the performance of
the model improves. Using just 1 image (k = 1) results in
an improvement of 4.3% (over SS-SFDA). k = 10 achieves
88.82% of supervised mIoU. In Table 8 (III), we demon-
strate that model distillation improves mIoU by 11.86%.
Hyperparameter tuning on the model distillation hyperpa-
rameter λmodel-distil reveals that a value of 1.0 works best.
Analysis-Berkeley Deep Drive: The CityScapes model re-
sults in an mIoU of 70.28 (baseline). Training with SS-
SFDA improves performance by 7.12% over the baseline,
and is at 84.41% of supervised IoU. In Experiment III, we
pick k random images from the dataset and finetune the net-
work using the fine-tuning step. In concurrence with our
intuition, we observe that the performance improves as the
number of images increases. For k = 10, we demonstrate
an mIoU improvement of 10.30% over SS-SFDA, which is
93.11% of supervised accuracy.

4.5. Training Time and Convergence
The pre-training step helps our model converges in 1/6

epoch (the accuracies are similar over multiple random
runs), thus bringing the training time down to 15 minutes on
an NVIDIA GeForce GPU with 11GB memory. Generative
SFDA models [28] take 30 epochs to converge, while prior
work on self-training [65] and SFDA [26] applied (where
feasible) to road segmentation converge in 3 epochs. Thus,
we improve training time over prior SFDA approaches by
18− 180×.

4.6. Comparisons with Prior Work
We adapt (where feasible) the state-of-the-art method

in the following categories: self-supervised learning [65],
source-free DA[26], and DA [52] to road segmentation
for comparisons. Other methods like feature alignment
by class-wise prototype learning [33], generative methods
[28, 24, 29, 56, 31], and models that optimize source do-
main class priors [20] do not scale well to SFDA road seg-
mentation due to the problems highlighted in Section 2.2.
We performed evaluations using each of the methods on
synthetic rain (Table 10 (I)) and observe that our model out-
performs all prior methods. We finally train the best per-
forming SOTA model on BDD (Table 10 (II)) for compar-
isons on heterogeneous real datasets which carry the highest
level of difficulty. On BDD our method outperforms prior
methods by 10.26%.

5. Conclusion, Limitations, and Future Work
We propose a new method for road segmentation in

adverse weather conditions using a novel self-supervised
source-free domain adaptation approach. Through our eval-
uations on 6 real and synthetic datasets, we show that that
our self-supervised model that has access to only a pre-
trained clear weather model and unlabeled target images ex-
hibits accuracy that is comparable to completely supervised
models which have access to labels for all target domain
images. In addition, we exhibit benefits in terms of faster
training time and state-of-the-art performance.

There are a few limitations of our work. Currently, our
approach is designed for binary segmentation and cannot
perform multi-class segmentation. Extending the current
method to multi-class segmentation would generalize the
approach beyond road segmentation. Moreover, it would
interesting to investigate if SFDA via self-supervised learn-
ing could be extended to other computer vision problems
such as object recognition, image classification, scene un-
derstanding, etc.
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