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Abstract

Grounding language queries in videos aims at identify-
ing the time interval (or moment) semantically relevant to
a language query. The solution to this challenging task de-
mands understanding videos’ and queries’ semantic content
and the fine-grained reasoning about their multi-modal in-
teractions. Our key idea is to recast this challenge into an
algorithmic graph matching problem. Fueled by recent ad-
vances in Graph Neural Networks, we propose to leverage
Graph Convolutional Networks to model video and textual
information as well as their semantic alignment. To en-
able the mutual exchange of information across the modal-
ities, we design a novel Video-Language Graph Match-
ing Network (VLG-Net) to match video and query graphs.
Core ingredients include representation graphs built atop
video snippets and query tokens separately and used to
model intra-modality relationships. A Graph Matching
layer is adopted for cross-modal context modeling and
multi-modal fusion. Finally, moment candidates are cre-
ated using masked moment attention pooling by fusing the
moment’s enriched snippet features. We demonstrate su-
perior performance over state-of-the-art grounding meth-
ods on three widely used datasets for temporal localization
of moments in videos with language queries: ActivityNet-
Captions, TACoS, and DiDeMo.

1. Introduction
Temporal action understanding is at the forefront of com-

puter vision research. Hendricks et al. [2] and Gao et
al. [16] recently introduced the task of temporally ground-
ing language queries in videos as a generalization of the
temporal action localization task, aiming to overcome the
constraint of a predefined set of actions. This novel inter-
disciplinary task has gained momentum within the vision
and language communities for its relevance and possible
applications in video retrieval [13, 52, 75], video question
answering [21, 28], human-computer interaction [82], and
video storytelling [19]. Enabling this fine-grained match-
ing of language in videos can be adopted by professional
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Figure 1. Temporal video grounding task and multi-modality
interaction schemes. (a) A video grounding example showcasing
the importance of fine-grained semantic understanding and proper
context modeling. (b,c,d) Approaches for multi-modal interac-
tions. We regard moments and queries as sequences of snippets
and tokens respectively. We employ scheme (d), which allows for
fine alignment by snippet-token matching.

video content creators during the editing process. For ex-
ample, video editing often requires searching through many
hours of raw, unlabelled video content for specific interest-
ing highlights. Thus, the ability to retrieve such highlights
through textual queries could provide a faster experience.

Natural language grounding in videos inherits challenges
from temporal action localization such as context model-
ing and candidate moment generation [1]. Semantic con-
text is a fundamental cue necessary to boost the perfor-
mance of localization methods [11, 15, 30, 61, 72]. To en-
rich video representation [2] adopted global-context, which
is moment independent, leading to sub-optimal perfor-
mance. Conversely, a moment specific local-context, de-
fined as a moment’s temporal neighbourhood, was used
in [16, 17, 24, 35, 55]. In our view, non-local context merits
deeper analysis, since it has the potential to identify relevant
information not restricted to the temporal neighbourhood
within one data modality. For example, in Fig. 1(a), al-
though “First throw and fetch” is not in the temporal vicin-
ity of “Second throw and fetch”, it is still semantically re-
lated with the target moment, showcasing the importance of
non-local context modeling for video grounding.

Moreover and as shown by the example, the free-form
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nature of the language modality introduces additional chal-
lenges. A model must understand the semantic content of
both videos and language queries and reason about their
multi-modal interactions. Previous studies [16, 18, 55]
employ a cross-modal processing unit designed to jointly
model text and visual features through simple operations
such as element-wise addition, Hadamard product, and di-
rect concatenation of a moment’s representation and the
query embedding. A high-level overview of this multi-
modal interaction scheme is presented in Fig. 1(b). Instead,
recent works such as [44], only employ the Hadamard prod-
uct to fuse the multi-modal information at the query-snippet
level. This scheme, depicted in Fig. 1(c), can determine dif-
ferent correlations between a query and each video snippet,
allowing for a finer fusion with respect to Fig. 1(b).

Motivated by the work in [72], we propose to leverage
the representational capability of graphs to encode snippet-
snippet, token-snippet, and token-token relations as graph
edge connections. As such, we design a new architecture
referred to as Video-Language Graph Matching Network
(VLG-Net) which employs Graph Convolutional Networks
(GCN) [57]. First, representation graphs for both video and
language are constructed. The video graph models each
snippet as a node and takes advantage of two sets of edges
to represent both local temporal relations and non-local se-
mantic relations between video snippets. Similarly, we con-
struct a language graph, where each node is a token, and
each edge reflects token-to-token relations, e.g. syntactic
dependencies [40, 41]. These modality-specific graphs are
used to model local and non-local intra-modality context
through graph convolutions. This sets the stage for address-
ing modality alignment by recasting inter-modality interac-
tions as an algorithmic graph matching problem. Inspired
by [29, 71], we adopt a cross-graph attention-based match-
ing mechanism to enable the mutual exchange of informa-
tion between modalities, allowing for fine-grained align-
ment through a specialized set of learnable edges. Unlike
some methods that focus on relatively coarse query-moment
or query-snippet interactions, and similar to [6, 79], our
method performs the matching operation at the level of
snippets and tokens, as depicted in Fig. 1(d). With this de-
sign, we avoid the need for heuristics of context modeling
while learning a successful strategy for multi-modal fusion.
Contributions. (1) We propose VLG-Net, a new deep
learning pipeline that consistently adopts graph represen-
tation for modeling modality interaction and multi-modal
fusion. We address the modality fusion problem by resort-
ing to a graph-matching approach that learns snippet-token
connectivity. (2) Through extensive experiments, VLG-
Net demonstrates its effectiveness in capturing modality in-
teractions by achieving performance on par or better than
state-of-the-art on three standard datasets, showing signif-
icant improvements over previously published methods in
TACoS [46] and DiDeMo [2] datasets.

2. Related work
2.1. Video Grounding
Moment candidates. Previous works can be categorized
into proposal-free and proposal-based methods. Proposal-
free approaches [10, 32, 44, 47, 53, 73, 77] aim at directly
regressing the temporal boundaries of the queried moment
from the multi-modal fused feature. In contrast, proposal-
based methods adopt a propose-and-rank pipeline by first
generating moment proposals and then ranking them ac-
cording to their similarity with the textual query [2, 7, 23,
35, 60, 81]. Similar to these approaches, VLG-Net is a pro-
posal based approach.
Moments in context. For moment context modeling, some
methods [7, 20] attempt to use the memory property of
LSTM cells [51] to contextualize the video features. Alter-
natively, attention-based mechanisms [59] adopted in [31,
34, 60] can improve the aggregation of long-range semantic
dependencies. Similar to [60], we argue that visual context
modeling should be dynamic and query-dependent. [81]
claims that neighbouring proposals hold valuable context
and thus apply 2D convolutions (with large kernel size) to
moment representations to gather context information in the
latter stages of their pipeline. Compared to [81], we dele-
gate context gathering to earlier stages of our pipeline and
only use a Multi-Layer Perceptron (MLP) network for mo-
ment score computation, reducing the overall computation.
Multi-modal fusion. Moving beyond the simple scheme
adopted in [16], the work of [67] devises a new cross-
modality interaction scheme based on circular matrices.
In [7, 35, 60], frame features are concatenated with frame-
guided attention-pooled features from the query. Lu et
al. [39] take advantage of the QANet [74] architecture,
which is based on cross-attention and convolution opera-
tions, for multi-modal fusion. Dynamic filters generated
from language features are used in [47, 80] in order to mod-
ulate (through convolutions) the visual information based
on the query content. Recently, the Hadamard product
has become a popular way to fuse/gate multi-modal in-
formation [44, 77, 81]. In contrast to these methods, our
graph matching layer specifically models local, non-local,
and query-guided context, thereby exploiting the semantic
neighbourhood of snippets and tokens to fuse the modalities
through graph convolutions. Concurrently to our method,
[33] adopted attention based cross-modal graphs for fusing
the video and language modality. However, opposed to our
formulation, [33] lacks a formal design for the graph edges.

2.2. Graphs and Graph Neural Networks
Graphs in Videos. In various video understanding tasks,
such as action recognition [9, 36, 65] and action localiza-
tion [72, 76], graphs can offer extensive representational
power to data sequences. For example, a video can be rep-
resented as a space-time region graph [65] or as a 3D point
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Multi-Layer Perceptron (MLP) computes each moment’s score to rank them as final predictions.

cloud in the spatial-temporal space [36]. Moreover, Zeng et
al. [76] define temporal action proposals as nodes to form
a graph, while Xu et al. [72] consider video snippets as the
graph nodes. Inspired by [72], in VLG-Net, video snippets
are represented as nodes in a graph and different specifically
designed edges model their relationships.

Graphs in Language. In natural language processing
(NLP), both sequential and non-local relations are crucial.
The former is usually captured by recurrent neural net-
works [49], while the latter can be represented using graph
neural networks [3, 4, 42, 55]. Moreover, syntactic informa-
tion has proven useful for language modeling when com-
bined with GCNs [22, 31, 41]. Driven by these findings,
we use LSTMs and Syntactic Graph Convolution Networks
(SyntacGCN) together to model and enrich the language
features in the query.

Graph Neural Networks in Graph Matching. Graph
matching is one of the core problems in graph pattern recog-
nition, aiming to find node correspondences between dif-
ferent graphs [5]. Given the ability of Graph Neural Net-
works (GNNs) to encode graph structure information, ap-
proaches leveraging GNNs have recently surfaced to ad-
dress the graph matching problem [62, 71]. For example,
Li et al. [29] propose a GNN-based graph matching net-
work to represent graphs as feature vectors, which simpli-
fies measuring their similarity. Following [29], a neigh-
borhood matching network is introduced by [69] to match
graph nodes by estimating similarities of their neighbor-
hoods. Due to their superiority in finding consistent corre-
spondences between sets of features, graph matching meth-
ods have been widely applied in various tasks [25, 37, 63,
69, 71]. Motivated by these works, we apply graph match-
ing to the video grounding task by specifically employing a
cross-graph attention matching mechanism.

3. Methodology

3.1. Problem Formulation

Given an untrimmed video and a language query, the
video grounding task aims to localize a temporal moment
in the video that matches the query. Each video-query pair
has one associated ground-truth moment, defined as a tem-
poral interval with boundary (τs, τe). Our method scores
m candidate moments, where the k-th moment consists of
start time ts,k, end time te,k, and confidence score pk. The
video stream is represented as a sequence of nv snippets
V = {vi}nv

i=1, where each snippet has ε consecutive frames.
Similarly, a language query is represented by nl tokens
L = {li}nl

i=1. The inputs to VLG-Net are nv snippet fea-
tures Xv ∈ Rcv×nv and nl token features Xl ∈ Rcl×nl

extracted using pre-trained models, where cv and cl are the
snippet and token feature dimensions. We describe the de-
tails of feature extraction in Sec. 4.2.

3.2. VLG-Net Architecture

Our video grounding architecture is illustrated in Fig. 2.
First, we feed both the video features Xv and the query
embeddings Xl into a stack of computation blocks. On
the video path, we use 1D convolutions and GCNeXt [72]
blocks to enrich the visual representation with local and
non-local intra-modality context. On the language path,
we apply LSTM and SyntacGCN [22] to aggregate tem-
poral and syntactic context, which models the grammatical
structure of the language query. The two paths converge
in the graph matching layer for cross-modal context mod-
eling and multi-modal fusion. After the graph matching
layer, we apply masked moment attention pooling to pro-
duce the representations of possible moment candidates. Fi-
nally, we use an MLP to score the query-moment pair based



on their representation and post-process the score through
non-maximum suppression (NMS). We report top-κ ranked
moments as the final predictions.

3.3. Video and Language Representations
Here, we detail the set of operations performed on each

modality. The stack of computation blocks of each path
is specifically designed to model intra-modality context to
enrich the snippet and token features.
Video Representation. We add 1D positional encoding, as
formulated in [12], to each input visual feature and apply
1D convolutions to map them to a desired dimension. The
video is then cast as a graph, where each node represents
a snippet and each edge represents a dependency between
a snippet pair. We design two types of edges: (i) Order-
ing Edges and (ii) Semantic Edges. Static Ordering Edges
connect consecutive snippets and model the temporal order.
Conversely, Semantic Edges are dynamically constructed,
using the k-nearest neighbors algorithm. They connect se-
mantically similar snippets based on their current feature
representations. Specifically, an ordering or semantic snip-
pet neighborhood is determined, and its aggregated repre-
sentation is computed through edge convolutions F , similar
to [66]. Each edge convolution employs a split-transform-
merge strategy [70] to increase the diversity of transforma-
tions. These graph operations (called GCNeXt) were pro-
posed in [72] to enrich video snippet representations for the
purpose of temporal action localization. In our architecture,
we stack bv GCNeXt blocks together and refer to the input
of each block as X(i)

v such that

X(i+1)
v = GCNeXt(X(i)

v ) = (1)

σ
(
F(X(i)

v ,A(i)
o ,W (i)

o ) + F(X(i)
v ,A(i)

s ,W (i)
s ) +X(i)

v

)
,

whereX(0)
v is the output of the convolutional layer,A(i)

o and
A(i)
s are the adjacency matrices of Ordering Edges and Se-

mantic Edges, respectively, andW (i)
o andW (i)

s are the train-
able weights for the i-th GCNeXt block. We use Recti-
fied Linear Unit (ReLU) as the activation function σ. Refer
to [72] for additional details about GCNeXt. The output of
the last block is referred to as X(bv)

v , which is the input to
the graph matching layer.
Language Representation. The query token features Xl

are fed through an LSTM of bs layers to capture seman-
tic information and the sequential context. Moreover, given
that language follows a predefined set of grammatical rules,
we set out to leverage syntactic information [41, 78] to
model grammatical inter-word relations. For this purpose,
we adopt SyntacGCN, as shown in Fig. 2. Syntactic graphs
are preferred over fully connected graphs, since the for-
mer’s sparsity property offers more robustness against noise
in language [22]. Our SyntacGCN represents a query as
a sparse directed graph, in which each output of the last

LSTM layer, referred to as X(0)
l , is viewed as a node, and

each syntactic relation as an edge. The adjacency matrixAl
is directly constructed from the query’s syntactic dependen-
cies [40] and the graph convolution is formulated as:

X
(i+1)
l,j = σ


X(i)

l,j +
∑

k∈N (j)

α
(i)
jkAl,jkW

(i)
l X

(i)
l,k


 , (2)

where X(i)
l,j is the j-th token feature of previous layer’s out-

put, N (j) is the syntactic neighbourhood of node j, W (i)
l

is the learnable weight in the i-th layer, and σ is ReLU.
Moreover, α(i)

jk is the edge weight learned from the feature

of paired nodes X(i)
l,j and X(i)

l,k , defined as:

α
(i)
jk = SoftMax(w(i)>

α σ(W (i)
α (X

(i)
l,j ||X

(i)
l,k ))), (3)

where wα and Wα are learnable parameters and || denotes
vector concatenation. We refer to the last output of the Syn-
tacGCN as X(bl)

l , which will be used to match the video
representation X(bv)

v .

3.4. Video-Language Graph Matching

The enriched video representation X(bv)
v and query rep-

resentation X(bl)
l meet and interact in the graph matching

layer. This layer models the cross-modal context and al-
lows for multi-modal fusion. It does so by evaluating the
intra-modality correlation between each video snippet and
between each query token and the inter-modality correla-
tion between each snippet-token pair. The process is shown
in Fig. 3. First, we create a video-language matching graph,
where each node can be either a video snippet or a query
token. We include three types of edges: (i) Ordering Edge
(O), (ii) Semantic Edge (S), and (iii) Matching Edge (M).

As depicted in Fig. 3, we use Ordering Edge and Seman-
tic Edge in the video-language matching graph (as defined
in Sec. 3.3), while the Matching Edge reflects the inter-
modality relation. Ordering Edge models the sequential na-
ture of both modalities. For example, if an Ordering Edge
links two tokens, the words corresponding to the two to-
kens are consecutive in the input query. Semantic Edge is
used to connect graph nodes in the same modality according
to their feature similarity, providing non-local dependencies
over the entire graph. Importantly, Matching Edge is em-
ployed to explicitly model and learn the cross-modality in-
teraction, to extract meaningful alignment information and
learn an aggregation policy. The Matching Edge weights
are referenced as B. We use Matching Edge to densely con-
nect all possible snippet-token pairs, and set the edge weight
proportional to the correlation between the matched node
features. Similar to Semantic Edges, Matching Edges are
dynamic and evolve in the training process.
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ships. We apply graph convolution on the video-language graph
for cross-modal context modeling and multi-modal fusion. The
neighborhood is specific for the node highlighted in red.

To combine all three types of edges, we employ relation
graph convolution [50] on the constructed video-language
matching graph. Eq. 6 shows the high level representation
of the convolutions in this layer. Refer to the supplementary
material for the full formulation.

X(GM) =AOXWO+ASBXWS+AMΓXWM+X (4)

Here, X = {X(bv)
v,1 , . . . , X

(bv)
v,nv , X

(bl)
l,1 , . . . , X

(bl)
l,nl
} is the

feature representation of all the nodes in the video-language
matching graph. Ar and Wr for r ∈ {O,S,M} rep-
resent the binary adjacency matrix and learnable weights
for each set of edges. B and Γ scale the adjacency ma-
trices AS and AM, respectively, such that βi,j ∈ B and
γi,j ∈ Γ are proportional to x>i xj , We stack together all
video and language node features to form X

(GM)
v ∈ Rc×nv

and X(GM)
l ∈ Rc×nl , and we pass them to the masked mo-

ment pooling layer.

3.5. Masked Attention Pooling
The graph matching layer returns a new video graph and

a new language graph fused with information from the other
modality. Then, a masked attention pooling operation is
applied to the new video graph to list the relevant sub-graph
representations as candidate moments. The output of this
module is denoted as Y = [yk]mk=1,yk ∈ Rc, where m
is the number of candidate moments, and c is the feature
dimension of each moment. For efficiency purposes, the
operation is implemented as a masked attention, allowing us
to process each snippet feature only once, while computing
each moment’s representation.

We implement three different schemes, namely: (i)
learnable self-attention, (ii) cross-attention, and (iii) learn-
able cross-attention. In (i), we obtain the unnormalized
attention weights by applying a 1D convolutional layer
that maps each snippet feature to a single score. In (ii)
and (iii), we compute the query representation X

(att)
l by
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snippet feature only once while computing each moment’s
representation.

Specifically, we implement and ablate three different
schemes, namely: (i) learnable self-attention, (ii) cross-
attention, and (iii) learnable cross-attention. In (i), we ob-
tain the unnormalized attention weights by applying a 1D
convolutional layer that maps each clip feature to a single
score. In (ii) and (iii), we compute the sentence represen-
tation by applying self-attention pooling on top of the last
SyntacGCN layer X

(bl)
l , we refer to this quantity as X

(att)
l .

Configuration (iii) is depicted in Fig. 4.
Cross-attention obtains the unnormalized weights by

computing the inner product between the snippet and sen-
tence features, while learnable cross-attention concatenates
each snippet feature with the sentence feature and uses a
1D convolutional layer to obtain the weights. In all cases,
the unnormalized weight vector has shape w 2 Rnv⇥1 for
each video. The vector is repeated m times to obtain the
matrix W 2 Rnv⇥m, and a fixed mask M 2 Rnv⇥m is
applied to it. Similar to Songyang et al. [71], we generate
moment candidates and apply a sparse sampling strategy to
discard redundant moments. Therefore, the mask is gen-
erated according to the sampled moments, highlighting for
each of them, which are the clips that must be taken into
account when computing the moment’s pooled feature. The
attention scores are then obtained by applying the softmax
operation. Thanks to the masking operation, clips not re-
lated to the n-th moment will not be considered. Finally, the
moments’ features are obtained simply as a matrix multipli-
cation: Y = X(GM)SoftMax(W + M). Ablation results
are reported in the experiment section (Sec 4.4).

3.6. Moment Localization

The output of the previous module is then fed to a Multi-
Layer Perceptron (MLP) network to compute the score
pk for each moment candidate. This scores predicts the
Intersection-over-Union (IoU) of each moment with the
ground truth one. For training, we supervise this process
using a cross-entropy loss, shown in Eq. 5. We assign the
label tk = 1 if the IoU is greater than a threshold ✓ and
tk = 0 otherwise.

L =
1

m

mX

k=1

tk log pk + (1 � tk) log(1 � pk), (5)

At inference time, moment candidates are ranked accord-
ing to their predicted scores and non-maximum suppression
is adopted to discard highly overlapping moments. The re-
maining top- moments are involved in the recall compu-
tation. The temporal boundaries (ts,k, te,k) associated with
the top- moments are used to calculate the Intersection-
over-Union (IoU) with the ground-truth video moments
(⌧s, ⌧e) to determine the alignment performance. A formal

Dataset Num. Video-Sentence pairs Vocab.
Videos train val test Size

Activitynet-Captions [21] 14926 37421 17505 17031 15406
TACoS [39] 127 10146 4589 4083 2255
DiDeMo [1] 10642 33005 4180 4021 7523

Charades-STA [11] 6670 12404 0 3720 1289

Table 1. Video-language grounding dataset statistics

definition of the metric used and details about the training
strategy are presented in Sec. 4.2

4. Experiments

4.1. Datasets

ActivityNet-Captions [21] is a popular benchmark dataset
for the video grounding task. It is a large-scale action un-
derstanding dataset initially collected for the task of dense
captioning, but it has been recently restructured for the task
of moment localization with natural language [3, 26]. The
dataset contains 20k diverse videos with about 100k sen-
tence queries, subdivided into four splits: train, val 1, val 2,
and test. The test set is withheld for competition purposes
leaving the rest publicly available. See Tab. 1 for more de-
tails about the publicly available splits. Following the pre-
vious setting in [26], in this paper, we use val 1 as the vali-
dation set and val 2 as the testing set.
TACoS [39] consists of 127 videos selected from the MPII
Cooking Composite Activities video corpus [41]. It consists
of 18818 moment-query pairs of different cooking activities
in the kitchen. On average, every video in TACoS contains
148 queries, some of which are annotations of very short
video segments.
DiDeMo [1] consists of unedited video footage from Flickr
with sentences aligned to unique moments in its 10642
videos. It is split into 33008, 4180, and 4021 video-
language pairs for training, validation, and testing, respec-
tively. Note that moment start and end points are aligned to
five-second intervals and that the maximum annotated mo-
ment length is 30 seconds.
Charades-STA [11] consists of 16124 video-sentences
pairs resulting in the smallest dataset for the task in terms of
training and testing samples. Moreover, this dataset is also
characterized by the smallest vocabulary size (and average
sentence length). See Tab 1 for more details. In addition,
the dataset only has two splits available and lacks an official
validation split, making it prone to overfitting when hyper-
parameters are chosen with respect to training performance.
Although this dataset has been widely adopted for the task,
for the reasons listed above, we choose not to evaluate our
method on it. More discussion can be found in the Supple-
mentary Material. The lack of validation split makes it very
difficult to asses if hyper-parameters have been chosen to
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snippet feature only once while computing each moment’s
representation.

Specifically, we implement and ablate three different
schemes, namely: (i) learnable self-attention, (ii) cross-
attention, and (iii) learnable cross-attention. In (i), we ob-
tain the unnormalized attention weights by applying a 1D
convolutional layer that maps each clip feature to a single
score. In (ii) and (iii), we compute the sentence represen-
tation by applying self-attention pooling on top of the last
SyntacGCN layer X

(bl)
l , we refer to this quantity as X

(att)
l .

Configuration (iii) is depicted in Fig. 4.
Cross-attention obtains the unnormalized weights by

computing the inner product between the snippet and sen-
tence features, while learnable cross-attention concatenates
each snippet feature with the sentence feature and uses a
1D convolutional layer to obtain the weights. In all cases,
the unnormalized weight vector has shape w 2 Rnv⇥1 for
each video. The vector is repeated m times to obtain the
matrix W 2 Rnv⇥m, and a fixed mask M 2 Rnv⇥m is
applied to it. Similar to Songyang et al. [71], we generate
moment candidates and apply a sparse sampling strategy to
discard redundant moments. Therefore, the mask is gen-
erated according to the sampled moments, highlighting for
each of them, which are the clips that must be taken into
account when computing the moment’s pooled feature. The
attention scores are then obtained by applying the softmax
operation. Thanks to the masking operation, clips not re-
lated to the n-th moment will not be considered. Finally, the
moments’ features are obtained simply as a matrix multipli-
cation: Y = X(GM)SoftMax(W + M). Ablation results
are reported in the experiment section (Sec 4.4).

3.6. Moment Localization

The output of the previous module is then fed to a Multi-
Layer Perceptron (MLP) network to compute the score
pk for each moment candidate. This scores predicts the
Intersection-over-Union (IoU) of each moment with the
ground truth one. For training, we supervise this process
using a cross-entropy loss, shown in Eq. 5. We assign the
label tk = 1 if the IoU is greater than a threshold ✓ and
tk = 0 otherwise.

L =
1

m

mX

k=1

tk log pk + (1 � tk) log(1 � pk), (5)

At inference time, moment candidates are ranked accord-
ing to their predicted scores and non-maximum suppression
is adopted to discard highly overlapping moments. The re-
maining top- moments are involved in the recall compu-
tation. The temporal boundaries (ts,k, te,k) associated with
the top- moments are used to calculate the Intersection-
over-Union (IoU) with the ground-truth video moments
(⌧s, ⌧e) to determine the alignment performance. A formal

Dataset Num. Video-Sentence pairs Vocab.
Videos train val test Size

Activitynet-Captions [21] 14926 37421 17505 17031 15406
TACoS [39] 127 10146 4589 4083 2255
DiDeMo [1] 10642 33005 4180 4021 7523

Charades-STA [11] 6670 12404 0 3720 1289

Table 1. Video-language grounding dataset statistics

definition of the metric used and details about the training
strategy are presented in Sec. 4.2

4. Experiments

4.1. Datasets

ActivityNet-Captions [21] is a popular benchmark dataset
for the video grounding task. It is a large-scale action un-
derstanding dataset initially collected for the task of dense
captioning, but it has been recently restructured for the task
of moment localization with natural language [3, 26]. The
dataset contains 20k diverse videos with about 100k sen-
tence queries, subdivided into four splits: train, val 1, val 2,
and test. The test set is withheld for competition purposes
leaving the rest publicly available. See Tab. 1 for more de-
tails about the publicly available splits. Following the pre-
vious setting in [26], in this paper, we use val 1 as the vali-
dation set and val 2 as the testing set.
TACoS [39] consists of 127 videos selected from the MPII
Cooking Composite Activities video corpus [41]. It consists
of 18818 moment-query pairs of different cooking activities
in the kitchen. On average, every video in TACoS contains
148 queries, some of which are annotations of very short
video segments.
DiDeMo [1] consists of unedited video footage from Flickr
with sentences aligned to unique moments in its 10642
videos. It is split into 33008, 4180, and 4021 video-
language pairs for training, validation, and testing, respec-
tively. Note that moment start and end points are aligned to
five-second intervals and that the maximum annotated mo-
ment length is 30 seconds.
Charades-STA [11] consists of 16124 video-sentences
pairs resulting in the smallest dataset for the task in terms of
training and testing samples. Moreover, this dataset is also
characterized by the smallest vocabulary size (and average
sentence length). See Tab 1 for more details. In addition,
the dataset only has two splits available and lacks an official
validation split, making it prone to overfitting when hyper-
parameters are chosen with respect to training performance.
Although this dataset has been widely adopted for the task,
for the reasons listed above, we choose not to evaluate our
method on it. More discussion can be found in the Supple-
mentary Material. The lack of validation split makes it very
difficult to asses if hyper-parameters have been chosen to
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snippet feature only once while computing each moment’s
representation.

Specifically, we implement and ablate three different
schemes, namely: (i) learnable self-attention, (ii) cross-
attention, and (iii) learnable cross-attention. In (i), we ob-
tain the unnormalized attention weights by applying a 1D
convolutional layer that maps each clip feature to a single
score. In (ii) and (iii), we compute the sentence represen-
tation by applying self-attention pooling on top of the last
SyntacGCN layer X

(bl)
l , we refer to this quantity as X

(att)
l .

Configuration (iii) is depicted in Fig. 4.
Cross-attention obtains the unnormalized weights by

computing the inner product between the snippet and sen-
tence features, while learnable cross-attention concatenates
each snippet feature with the sentence feature and uses a
1D convolutional layer to obtain the weights. In all cases,
the unnormalized weight vector has shape w 2 Rnv⇥1 for
each video. The vector is repeated m times to obtain the
matrix W 2 Rnv⇥m, and a fixed mask M 2 Rnv⇥m is
applied to it. Similar to Songyang et al. [71], we generate
moment candidates and apply a sparse sampling strategy to
discard redundant moments. Therefore, the mask is gen-
erated according to the sampled moments, highlighting for
each of them, which are the clips that must be taken into
account when computing the moment’s pooled feature. The
attention scores are then obtained by applying the softmax
operation. Thanks to the masking operation, clips not re-
lated to the n-th moment will not be considered. Finally, the
moments’ features are obtained simply as a matrix multipli-
cation: Y = X(GM)SoftMax(W + M). Ablation results
are reported in the experiment section (Sec 4.4).

3.6. Moment Localization

The output of the previous module is then fed to a Multi-
Layer Perceptron (MLP) network to compute the score
pk for each moment candidate. This scores predicts the
Intersection-over-Union (IoU) of each moment with the
ground truth one. For training, we supervise this process
using a cross-entropy loss, shown in Eq. 5. We assign the
label tk = 1 if the IoU is greater than a threshold ✓ and
tk = 0 otherwise.

L =
1

m

mX

k=1

tk log pk + (1 � tk) log(1 � pk), (5)

At inference time, moment candidates are ranked accord-
ing to their predicted scores and non-maximum suppression
is adopted to discard highly overlapping moments. The re-
maining top- moments are involved in the recall compu-
tation. The temporal boundaries (ts,k, te,k) associated with
the top- moments are used to calculate the Intersection-
over-Union (IoU) with the ground-truth video moments
(⌧s, ⌧e) to determine the alignment performance. A formal

Dataset Num. Video-Sentence pairs Vocab.
Videos train val test Size

Activitynet-Captions [21] 14926 37421 17505 17031 15406
TACoS [39] 127 10146 4589 4083 2255
DiDeMo [1] 10642 33005 4180 4021 7523

Charades-STA [11] 6670 12404 0 3720 1289

Table 1. Video-language grounding dataset statistics

definition of the metric used and details about the training
strategy are presented in Sec. 4.2

4. Experiments

4.1. Datasets

ActivityNet-Captions [21] is a popular benchmark dataset
for the video grounding task. It is a large-scale action un-
derstanding dataset initially collected for the task of dense
captioning, but it has been recently restructured for the task
of moment localization with natural language [3, 26]. The
dataset contains 20k diverse videos with about 100k sen-
tence queries, subdivided into four splits: train, val 1, val 2,
and test. The test set is withheld for competition purposes
leaving the rest publicly available. See Tab. 1 for more de-
tails about the publicly available splits. Following the pre-
vious setting in [26], in this paper, we use val 1 as the vali-
dation set and val 2 as the testing set.
TACoS [39] consists of 127 videos selected from the MPII
Cooking Composite Activities video corpus [41]. It consists
of 18818 moment-query pairs of different cooking activities
in the kitchen. On average, every video in TACoS contains
148 queries, some of which are annotations of very short
video segments.
DiDeMo [1] consists of unedited video footage from Flickr
with sentences aligned to unique moments in its 10642
videos. It is split into 33008, 4180, and 4021 video-
language pairs for training, validation, and testing, respec-
tively. Note that moment start and end points are aligned to
five-second intervals and that the maximum annotated mo-
ment length is 30 seconds.
Charades-STA [11] consists of 16124 video-sentences
pairs resulting in the smallest dataset for the task in terms of
training and testing samples. Moreover, this dataset is also
characterized by the smallest vocabulary size (and average
sentence length). See Tab 1 for more details. In addition,
the dataset only has two splits available and lacks an official
validation split, making it prone to overfitting when hyper-
parameters are chosen with respect to training performance.
Although this dataset has been widely adopted for the task,
for the reasons listed above, we choose not to evaluate our
method on it. More discussion can be found in the Supple-
mentary Material. The lack of validation split makes it very
difficult to asses if hyper-parameters have been chosen to
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Figure 4. Masked attention pooling. Sequence of operations for
the learnable cross-attention configuration. Inputs are video nodes
X

(GM)
v from the graph matching layer and the query embedding

X
(att)
l computed through self-attention pooling atop the graph

matching output. The output Y represents all moment candidates.

applying self-attention pooling atop the graph matching
output X(GM)

l . Cross-attention obtains the unnormalized
weights by computing the inner product between the snip-
pet and query feature, while learnable cross-attention con-
catenates each snippet feature with the query feature and
uses a 1D convolutional layer to obtain the weights. Con-
figuration (iii) is depicted in Fig. 7. In all cases, the un-
normalized weight vector has shape w ∈ Rnv×1 for each
video. The vector is repeated m times to obtain the matrix
W ∈ Rnv×m, and a fixed mask M ∈ Rnv×m is applied to
it. Similar to Songyang et al. [81], we generate m moment
candidates and apply a sparse sampling strategy to discard
redundant moments. The valuem is dataset dependent. The
mask is generated according to the sampled moments, high-
lighting for each of them, which are the snippets that must
be taken into account when computing the moment’s pooled
feature. The attention scores are then obtained by a softmax
operation. Thanks to the masking operation, snippets not
related to the n-th moment will not be considered. Finally,
the moments’ features are obtained simply as a matrix mul-
tiplication Y = X(GM)SoftMax(W +M).

3.6. Moment Localization
Each candidate moment representation, output of previ-

ous module, is endowed with an additive 2D positional em-
bedding encoding the start and end timestamps (ts,k, te,k
with k ∈ [1,m]). Then each moment feature is fed to an
MLP to compute the alignment confidence score pk. This
score predicts the Intersection-over-Union (IoU) of each
moment with the ground truth of the corresponding video-
query pair. For training, we supervise this process using
a cross-entropy loss, shown in Eq. 5. Similar to [81], we
assign the label tk = 1 if the IoU ≥ θ2, tk = 0 if the
IoU ≤ θ1, and otherwise tk = (IoU − θ1)/(θ2 − θ1).

L =
1

m

m∑

k=1

tk log pk + (1− tk) log(1− pk), (5)

During inference, moment candidates are ranked based on
their predicted scores and NMS is used to discard highly
overlapping moments.



4. Experiments

4.1. Datasets

ActivityNet-Captions [27] is a popular dataset initially col-
lected for the task of dense captioning, and recently adopted
for the task of moment localization with natural language
queries [7, 31]. The dataset is subdivided into four splits:
train, val 1, val 2, and test. The test set is withheld for com-
petition purposes, while leaving the rest publicly available.
Refer to Table 1 for details about the publicly available
splits. Following the setting in [31], we use val 1 as the
validation set and val 2 as the testing set.
TACoS [46] consists of videos selected from the MPII
Cooking Composite Activities video corpus [48]. It com-
prises 18818 video-query pairs of different cooking activi-
ties. Each video contains an average of 148 queries, some
of which are annotations of short video segments.
DiDeMo [2] contains unedited video footage from Flickr
with sentences aligned to unique moments in its 10642
videos. It contains more than 40k video-query pairs with
coarse temporal annotations. Moment start and end points
are aligned to five-second intervals and the maximum anno-
tated moment length is 30 seconds.

Concerns regarding the Charades-STA [16] dataset dis-
couraged us from evaluating our method on it. Refer to the
supplementary material for a detailed discussion.

4.2. Implementation

Evaluation Metrics. We follow the commonly used setting
in [14], where the Rank@κ for IoU=θ serves as our evalu-
ation metric. For example, given a video-query pair, the re-
sult is positive if any of the top-κ predictions has IoU with
the ground-truth larger or equal to θ; otherwise the result
is negative. We average the results across all testing sam-
ples. Following standard practice, we set κ ∈ {1, 5} with
θ ∈ {0.3, 0.5, 0.7} for ActivityNet Captions, κ ∈ {1, 5}
with θ ∈ {0.1, 0.3, 0.5} for TACoS, and κ ∈ {1, 5} with
θ ∈ {0.5, 0.7, 1.0} for DiDeMo.
Language and Video Features. After lower-case con-
version and tokenization, we use the pretrained GloVe
model [45] to obtain the initial query embedding for every
token and extract the syntactic dependencies using the Stan-
ford CoreNLP 4.0.0 parser [40]. The bs layers of LSTM
with 512 hidden units are used as the query encoder. Then,
the syntactic GCN encodes syntactic information of the
queries and returns a new embedding with 512 dimensions.
For visual features, we use pretrained C3D [58] for Activi-
tyNet Captions and TACoS, and VGG16 [54] for DiDeMo,
while holding their parameters fixed during training, as they
are readily available and commonly used by state-of-the-art
methods. We use 1D convolutions to project the input vi-
sual features to a fixed dimension (512), and the GCNeXt
blocks’ hyper-parameters are set as in [72].

Dataset Num. Video-Sentence pairs Vocab.
Videos train val test Size

ActivityNet Captions [27] 14926 37421 17505 17031 15406
TACoS [46] 127 10146 4589 4083 2255
DiDeMo [2] 10642 33005 4180 4021 7523

Charades-STA [16] 6670 12404 − 3720 1289

Table 1. Datasets statistics. We report relevant information for
each datasets available for the grounding task.

Implementation details. We use Adam [26] with a StepLR
scheduler [38]. We adopt learning rates ranging from 10−3

to 10−4 for different datasets. The number of sampled snip-
pets nv is set to 64 for ActivityNet Captions, and 256 for
TACoS, and 48 for DiDeMo. The values of (bv , bs, bl) are
equal to (1, 3, 4), (4, 5, 2), (2, 3, 4), respectively for the three
datasets. In post-processing, we apply NMS with values
respectively to the m predictions to filter out highly over-
lapping moments. Values of m for each dataset are: 1104,
3101, 505 while the NMS thresholds are: 0.5, 0.3, 0.5. We
adapt BCE with logits loss to make the training process
more numerically stable. The IoU thresholds (θ1, θ1) for
the three datasets are: (0.7, 0.71), (0.5, 0.7), (0.69, 1.0).

4.3. Comparison with State-of-the-Art

Comparisons are carried out only against methods us-
ing the same input features as VLG-Net. In the Tables, we
highlight the top-1 and top-2 performance values by bold
and underline, respectively.
ActivityNet Captions (Table 2). VLG-Net offers the high-
est performance for the tight IoU=0.7. However, it falls
short against [33] on the lousier IoU=0.5. In practical terms,
the two methods are to be considered on par. Nonetheless,
notice how tighter IoU translates to better retrieval quality
in a real use-case scenario. In these terms, VLG-Net is to
be preferred over the competitive [33]. Finally, notice how
VLG-Net achieves a significant boost against the recently
released 2D-TAN [81] and DRN [77].
TACoS (Table 3). Our model outperforms state-of-the-art
methods and achieves the highest scores for all IoU thresh-
olds with significant improvements. In particular, VLG-Net
exceeds the previous art [33, 77, 81] by a large margin,
ranging from 7.10% to 11.52%, across all evaluation set-
tings, showcasing the excellent design of the architecture.
DiDeMo (Table 4). Our proposed technique outperforms
the top-ranked methods [33, 34, 35] with respect to R@1
and R@5 for IoU0.5 and 0.7 with evident increases. It also
reaches the highest performance in regards to R@1 IoU1.0.
For R@5 IoU1.0, VLG-Net ranks second, falling short with
respect to TMN [7] by 1.32%. For completeness, we re-
port the performances of TGN [32] and TMN [7]; with the
caveat that their performance could not be verified as the
code is not made publicly available. Hence the different
colour for the corresponding rows in Table 4.



R@1 R@5
IoU0.5 IoU0.7 IoU0.5 IoU0.7

MCN [2] 21.36 6.43 53.23 29.70
CTRL [16] 29.01 10.34 59.17 37.54
TGN [7] 27.93 − 44.20 −
ACRN [32] 31.67 11.25 60.34 38.57
CMIN [31] 44.62 24.48 69.66 52.96
ABLR [73] 36.79 − − −
TripNet [43] 32.19 13.93 − −
PMI [53] 38.28 17.83 − −
2D-TAN (P) [81] 44.51 26.54 77.13 61.96
2D-TAN (C) [81] 44.05 27.38 76.65 62.26
DRN [77] 45.45 24.36 77.97 50.30
CSMGAN [33] 49.11 29.15 77.43 59.63

VLG-Net 46.32 29.82 77.15 63.33

Table 2. State-of-the-art comparison on ActivityNet Captions.
We report the results at different Recall@κ and different IoU
thresholds. VLG-Net reaches the highest scores for IoU0.7 for
both R@1 and R@5.

4.4. Ablation Study

To motivate our design choices, we present two abla-
tions that focus on relevant aspects of our method. The
first ablation showcases the importance of context model-
ing. The second investigates VLG-Net’s performance when
other commonly adopted multi-modal fusion operations re-
place the graph matching module. In Table 5, we report our
best result (first column) and summarize all ablated vari-
ants. For simplicity, we evaluate on the TACoS dataset
and specifically focus on its most challenging setups: R@1
IoU0.5 and R@5 IoU0.5. To promote fair comparison, we
report each model’s capacity in millions (M) of parameters.
More ablations are reported in the supplementary material.
Context Ablation. First, we investigate the impact of dif-
ferent context modeling strategies and compare six variants
with our VLG-Net. VLG-NetNC represents a “No Context”
architecture, in which we replace the GCNeXt and Syn-
tacGCN modules with fully connected layers that do not
model any intra-modality context. Moreover, we switch
off the Ordering and Semantic Edges in the graph match-
ing module. Although the model capacity for VLG-NetNC
only drops 0.21M (1.6%), its performance degrades up to
8.82% with respect to VLG-Net. Following [2], we de-
vise VLG-NetGM (“Global on Moments”) and VLG-NetGI
(“Global on Input”) experiments. The first one extends
VLG-NetNC by concatenating each moment feature with
a global video feature after the matching operation. In-
stead, in VLG-NetGI, we concatenate each snippet and to-
ken feature with an average pooled version of their respec-
tive raw input features. Differently, following [16], VLG-
NetLM (“Local on Moments”) models local context by ex-
tending the moment’s boundaries when computing the mo-
ment’s features in the masked attention pooling module.
The simple context modeling adopted in these architectures

R@1 R@5
IoU0.1 IoU0.3 IoU0.5 IoU0.1 IoU0.3 IoU0.5

MCN [2] 14.42 − 5.58 37.35 − 10.33
CTRL [16] 24.32 18.32 13.30 48.73 36.69 25.42
MCF [68] 25.84 18.64 12.53 52.96 37.13 24.73
TGN [7] 41.87 21.77 18.90 53.40 39.06 31.02
ACRN [34] 24.22 19.52 14.62 47.42 34.97 24.88
ROLE [35] 20.37 15.38 9.94 45.45 31.17 20.13
VAL [56] 25.74 19.76 14.74 51.87 38.55 26.52
ACL-K [18] 31.64 24.17 20.01 57.85 42.15 30.66
CMIN [31] 36.68 27.33 19.57 64.93 43.35 28.53
SM-RL [64] 26.51 20.25 15.95 50.01 38.47 27.84
SLTA [24] 23.13 17.07 11.92 46.52 32.90 20.86
SAP [8] 31.15 − 18.24 53.51 − 28.11
TripNet [43] − 23.95 19.17 − − −
2D-TAN (P) [81] 47.59 37.29 25.32 70.31 57.81 45.04
2D-TAN (C) [81] 46.44 35.22 25.19 74.43 56.94 44.21
DRN [77] − − 23.17 − − 33.36
CSMGAN [33] 42.74 33.90 27.09 68.97 53.98 41.22

VLG-Net 57.21 45.46 34.19 81.80 70.38 56.56

Table 3. State-of-the-art comparison on TACoS. Our model out-
performs all previous methods achieving significantly higher per-
formance with great margins on all metrics.

R@1 R@5
IoU0.5 IoU0.7 IoU1.0 IoU0.5 IoU0.7 IoU1.0

MCN [2] − − 13.10 − − 44.82
TMN [32] − − 18.71 − − 72.97
TGN [7] − − 24.28 − − 71.43
ACRN [34] 27.44 16.65 − 69.43 29.45 −
ROLE [35] 29.40 15.68 − 70.72 33.08 −
CSMGAN [33] 29.44 19.16 − 70.77 41.61 −
VLG-Net 33.35 25.57 25.57 88.86 71.72 71.65

Table 4. State-of-the-art comparison on DiDeMo. Our proposed
model outperforms the top ranked method ROLE and ACRN with
respect to IoU0.5 and 0.7 for R@1 and R@5 with clear margins.
It also reaches the highest performance in regards to R@1 IoU1.0.

allows them to improve their performance with respect to
VLG-NetNC up to 2.32%. Nonetheless, they fall short of
VLG-Net by 6.5− 7.4%. Note that VLG-NetGM and VLG-
NetGI have a larger model capacity, 0.07M and 0.41M, re-
spectively, compared to VLG-Net. VLG-NetT (“Temporal
Context Only”) is as VLG-Net, where we remove each Se-
mantic Edge and replace the SyntacGCN layers with GC-
NeXt ones. In this variant, only temporal dependencies are
modeled. VLG-NetS (“Semantic Context Only”) does not
model temporal dependencies but just the semantic ones.
Both models’ performance surpasses 30% for R@1 IoU0.5,
which indicates that the introduction of GCNeXt and Syn-
tacGCN layers can boost the performance. Our final ar-
chitecture takes advantage of both modules, achieving the
best results. These ablations demonstrate that temporal and
semantic context are complementary and showcase the ben-
efits of the proposed context modeling strategy.
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Figure 5. Qualitative Results. Examples of grounding results, we compare ground truth annotations (box) and predicted temporal end-
points (arrow). See Section 4.5 for more details.

VLG-Net Context Ablation Multi-modal Fusion Ablation
VLG-NetNC VLG-NetGM VLG-NetLM VLG-NetGI VLG-NetT VLG-NetS VLG-NetHM VLG-NetHS VLG-NetCS

R@1 IoU0.5 34.19 25.37 27.12 26.82 27.69 30.34 30.94 27.27 27.54 28.39

R@5 IoU0.5 56.56 48.24 48.56 47.11 49.39 51.84 53.14 49.99 48.54 51.31

# of Parameters (M) 13.29 13.08 13.35 13.08 13.70 13.22 13.22 13.28 13.28 13.28

Table 5. Ablation on context modelling and multi-modal fusion approaches. This ablation shows how the pipeline takes advantage of
context modelling and our graph matching module to achieving state-of-the-art performance.

Multi-modal Fusion Ablation. To evaluate our graph
matching module’s capabilities for multi-modality fusion,
we replace it with other commonly used operations in the
literature. Following [81], we use a Hadamard product be-
tween the video moment’s features and an average pooled
feature for the language query. We adopt several fully con-
nected layers before and after the fusion to keep the model
size close to ours. As compared to [81], we adopt the learn-
able masked attention pooling for generating the moment’s
features, which allows for interactions between query to-
kens and video snippets before the fusion operation. We
refer to this model as VLG-NetHM (“Hadamard on Mo-
ments”). We also apply the Hadamard product at the snip-
pet level [44, 47, 77] and train VLG-NetHS (“Hadamard on
Snippets”). Finally, following [7, 10, 60], we concatenate
each snippet feature with the query feature and use linear
layers for the projection in VLG-NetCS (“Concatenate on
Snippets”). We can conclude that fusing the modalities at
the snippet level tends to perform better. The Hadamard op-
eration has gained quite some traction for its good perfor-
mance and absence of trainable parameters, making it ef-
ficient to compute. However, we argue that the complexity
of multi-modal alignment calls for more elaborate strategies
for multi-modal fusion. Our graph matching module offers
a perspective in this research direction.

4.5. Visualization

We show several qualitative grounding results from Ac-
tivityNet Captions in Fig. 5. Our VLG-Net can generate

precise moment boundaries that match the query well in dif-
ferent scenarios. Worth mentioning, our method can some-
times give predictions that are more meaningful than the
ground truth annotation. As shown in Fig. 5(d), although
the ground truth only aligns to the beginning of the video,
the query “Three people are riding a very colourful camel
on the beach.” can semantically match the whole video. In
this case, our VLG-Net gives a more reasonable grounding
result. Additional visualizations are reported in the supple-
mentary material.

5. Conclusion

This paper addresses the problem of text-to-video tem-
poral grounding, where we cast the problem as an algorith-
mic graph matching. We propose Video-Language Graph
Matching Network (VLG-Net) to match the video and lan-
guage modalities. We represent each modality as graphs
and explore four types of edges, Syntactic Edge, Order-
ing Edge, Semantic Edge, and Matching Edge, to encode
local, non-local, and cross-modality relationships to align
the video-query pair. Extensive experiments show that our
VLG-Net can model inter- and intra-modality context, learn
multi-modal fusion and surpass the current state-of-the-art
performance on three widely used datasets.
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Supplementary Material
Formulation of Video-Language Graph Matching

In this section, we provide a detailed overview and for-
mulation of the video-language graph matching. This inputs
to this layer are the enriched video representationX(bv)

v and
query representation X(bl)

l outputs of the single modality
stack of computational blocks. The graph matching layer
models the cross-modal context and allows for multi-modal
fusion. To this purpose the video-language matching graph
is constructed and three types of edges are designed: (i) Or-
dering Edge (O), (ii) Semantic Edge (S), and (iii) Matching
Edge (M).

To aggregate the information, we employ relation graph
convolution [50] on the constructed video-language match-
ing graph. Eq. 6 shows the high level representation of the
convolutions in this layer.

X(GM) =AOXWO+ASBXWS+AMΓXWM+X (6)

Here, X = {X(bv)
v,1 , . . . , X

(bv)
v,nv , X

(bl)
l,1 , . . . , X

(bl)
l,nl
} is the

feature representation of all the nodes in the video-language
matching graph. Ar and Wr for r ∈ {O,S,M} represent
the binary adjacency matrix and learnable weights for each
set of edges. Specifically, B and Γ scale the adjacency ma-
trices AS and AM. Both βi,j ∈ B and γi,j ∈ Γ are propor-
tional to x>i xj ,

βi,j =
exp [x>i xj ]∑

AS(k,j)=1 exp [x>k xj ]
, (7)

γi,j =
exp [x>i xj ]∑

AM(k,j)=1 exp [x>k xj ]
. (8)

In practise, to implement GPU-memory efficient graph
convolution operation, we replace the time-consuming ma-
trix multiplication by indexing operation of tensors. Thus,
the semantic and matching edge convolution can be present
as

ASBXWS =
∑

j∈NS
i

(ŴT
S [βjxj ||xi]), (9)

AMΓXWM =
∑

j∈NM
i

(ŴT
M[γjxj ||xi]), (10)

where N ∗i is the neighbourhood of node i connected by
edge with type ∗, ∗ ∈ {S,M}. The || sign means con-
catenation of features. ŴS , ŴM are learnable weights.

Moreover, as shown by A.2 of G-TAD[72], our order-
ing edge convolution, can be efficiently computed as a 1D
convolution with kernel size 3.

AOXWO = Conv1D[X] (11)

Therefore, we can equivalently formulate Eq. 6 as:

X(GM) = Conv1D[X]

+
∑

j∈NS
i

(ŴT
S [βjxj ||xi])

+
∑

j∈NM
i

(ŴT
M[γjxj ||xi])

+ X

(12)

Graph matching edges ablation

We ablate the contribution of the three different types
of edges designed for the graph matching module. We
report in Table 6 the performance of VLG-Net for the
TACoS dataset when each edge is removed from the ar-
chitecture. As previously stated, the Ordering Edges or
Semantic Edges are responsible for aggregating contextual
information within the graph matching module. When re-
moved, they lead to noticeable degradation of the perfor-
mance of 2.15% and 3.77%, respectively. Conversely, as
expected, when the Matching Edges are removed, the per-
formances are severely impaired. We assist in a drop of
27.34%, showcasing the high relevance of the matching op-
eration. Note that, the removal of the Matching Edges pre-
vents the fusion between the modalities. Nonetheless, the
two modalities still interact in the Masked Attention Pool-
ing module through the learnable cross-attention pooling
method. However, this limited interaction cannot bridge the
complex semantic information between modalities. The ab-
lation showcases the importance of designing effective op-
eration for multi-modal fusion to achieve high performance
on the grounding task. Nonetheless, we can conclude that
all edges are relevant and necessary to obtain state-of-the-
art performance.

Dataset Edge Types R@1 IoU0.5Ordering Semantic Matching

TACoS

3 3 3 34.19
7 3 3 32.04
3 7 3 30.42
3 3 7 6.85

Table 6. Ablation of different edges. We investigate the impact of
edges within the graph matching layer. We report the performance
of our VLG-Net when specific edges are removed, as well as our
best performance for TACoS datasets.

Visualization graph matching attention

In Fig. 6, we plot the Matching Edge weights (before
SoftMax) for two video-query pairs, where the Matching
Edge weights are used to measure the similarity between
video snippets and language tokens. In graph convolutions,
a Matching Edge propagates more information if its weight
is high, and vice versa.



high

low

(a)

(a) Query: “She is holding an accordian as she talks.”

high

low

(b)

(b) Query: “Three people are riding a
very colorful camel on the beach.”

Figure 6. Visualization of graph matching attention. We visu-
alize the Matching Edge of the graph matching layer. Correspon-
dence between video snippets and query tokens can be evaluated
through the heat-map.

In Fig. 6a, we show the grounding result for a 2 minutes
accordian tutorial, with associated query: “She is holding
an accordian as she talks”. It can be observed from the
blue-yellow heat-map that high scores are assigned to the
words “holding”, “accordian”, and “talks”, which are the
most discriminative tokens for the query localization. Be-
low the heat-map, we visualize the snippets of the video.
The unrelated snippets (first and last) are associated with
low scores. Conversely, more relevant snippets (central
ones) have higher Matching Edge weights. This entails that
the algorithm is successfully correlating important language
cues with relevant video cues when performing the graph
matching operation.

Similarly, Fig. 6b shows the result for a 22 second camel
riding video, for which the associated query is: “Three peo-
ple are riding a very colorful camel on the beach.” The heat-
map highlights the keywords: “riding”, “colorful camel”,
and “beach”, which are relatively more informative in the
query sentence. Interestingly, the word “riding” is always
associated with high attention weights, and a visual inspec-
tion confirms that the action happens throughout the whole
video. This showcases that our VLG-Net can successfully
learn semantic video-language matching. If we focus on the
first two snippets of Fig. 6b, we can see that both have asso-
ciated high scores with the word “riding”. However, given
the smaller field of view of the first frame, only the second
frame contains a more distinguishable camel. In fact, for
this particular frame, we observe a high weight score for
the words “colorful” and “camel”. Moreover, the context of

“beach” can be learned from all the last three snippets.
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snippet feature only once while computing each moment’s
representation.

Specifically, we implement and ablate three different
schemes, namely: (i) learnable self-attention, (ii) cross-
attention, and (iii) learnable cross-attention. In (i), we ob-
tain the unnormalized attention weights by applying a 1D
convolutional layer that maps each clip feature to a single
score. In (ii) and (iii), we compute the sentence represen-
tation by applying self-attention pooling on top of the last
SyntacGCN layer X

(bl)
l , we refer to this quantity as X

(att)
l .

Configuration (iii) is depicted in Fig. 4.
Cross-attention obtains the unnormalized weights by

computing the inner product between the snippet and sen-
tence features, while learnable cross-attention concatenates
each snippet feature with the sentence feature and uses a
1D convolutional layer to obtain the weights. In all cases,
the unnormalized weight vector has shape w 2 Rnv⇥1 for
each video. The vector is repeated m times to obtain the
matrix W 2 Rnv⇥m, and a fixed mask M 2 Rnv⇥m is
applied to it. Similar to Songyang et al. [71], we generate
moment candidates and apply a sparse sampling strategy to
discard redundant moments. Therefore, the mask is gen-
erated according to the sampled moments, highlighting for
each of them, which are the clips that must be taken into
account when computing the moment’s pooled feature. The
attention scores are then obtained by applying the softmax
operation. Thanks to the masking operation, clips not re-
lated to the n-th moment will not be considered. Finally, the
moments’ features are obtained simply as a matrix multipli-
cation: Y = X(GM)SoftMax(W + M). Ablation results
are reported in the experiment section (Sec 4.4).

3.6. Moment Localization

The output of the previous module is then fed to a Multi-
Layer Perceptron (MLP) network to compute the score
pk for each moment candidate. This scores predicts the
Intersection-over-Union (IoU) of each moment with the
ground truth one. For training, we supervise this process
using a cross-entropy loss, shown in Eq. 5. We assign the
label tk = 1 if the IoU is greater than a threshold ✓ and
tk = 0 otherwise.

L =
1

m

mX

k=1

tk log pk + (1 � tk) log(1 � pk), (5)

At inference time, moment candidates are ranked accord-
ing to their predicted scores and non-maximum suppression
is adopted to discard highly overlapping moments. The re-
maining top- moments are involved in the recall compu-
tation. The temporal boundaries (ts,k, te,k) associated with
the top- moments are used to calculate the Intersection-
over-Union (IoU) with the ground-truth video moments
(⌧s, ⌧e) to determine the alignment performance. A formal

Dataset Num. Video-Sentence pairs Vocab.
Videos train val test Size

Activitynet-Captions [21] 14926 37421 17505 17031 15406
TACoS [39] 127 10146 4589 4083 2255
DiDeMo [1] 10642 33005 4180 4021 7523

Charades-STA [11] 6670 12404 0 3720 1289

Table 1. Video-language grounding dataset statistics

definition of the metric used and details about the training
strategy are presented in Sec. 4.2

4. Experiments

4.1. Datasets

ActivityNet-Captions [21] is a popular benchmark dataset
for the video grounding task. It is a large-scale action un-
derstanding dataset initially collected for the task of dense
captioning, but it has been recently restructured for the task
of moment localization with natural language [3, 26]. The
dataset contains 20k diverse videos with about 100k sen-
tence queries, subdivided into four splits: train, val 1, val 2,
and test. The test set is withheld for competition purposes
leaving the rest publicly available. See Tab. 1 for more de-
tails about the publicly available splits. Following the pre-
vious setting in [26], in this paper, we use val 1 as the vali-
dation set and val 2 as the testing set.
TACoS [39] consists of 127 videos selected from the MPII
Cooking Composite Activities video corpus [41]. It consists
of 18818 moment-query pairs of different cooking activities
in the kitchen. On average, every video in TACoS contains
148 queries, some of which are annotations of very short
video segments.
DiDeMo [1] consists of unedited video footage from Flickr
with sentences aligned to unique moments in its 10642
videos. It is split into 33008, 4180, and 4021 video-
language pairs for training, validation, and testing, respec-
tively. Note that moment start and end points are aligned to
five-second intervals and that the maximum annotated mo-
ment length is 30 seconds.
Charades-STA [11] consists of 16124 video-sentences
pairs resulting in the smallest dataset for the task in terms of
training and testing samples. Moreover, this dataset is also
characterized by the smallest vocabulary size (and average
sentence length). See Tab 1 for more details. In addition,
the dataset only has two splits available and lacks an official
validation split, making it prone to overfitting when hyper-
parameters are chosen with respect to training performance.
Although this dataset has been widely adopted for the task,
for the reasons listed above, we choose not to evaluate our
method on it. More discussion can be found in the Supple-
mentary Material. The lack of validation split makes it very
difficult to asses if hyper-parameters have been chosen to
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snippet feature only once while computing each moment’s
representation.

Specifically, we implement and ablate three different
schemes, namely: (i) learnable self-attention, (ii) cross-
attention, and (iii) learnable cross-attention. In (i), we ob-
tain the unnormalized attention weights by applying a 1D
convolutional layer that maps each clip feature to a single
score. In (ii) and (iii), we compute the sentence represen-
tation by applying self-attention pooling on top of the last
SyntacGCN layer X

(bl)
l , we refer to this quantity as X

(att)
l .

Configuration (iii) is depicted in Fig. 4.
Cross-attention obtains the unnormalized weights by

computing the inner product between the snippet and sen-
tence features, while learnable cross-attention concatenates
each snippet feature with the sentence feature and uses a
1D convolutional layer to obtain the weights. In all cases,
the unnormalized weight vector has shape w 2 Rnv⇥1 for
each video. The vector is repeated m times to obtain the
matrix W 2 Rnv⇥m, and a fixed mask M 2 Rnv⇥m is
applied to it. Similar to Songyang et al. [71], we generate
moment candidates and apply a sparse sampling strategy to
discard redundant moments. Therefore, the mask is gen-
erated according to the sampled moments, highlighting for
each of them, which are the clips that must be taken into
account when computing the moment’s pooled feature. The
attention scores are then obtained by applying the softmax
operation. Thanks to the masking operation, clips not re-
lated to the n-th moment will not be considered. Finally, the
moments’ features are obtained simply as a matrix multipli-
cation: Y = X(GM)SoftMax(W + M). Ablation results
are reported in the experiment section (Sec 4.4).

3.6. Moment Localization

The output of the previous module is then fed to a Multi-
Layer Perceptron (MLP) network to compute the score
pk for each moment candidate. This scores predicts the
Intersection-over-Union (IoU) of each moment with the
ground truth one. For training, we supervise this process
using a cross-entropy loss, shown in Eq. 5. We assign the
label tk = 1 if the IoU is greater than a threshold ✓ and
tk = 0 otherwise.

L =
1

m

mX

k=1

tk log pk + (1 � tk) log(1 � pk), (5)

At inference time, moment candidates are ranked accord-
ing to their predicted scores and non-maximum suppression
is adopted to discard highly overlapping moments. The re-
maining top- moments are involved in the recall compu-
tation. The temporal boundaries (ts,k, te,k) associated with
the top- moments are used to calculate the Intersection-
over-Union (IoU) with the ground-truth video moments
(⌧s, ⌧e) to determine the alignment performance. A formal

Dataset Num. Video-Sentence pairs Vocab.
Videos train val test Size

Activitynet-Captions [21] 14926 37421 17505 17031 15406
TACoS [39] 127 10146 4589 4083 2255
DiDeMo [1] 10642 33005 4180 4021 7523

Charades-STA [11] 6670 12404 0 3720 1289

Table 1. Video-language grounding dataset statistics

definition of the metric used and details about the training
strategy are presented in Sec. 4.2

4. Experiments

4.1. Datasets

ActivityNet-Captions [21] is a popular benchmark dataset
for the video grounding task. It is a large-scale action un-
derstanding dataset initially collected for the task of dense
captioning, but it has been recently restructured for the task
of moment localization with natural language [3, 26]. The
dataset contains 20k diverse videos with about 100k sen-
tence queries, subdivided into four splits: train, val 1, val 2,
and test. The test set is withheld for competition purposes
leaving the rest publicly available. See Tab. 1 for more de-
tails about the publicly available splits. Following the pre-
vious setting in [26], in this paper, we use val 1 as the vali-
dation set and val 2 as the testing set.
TACoS [39] consists of 127 videos selected from the MPII
Cooking Composite Activities video corpus [41]. It consists
of 18818 moment-query pairs of different cooking activities
in the kitchen. On average, every video in TACoS contains
148 queries, some of which are annotations of very short
video segments.
DiDeMo [1] consists of unedited video footage from Flickr
with sentences aligned to unique moments in its 10642
videos. It is split into 33008, 4180, and 4021 video-
language pairs for training, validation, and testing, respec-
tively. Note that moment start and end points are aligned to
five-second intervals and that the maximum annotated mo-
ment length is 30 seconds.
Charades-STA [11] consists of 16124 video-sentences
pairs resulting in the smallest dataset for the task in terms of
training and testing samples. Moreover, this dataset is also
characterized by the smallest vocabulary size (and average
sentence length). See Tab 1 for more details. In addition,
the dataset only has two splits available and lacks an official
validation split, making it prone to overfitting when hyper-
parameters are chosen with respect to training performance.
Although this dataset has been widely adopted for the task,
for the reasons listed above, we choose not to evaluate our
method on it. More discussion can be found in the Supple-
mentary Material. The lack of validation split makes it very
difficult to asses if hyper-parameters have been chosen to
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snippet feature only once while computing each moment’s
representation.

Specifically, we implement and ablate three different
schemes, namely: (i) learnable self-attention, (ii) cross-
attention, and (iii) learnable cross-attention. In (i), we ob-
tain the unnormalized attention weights by applying a 1D
convolutional layer that maps each clip feature to a single
score. In (ii) and (iii), we compute the sentence represen-
tation by applying self-attention pooling on top of the last
SyntacGCN layer X

(bl)
l , we refer to this quantity as X

(att)
l .

Configuration (iii) is depicted in Fig. 4.
Cross-attention obtains the unnormalized weights by

computing the inner product between the snippet and sen-
tence features, while learnable cross-attention concatenates
each snippet feature with the sentence feature and uses a
1D convolutional layer to obtain the weights. In all cases,
the unnormalized weight vector has shape w 2 Rnv⇥1 for
each video. The vector is repeated m times to obtain the
matrix W 2 Rnv⇥m, and a fixed mask M 2 Rnv⇥m is
applied to it. Similar to Songyang et al. [71], we generate
moment candidates and apply a sparse sampling strategy to
discard redundant moments. Therefore, the mask is gen-
erated according to the sampled moments, highlighting for
each of them, which are the clips that must be taken into
account when computing the moment’s pooled feature. The
attention scores are then obtained by applying the softmax
operation. Thanks to the masking operation, clips not re-
lated to the n-th moment will not be considered. Finally, the
moments’ features are obtained simply as a matrix multipli-
cation: Y = X(GM)SoftMax(W + M). Ablation results
are reported in the experiment section (Sec 4.4).

3.6. Moment Localization

The output of the previous module is then fed to a Multi-
Layer Perceptron (MLP) network to compute the score
pk for each moment candidate. This scores predicts the
Intersection-over-Union (IoU) of each moment with the
ground truth one. For training, we supervise this process
using a cross-entropy loss, shown in Eq. 5. We assign the
label tk = 1 if the IoU is greater than a threshold ✓ and
tk = 0 otherwise.

L =
1

m

mX

k=1

tk log pk + (1 � tk) log(1 � pk), (5)

At inference time, moment candidates are ranked accord-
ing to their predicted scores and non-maximum suppression
is adopted to discard highly overlapping moments. The re-
maining top- moments are involved in the recall compu-
tation. The temporal boundaries (ts,k, te,k) associated with
the top- moments are used to calculate the Intersection-
over-Union (IoU) with the ground-truth video moments
(⌧s, ⌧e) to determine the alignment performance. A formal

Dataset Num. Video-Sentence pairs Vocab.
Videos train val test Size

Activitynet-Captions [21] 14926 37421 17505 17031 15406
TACoS [39] 127 10146 4589 4083 2255
DiDeMo [1] 10642 33005 4180 4021 7523

Charades-STA [11] 6670 12404 0 3720 1289

Table 1. Video-language grounding dataset statistics

definition of the metric used and details about the training
strategy are presented in Sec. 4.2

4. Experiments

4.1. Datasets

ActivityNet-Captions [21] is a popular benchmark dataset
for the video grounding task. It is a large-scale action un-
derstanding dataset initially collected for the task of dense
captioning, but it has been recently restructured for the task
of moment localization with natural language [3, 26]. The
dataset contains 20k diverse videos with about 100k sen-
tence queries, subdivided into four splits: train, val 1, val 2,
and test. The test set is withheld for competition purposes
leaving the rest publicly available. See Tab. 1 for more de-
tails about the publicly available splits. Following the pre-
vious setting in [26], in this paper, we use val 1 as the vali-
dation set and val 2 as the testing set.
TACoS [39] consists of 127 videos selected from the MPII
Cooking Composite Activities video corpus [41]. It consists
of 18818 moment-query pairs of different cooking activities
in the kitchen. On average, every video in TACoS contains
148 queries, some of which are annotations of very short
video segments.
DiDeMo [1] consists of unedited video footage from Flickr
with sentences aligned to unique moments in its 10642
videos. It is split into 33008, 4180, and 4021 video-
language pairs for training, validation, and testing, respec-
tively. Note that moment start and end points are aligned to
five-second intervals and that the maximum annotated mo-
ment length is 30 seconds.
Charades-STA [11] consists of 16124 video-sentences
pairs resulting in the smallest dataset for the task in terms of
training and testing samples. Moreover, this dataset is also
characterized by the smallest vocabulary size (and average
sentence length). See Tab 1 for more details. In addition,
the dataset only has two splits available and lacks an official
validation split, making it prone to overfitting when hyper-
parameters are chosen with respect to training performance.
Although this dataset has been widely adopted for the task,
for the reasons listed above, we choose not to evaluate our
method on it. More discussion can be found in the Supple-
mentary Material. The lack of validation split makes it very
difficult to asses if hyper-parameters have been chosen to

6

0.0s 11.3s

Wiping

Video Snippet

Language Token

Ordering Edge

Semantic Edge

Matching Edge

Neighbourhood

Three people are riding a very colourful camel on the beach.

0.8s

21.0s

Ground truth moment

Predicted moment

(a) (b) (c) (d)

Tokens – Snippets (Ours)

X(GM) 2 Rc⇥nv

Y 2 Rc⇥m

3

0.0s 11.3s

Wiping

Video Snippet

Language Token

Ordering Edge

Semantic Edge

Matching Edge

Neighbourhood

Three people are riding a very colourful camel on the beach.

0.8s

21.0s

Ground truth moment

Predicted moment

(a) (b) (c) (d)

Tokens – Snippets (Ours)

X(GM) 2 Rc⇥nv

Y 2 Rc⇥m

3

0.0s 11.3s

Wiping

Video Snippet

Language Token

Ordering Edge

Semantic Edge

Matching Edge

Neighbourhood

Three people are riding a very colourful camel on the beach.

0.8s

21.0s

Ground truth moment

Predicted moment

(a) (b) (c) (d)

Tokens – Snippets (Ours)

X(GM) 2 Rc⇥nv

Y 2 Rc⇥m

3

0
.0s

1
1
.3s

W
iping

V
ideo

Snippet

L
anguage

Token

O
rdering

E
dge

Sem
antic

E
dge

M
atching

E
dge

N
eighbourhood

T
hree

people
are

riding
a

very
colourfulcam

elon
the

beach.

0
.8s

2
1
.0s

G
round

truth
m

om
ent

Predicted
m

om
ent

(a)(b)(c)(d)

Tokens
–

Snippets
(O

urs)

X
(G

M
)2

R
c⇥

n
v

Y
2

R
c⇥

m

Inner
productand

repeat
m

tim
es

C
onv.1D

and
repeat

m
tim

es

3

(b) Cross-attention.

equations

mattia.soldan.ms

November 2020

1 Introduction
w2Rnv⇥1 (1)

W 2Rnv⇥m (2)

M 2Rnv⇥m (3)

Y 2Rcv⇥m (4)

X
(0)
l,nl

(5)

1

equations

mattia.soldan.ms

November 2020

1 Introduction
w2Rnv⇥1 (1)

W 2Rnv⇥m (2)

M 2Rnv⇥m (3)

Y 2Rcv⇥m (4)

X
(0)
l,nl

(5)

1

equations

m
attia.soldan.m

s

N
ovem

ber2020

1
Introduction

w
2

R
n

v ⇥
1

(1)

W
2

R
n

v ⇥
m

(2)

M
2

R
n

v ⇥
m

(3)

Y
2

R
c

v ⇥
m

(4)

X
(0

)
l,n

l
(5)

w
1

(6)

w
2

(7)

w
n

v
(8)

C
onv.1D

and
repeat

m
tim

es

SoftM
ax

1

equations

mattia.soldan.ms

November 2020

1 Introduction
w2Rnv⇥1 (1)

W 2Rnv⇥m (2)

M 2Rnv⇥m (3)

Y 2Rcv⇥m (4)

X
(0)
l,nl

(5)

w1 (6)

w2 (7)

wnv
(8)

Conv. 1D and
repeat m times

SoftMax

Mask

1

equations

mattia.soldan.ms

November 2020

1 Introduction
w2Rnv⇥1 (1)

W 2Rnv⇥m (2)

M 2Rnv⇥m (3)

Y 2Rcv⇥m (4)

X
(0)
l,nl

(5)

w1 (6)

w2 (7)

wnv
(8)

Conv. 1D and
repeat m times

SoftMax

Mask

X
(GM)
v,1 (9)

X
(GM)
v,2 (10)

X(GM)
v,nv

(11)

1

equations

mattia.soldan.ms

November 2020

1 Introduction
w2Rnv⇥1 (1)

W 2Rnv⇥m (2)

M 2Rnv⇥m (3)

Y 2Rcv⇥m (4)

X
(0)
l,nl

(5)

w1 (6)

w2 (7)

wnv
(8)

Conv. 1D and
repeat m times

SoftMax

Mask

X
(GM)
v,1 (9)

X
(GM)
v,2 (10)

X(GM)
v,nv

(11)

1

equations

mattia.soldan.ms

November 2020

1 Introduction
w2Rnv⇥1 (1)

W 2Rnv⇥m (2)

M 2Rnv⇥m (3)

Y 2Rcv⇥m (4)

X
(0)
l,nl

(5)

w1 (6)

w2 (7)

wnv
(8)

Conv. 1D and
repeat m times

SoftMax

Mask

X
(GM)
v,1 (9)

X
(GM)
v,2 (10)

X(GM)
v,nv

(11)

1

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

CVPR
#509

CVPR
#509

CVPR 2021 Submission #509. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

snippet feature only once while computing each moment’s
representation.

Specifically, we implement and ablate three different
schemes, namely: (i) learnable self-attention, (ii) cross-
attention, and (iii) learnable cross-attention. In (i), we ob-
tain the unnormalized attention weights by applying a 1D
convolutional layer that maps each clip feature to a single
score. In (ii) and (iii), we compute the sentence represen-
tation by applying self-attention pooling on top of the last
SyntacGCN layer X

(bl)
l , we refer to this quantity as X

(att)
l .

Configuration (iii) is depicted in Fig. 4.
Cross-attention obtains the unnormalized weights by

computing the inner product between the snippet and sen-
tence features, while learnable cross-attention concatenates
each snippet feature with the sentence feature and uses a
1D convolutional layer to obtain the weights. In all cases,
the unnormalized weight vector has shape w 2 Rnv⇥1 for
each video. The vector is repeated m times to obtain the
matrix W 2 Rnv⇥m, and a fixed mask M 2 Rnv⇥m is
applied to it. Similar to Songyang et al. [71], we generate
moment candidates and apply a sparse sampling strategy to
discard redundant moments. Therefore, the mask is gen-
erated according to the sampled moments, highlighting for
each of them, which are the clips that must be taken into
account when computing the moment’s pooled feature. The
attention scores are then obtained by applying the softmax
operation. Thanks to the masking operation, clips not re-
lated to the n-th moment will not be considered. Finally, the
moments’ features are obtained simply as a matrix multipli-
cation: Y = X(GM)SoftMax(W + M). Ablation results
are reported in the experiment section (Sec 4.4).

3.6. Moment Localization

The output of the previous module is then fed to a Multi-
Layer Perceptron (MLP) network to compute the score
pk for each moment candidate. This scores predicts the
Intersection-over-Union (IoU) of each moment with the
ground truth one. For training, we supervise this process
using a cross-entropy loss, shown in Eq. 5. We assign the
label tk = 1 if the IoU is greater than a threshold ✓ and
tk = 0 otherwise.

L =
1

m

mX

k=1

tk log pk + (1 � tk) log(1 � pk), (5)

At inference time, moment candidates are ranked accord-
ing to their predicted scores and non-maximum suppression
is adopted to discard highly overlapping moments. The re-
maining top- moments are involved in the recall compu-
tation. The temporal boundaries (ts,k, te,k) associated with
the top- moments are used to calculate the Intersection-
over-Union (IoU) with the ground-truth video moments
(⌧s, ⌧e) to determine the alignment performance. A formal

Dataset Num. Video-Sentence pairs Vocab.
Videos train val test Size

Activitynet-Captions [21] 14926 37421 17505 17031 15406
TACoS [39] 127 10146 4589 4083 2255
DiDeMo [1] 10642 33005 4180 4021 7523

Charades-STA [11] 6670 12404 0 3720 1289

Table 1. Video-language grounding dataset statistics

definition of the metric used and details about the training
strategy are presented in Sec. 4.2

4. Experiments

4.1. Datasets

ActivityNet-Captions [21] is a popular benchmark dataset
for the video grounding task. It is a large-scale action un-
derstanding dataset initially collected for the task of dense
captioning, but it has been recently restructured for the task
of moment localization with natural language [3, 26]. The
dataset contains 20k diverse videos with about 100k sen-
tence queries, subdivided into four splits: train, val 1, val 2,
and test. The test set is withheld for competition purposes
leaving the rest publicly available. See Tab. 1 for more de-
tails about the publicly available splits. Following the pre-
vious setting in [26], in this paper, we use val 1 as the vali-
dation set and val 2 as the testing set.
TACoS [39] consists of 127 videos selected from the MPII
Cooking Composite Activities video corpus [41]. It consists
of 18818 moment-query pairs of different cooking activities
in the kitchen. On average, every video in TACoS contains
148 queries, some of which are annotations of very short
video segments.
DiDeMo [1] consists of unedited video footage from Flickr
with sentences aligned to unique moments in its 10642
videos. It is split into 33008, 4180, and 4021 video-
language pairs for training, validation, and testing, respec-
tively. Note that moment start and end points are aligned to
five-second intervals and that the maximum annotated mo-
ment length is 30 seconds.
Charades-STA [11] consists of 16124 video-sentences
pairs resulting in the smallest dataset for the task in terms of
training and testing samples. Moreover, this dataset is also
characterized by the smallest vocabulary size (and average
sentence length). See Tab 1 for more details. In addition,
the dataset only has two splits available and lacks an official
validation split, making it prone to overfitting when hyper-
parameters are chosen with respect to training performance.
Although this dataset has been widely adopted for the task,
for the reasons listed above, we choose not to evaluate our
method on it. More discussion can be found in the Supple-
mentary Material. The lack of validation split makes it very
difficult to asses if hyper-parameters have been chosen to
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snippet feature only once while computing each moment’s
representation.

Specifically, we implement and ablate three different
schemes, namely: (i) learnable self-attention, (ii) cross-
attention, and (iii) learnable cross-attention. In (i), we ob-
tain the unnormalized attention weights by applying a 1D
convolutional layer that maps each clip feature to a single
score. In (ii) and (iii), we compute the sentence represen-
tation by applying self-attention pooling on top of the last
SyntacGCN layer X

(bl)
l , we refer to this quantity as X

(att)
l .

Configuration (iii) is depicted in Fig. 4.
Cross-attention obtains the unnormalized weights by

computing the inner product between the snippet and sen-
tence features, while learnable cross-attention concatenates
each snippet feature with the sentence feature and uses a
1D convolutional layer to obtain the weights. In all cases,
the unnormalized weight vector has shape w 2 Rnv⇥1 for
each video. The vector is repeated m times to obtain the
matrix W 2 Rnv⇥m, and a fixed mask M 2 Rnv⇥m is
applied to it. Similar to Songyang et al. [71], we generate
moment candidates and apply a sparse sampling strategy to
discard redundant moments. Therefore, the mask is gen-
erated according to the sampled moments, highlighting for
each of them, which are the clips that must be taken into
account when computing the moment’s pooled feature. The
attention scores are then obtained by applying the softmax
operation. Thanks to the masking operation, clips not re-
lated to the n-th moment will not be considered. Finally, the
moments’ features are obtained simply as a matrix multipli-
cation: Y = X(GM)SoftMax(W + M). Ablation results
are reported in the experiment section (Sec 4.4).

3.6. Moment Localization

The output of the previous module is then fed to a Multi-
Layer Perceptron (MLP) network to compute the score
pk for each moment candidate. This scores predicts the
Intersection-over-Union (IoU) of each moment with the
ground truth one. For training, we supervise this process
using a cross-entropy loss, shown in Eq. 5. We assign the
label tk = 1 if the IoU is greater than a threshold ✓ and
tk = 0 otherwise.

L =
1

m

mX

k=1

tk log pk + (1 � tk) log(1 � pk), (5)

At inference time, moment candidates are ranked accord-
ing to their predicted scores and non-maximum suppression
is adopted to discard highly overlapping moments. The re-
maining top- moments are involved in the recall compu-
tation. The temporal boundaries (ts,k, te,k) associated with
the top- moments are used to calculate the Intersection-
over-Union (IoU) with the ground-truth video moments
(⌧s, ⌧e) to determine the alignment performance. A formal

Dataset Num. Video-Sentence pairs Vocab.
Videos train val test Size

Activitynet-Captions [21] 14926 37421 17505 17031 15406
TACoS [39] 127 10146 4589 4083 2255
DiDeMo [1] 10642 33005 4180 4021 7523

Charades-STA [11] 6670 12404 0 3720 1289

Table 1. Video-language grounding dataset statistics

definition of the metric used and details about the training
strategy are presented in Sec. 4.2

4. Experiments

4.1. Datasets

ActivityNet-Captions [21] is a popular benchmark dataset
for the video grounding task. It is a large-scale action un-
derstanding dataset initially collected for the task of dense
captioning, but it has been recently restructured for the task
of moment localization with natural language [3, 26]. The
dataset contains 20k diverse videos with about 100k sen-
tence queries, subdivided into four splits: train, val 1, val 2,
and test. The test set is withheld for competition purposes
leaving the rest publicly available. See Tab. 1 for more de-
tails about the publicly available splits. Following the pre-
vious setting in [26], in this paper, we use val 1 as the vali-
dation set and val 2 as the testing set.
TACoS [39] consists of 127 videos selected from the MPII
Cooking Composite Activities video corpus [41]. It consists
of 18818 moment-query pairs of different cooking activities
in the kitchen. On average, every video in TACoS contains
148 queries, some of which are annotations of very short
video segments.
DiDeMo [1] consists of unedited video footage from Flickr
with sentences aligned to unique moments in its 10642
videos. It is split into 33008, 4180, and 4021 video-
language pairs for training, validation, and testing, respec-
tively. Note that moment start and end points are aligned to
five-second intervals and that the maximum annotated mo-
ment length is 30 seconds.
Charades-STA [11] consists of 16124 video-sentences
pairs resulting in the smallest dataset for the task in terms of
training and testing samples. Moreover, this dataset is also
characterized by the smallest vocabulary size (and average
sentence length). See Tab 1 for more details. In addition,
the dataset only has two splits available and lacks an official
validation split, making it prone to overfitting when hyper-
parameters are chosen with respect to training performance.
Although this dataset has been widely adopted for the task,
for the reasons listed above, we choose not to evaluate our
method on it. More discussion can be found in the Supple-
mentary Material. The lack of validation split makes it very
difficult to asses if hyper-parameters have been chosen to
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snippet feature only once while computing each moment’s
representation.

Specifically, we implement and ablate three different
schemes, namely: (i) learnable self-attention, (ii) cross-
attention, and (iii) learnable cross-attention. In (i), we ob-
tain the unnormalized attention weights by applying a 1D
convolutional layer that maps each clip feature to a single
score. In (ii) and (iii), we compute the sentence represen-
tation by applying self-attention pooling on top of the last
SyntacGCN layer X

(bl)
l , we refer to this quantity as X

(att)
l .

Configuration (iii) is depicted in Fig. 4.
Cross-attention obtains the unnormalized weights by

computing the inner product between the snippet and sen-
tence features, while learnable cross-attention concatenates
each snippet feature with the sentence feature and uses a
1D convolutional layer to obtain the weights. In all cases,
the unnormalized weight vector has shape w 2 Rnv⇥1 for
each video. The vector is repeated m times to obtain the
matrix W 2 Rnv⇥m, and a fixed mask M 2 Rnv⇥m is
applied to it. Similar to Songyang et al. [71], we generate
moment candidates and apply a sparse sampling strategy to
discard redundant moments. Therefore, the mask is gen-
erated according to the sampled moments, highlighting for
each of them, which are the clips that must be taken into
account when computing the moment’s pooled feature. The
attention scores are then obtained by applying the softmax
operation. Thanks to the masking operation, clips not re-
lated to the n-th moment will not be considered. Finally, the
moments’ features are obtained simply as a matrix multipli-
cation: Y = X(GM)SoftMax(W + M). Ablation results
are reported in the experiment section (Sec 4.4).

3.6. Moment Localization

The output of the previous module is then fed to a Multi-
Layer Perceptron (MLP) network to compute the score
pk for each moment candidate. This scores predicts the
Intersection-over-Union (IoU) of each moment with the
ground truth one. For training, we supervise this process
using a cross-entropy loss, shown in Eq. 5. We assign the
label tk = 1 if the IoU is greater than a threshold ✓ and
tk = 0 otherwise.

L =
1

m

mX

k=1

tk log pk + (1 � tk) log(1 � pk), (5)

At inference time, moment candidates are ranked accord-
ing to their predicted scores and non-maximum suppression
is adopted to discard highly overlapping moments. The re-
maining top- moments are involved in the recall compu-
tation. The temporal boundaries (ts,k, te,k) associated with
the top- moments are used to calculate the Intersection-
over-Union (IoU) with the ground-truth video moments
(⌧s, ⌧e) to determine the alignment performance. A formal

Dataset Num. Video-Sentence pairs Vocab.
Videos train val test Size

Activitynet-Captions [21] 14926 37421 17505 17031 15406
TACoS [39] 127 10146 4589 4083 2255
DiDeMo [1] 10642 33005 4180 4021 7523

Charades-STA [11] 6670 12404 0 3720 1289

Table 1. Video-language grounding dataset statistics

definition of the metric used and details about the training
strategy are presented in Sec. 4.2

4. Experiments

4.1. Datasets

ActivityNet-Captions [21] is a popular benchmark dataset
for the video grounding task. It is a large-scale action un-
derstanding dataset initially collected for the task of dense
captioning, but it has been recently restructured for the task
of moment localization with natural language [3, 26]. The
dataset contains 20k diverse videos with about 100k sen-
tence queries, subdivided into four splits: train, val 1, val 2,
and test. The test set is withheld for competition purposes
leaving the rest publicly available. See Tab. 1 for more de-
tails about the publicly available splits. Following the pre-
vious setting in [26], in this paper, we use val 1 as the vali-
dation set and val 2 as the testing set.
TACoS [39] consists of 127 videos selected from the MPII
Cooking Composite Activities video corpus [41]. It consists
of 18818 moment-query pairs of different cooking activities
in the kitchen. On average, every video in TACoS contains
148 queries, some of which are annotations of very short
video segments.
DiDeMo [1] consists of unedited video footage from Flickr
with sentences aligned to unique moments in its 10642
videos. It is split into 33008, 4180, and 4021 video-
language pairs for training, validation, and testing, respec-
tively. Note that moment start and end points are aligned to
five-second intervals and that the maximum annotated mo-
ment length is 30 seconds.
Charades-STA [11] consists of 16124 video-sentences
pairs resulting in the smallest dataset for the task in terms of
training and testing samples. Moreover, this dataset is also
characterized by the smallest vocabulary size (and average
sentence length). See Tab 1 for more details. In addition,
the dataset only has two splits available and lacks an official
validation split, making it prone to overfitting when hyper-
parameters are chosen with respect to training performance.
Although this dataset has been widely adopted for the task,
for the reasons listed above, we choose not to evaluate our
method on it. More discussion can be found in the Supple-
mentary Material. The lack of validation split makes it very
difficult to asses if hyper-parameters have been chosen to
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(c) Learnable cross-attention.

Figure 7. Masked attention pooling. Inputs are video nodes
X

(GM)
v from the graph matching layer and the query embedding

X
(att)
l computed through self-attention pooling atop the graph

matching output. The output Y represents all moment candidates.

Ablation of Masked Attention Pooling

As presented in the main paper, three different imple-
mentations of attention for moment pooling operation have
been tested. They differ for inputs and operations to achieve
the attention scores. Learnable self-attention (Fig. 7a), only
relies on the fused features of video and language modali-
ties, which are the output of the graph matching layer, while
the cross-attention and learnable cross-attention configura-
tions (Fig. 7b and 7c) also involve a global sentence repre-
sentation X(att)

l in the process. (See Sec. 3.5 of the paper
for more details.) We compare the performances of the three
different implementations in Tab 7.

Following the ablation settings in our main paper, we fo-
cus on R@1 IoU0.5 and R@5 IoU0.5 for TACoS dataset.
We find that the cross-attention setup leads to the lowest
performance. Conversely the learnable cross-attention con-
figuration instead, obtains the best performance. Therefore
we adopt this configuration as default in the main paper.



Learnable
Cross-attention

Learnable
self-attention cross-attention

R@1 IoU0.5 29.87 16.62 34.19

R@5 IoU0.5 50.24 40.14 56.56

Table 7. Ablation of masked attention pooling implementa-
tions. The experimental results show that the cross-attention setup
leads to sub-optimal performance. Instead, the learnable cross-
attention configuration obtains the best performance.

Interestingly we notice that the learnable self-attention
setup can achieve relatively high performance. This can
be motivated by the intuition that our graph matching layer
can effectively fuse the video and language modalities, and
by relying on those enriched features only, can we obtain
a good representation of the moment’s feature. However,
involving a global language representation for guiding the
moment creation from the enriched snippets features has
been shown to yield the best results.

Charades-STA

Based on the results obtained from Activitynet-Caption,
TACoS, and DiDeMo, our method can theoretically achieve
state-of-the-art performance in the Charades-STA dataset.
However, we choose not to evaluate VLG-Net on this
dataset because of the following observations.

(1) This dataset is characterized by the smallest vocab-
ulary size and shortest language annotation with respect
all others datasets (see Tab. 8 and Tab. 9) For example, its
vocabulary contains 43% less unique words with respect to
TACoS [46], 83% with respect to DiDeMo [2], and 92%
with respect to Activity-Captions [27]. This fact can po-
tentially hamper the development of successful methods
and reduce the applicability to a real-world scenario where
users might use a richer vocabulary when querying for
moments. Given the great importance of the language for
the task at hand, it’s diversity in terms of unique tokens’
number, and sentence lengths are important factors. This
suggests that Charades-STA is less favourable for evaluat-
ing the video-language grounding task.

(2) Charades-STA has the smallest number of video-
query pairs (16124) with respect to all other datasets (See
Tab 8). As deep learning methods benefit from a large

Dataset Num. Video-Sentence pairs Vocab.
Videos train val test Size

ActivityNet Captions [27] 14926 37421 17505 17031 15406
TACoS [46] 127 10146 4589 4083 2255
DiDeMo [2] 10642 33005 4180 4021 7523

Charades-STA [16] 6670 12404 − 3720 1289

Table 8. Datasets statistics. Same as Table 1 in main paper,
reported in Supplementary Material for completeness.

Sentence’s lengths
Dataset Avg. Std.

Activitynet-Captions [27] 14.4 6.5
TACoS [46] 9.4 5.4
DiDeMo [2] 8.0 3.4

Charades-STA [16] 7.2 1.9

Table 9. Language annotations statistics. We report average
length (measured in number of tokens) and standard deviation for
queries in each dataset. Statistics are computed considering every
split for each dataset.

amount of annotated data, the reduced number of train-
ing/testing samples makes the dataset less suited for deep-
learning approaches.

(3) Most importantly, Charades-STA lacks an official
validation split. In machine learning applications, the val-
idation set is mandatory for hyper-parameters search, while
the test set is adopted for evaluating the generalization capa-
bilities of a given method to previously unseen data. Given
the absence of a validation set, nor a widely accepted proce-
dure for selecting the best models during the development
phase, some might use the test set for tuning the hyper-
parameters, therefore, harming the measurement of gener-
alization performance. The goal of research is to develop
tailor-made solutions for specific problems rather than find-
ing the hyper-parameters that can fit the test set best. A
conservative researcher could attempt at using the training
set (or part of it) as a synthetic validation split. However,
this could lead the model to overfit on the specific set of
samples. Other methods could be potentially applied (e.g.
cross-validation), yet no previous work mentioned the adop-
tion of such techniques.

For all these reasons we can conclude that, despite the
popularity of Charades-STA as benchmark for the language
grounding in video task, we decide not to evaluate our
method on it.


