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Abstract

This work presents a new temporally consistent space
object 3D trajectory estimation from a video taken by a sin-
gle RGB camera. Understanding space objects’ trajectories
is an important component of Space Situational Awareness,
especially for applications such as Active Debris Removal,
On-orbit Servicing, and Orbital Maneuvers. Using only the
information from a single image perspective gives tempo-
rally inconsistent 3D position estimation. Our approach
operates in two subsequent stages. The first stage estimates
the 2D location of the space object using a convolution neu-
ral network. In the next stage, the 2D locations are lifted to
3D space, using temporal convolution neural network that
enforces the temporal coherence over the estimated 3D lo-
cations. Our results show that leveraging temporal infor-
mation yields smooth and accurate 3D trajectory estima-
tions for space objects. A dedicated large realistic synthetic
dataset, named SPARK-T, containing 3 spacecrafts, under
various sensing conditions, is also proposed and will be
publicly shared with the research community.

1. Introduction

Since the beginning of space exploration, the number of
space debris has increased drastically. Debris population
comes mainly from the remnants from human-made objects
such as dead satellites, used rocket stages, and particles
from the collision of other debris [14]]. Today, these objects
represent a threat as space debris incurs the risk of collision
and damage to operational satellites.

To tackle this problem, one of the proposed solutions
is Active Debris Removal (ADR). The premise of this
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Figure 1. Spacecraft trajectory simulation

method consists of capturing and disposing of large debris
(> 10cm). To that end, new technological challenges re-
lated to orbital rendezvous in general, and to relative navi-
gation in particular, must be addressed. A reliable naviga-
tion system should be developed. It is required to be able
to provide accurate relative state estimates of the targeted
debris, over a wide range of different distances, from early
detection until target capture.

Programs such as CleanSpace [5], RemoveDebris [13],
AnDROiD [20], and future missions such as ClearSpace-
1 3] lead the efforts to provide a cleaner space. Depending
on the specific mission objectives, debris state estimates can
cover either the relative position and velocity (3-DoF rela-
tive navigation) of the targeted object, or the relative posi-
tion, velocity, attitude (6-DoF relative navigation), as well
as the target trajectory.

The contribution of this paper is twofold: First, we
propose a new spatio-temporal approach for space ob-
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Figure 2. Tracking a spacecraft within vision-based navigation
camera field of view over the reference trajectory from Re-
moveDebris mission[/13]].

ject 3D trajectory estimation. Second, a large and, to
the best of our knowledge, the first photo-realistic syn-
thetic dataset with temporal information for space object
3D trajectory estimation was created and will be pub-
licly shared with the research community. This dataset is
named SPARK-TE], where “T” stands for trajectories, and
“SPARK?” is in reference to the recent challenge on SPAce-
craft Recognition leveraging Knowledge of Space Environ-
ment (SPARK) [18]], for which the same simulator was
used.

In this paper, we focus on space object 3D trajectory esti-
mation from videos where we exploit the temporal informa-
tion. The proposed approach follows a top-down strategy.
First, we start by detecting the center of a space object as
2D coordinates for each frame. Then, we lift the detected
2D coordinates to 3D space leveraging the temporal infor-
mation contained in the observed video sequence. In order
to test the proposed approach, a new dedicated dataset has
been generated under a photo-realistic space simulation en-
vironment, with a large diversity in sensing conditions. Ob-
tained experimental results show stable and accurate space
object trajectory estimation. For ADR, such decomposition
of the problem reduces the difficulty of the task at hand.
It gives the possibility to control which estimation to use
based on the orbital situation of the spacecraft.

The rest of the paper is organized as follows: Section 2
describes the trajectory estimation problem. Details about
the proposed solution are provided in Section 3. Section 4
presents the generated dataset used for training and testing
the problem. Section 5 describes the implementation de-
tails, the conducted experiments, and presents the results.
Section 6 concludes this work.

2. Problem formulation

In this section, we formulate the considered problem of
spacecraft 3D trajectory estimation.

IThe SPARK-T dataset will be shared here https://cvi2.uni.
lu/

Let V; = {I1,---, Iy} be a sequence of RGB images cor-
responding to the observed spacecraft or debris, where N
is the total number of frames, and where the acquisition is
done with a known camera whose intrinsic matrix is K &€
R3*4_ Subsequently, the goal of this work is to estimate the
trajectory of the object of interest in 3D. That is, the objec-
tive is to estimate the trajectory Y = {¢y,--- ,{n}, where
l; € R3.

The object may be localized on each image I; by estimat-
ing its pixel coordinates (u;,v;) € R2 This 2D location
corresponds to the projection of the 3D location ¢; of the
object in the scene onto a 2D image plane using the camera
intrinsic parameters K such that

i u; ;i /W,
Vi ZK(Rigi—i-ti), and ( 1) = (\1 \z) (D)
" i V; /Wi

where R; and ¢; are the unknown space object rotation and
translation, respectively, relative to the camera.

The task at hand can be formulated as a two-step prob-
lem: (1) Estimation of the object 2D location (u;, v;) in the
image plane at each frame ¢ for ¢ = 1,--- | N; (2) Esti-
mation of the corresponding 3D locations ¢; = (x;,y;, 2;)
constituting the trajectory ).

3. Proposed approach

In order to estimate the 3D trajectory ), we cast the
problem as a 2D trajectory estimation followed by lifting
to 3D space [15} 22]], where the hypothesis is that tempo-
ral information may compensate the lack of the third di-
mension. This is verified in other applications, e.g., 3D
human pose estimation, where the low-dimensional 2D lo-
cation over time is shown to be discriminative enough to
estimate the 3D location with high accuracy [22].

In this section, we describe the main components of the pro-
posed two-step space object 3D trajectory estimation.

3.1. 2D Location estimation

In order to estimate an object 2D location (u, v) from an
RGB image I, we represent our object of interest as a sin-
gle point which is a simpler and a more efficient represen-
tation. Indeed, while a common approach is to use a regular
bounding box, we choose to track a selected 2D point, i.e.,
the origin, as it is geometrically related to the desired 3D
location (z,y, z) through eq. (1)

Inspired by CenterNet [26]], we use an encoder-decoder ar-
chitecture based on U-Net [24] with ResNetl8 [7] as the
encoder for feature extraction and the Differentiable Spatial
to Numerical Transform (DSNT) [19] to regress the 2D lo-
cation (u,v), as shown in Figure 3]

We choose the encoder part of our architecture to be
ResNet18 in order to better preserve finer details of the in-
put image especially in the cases where the object is small or
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Figure 3. Proposed architecture for 2D point regression: U-
Net [24] is used with ResNet18 [7] as encoder, gray blocks repre-
sent the encoder output, green block represent the bottleneck and
the blue blocks represent the scaled up output of the decoder. Fi-
nally DSNT [19] for coordinate regression.

far away from the camera. In addition, skip connections are
used from the encoder to the corresponding up-convolution
in the decoder, and features are concatenated in each corre-
sponding stage between the encoder and the decoder. The
final convolution layers of the decoder perceive the spatial
resolution of the input image, and output features are passed
to a softmax function which produces a single-channel nor-
malized heatmap where all elements are non-negative and
sum to one.
This output is passed to the DSNT layer, which is fully dif-
ferentiable, and exhibits good spatial generalization unlike
heatmap matching, and also outputs direct numerical coor-
dinates (u,v).

Then, for a given video sequence V7, this 2D localization
approach:

[T e RMXN oy (y,v) € R? ()

is applied frame by frame on V; resulting in a sequence of
estimated 2D locations X = {f(I1), -+, f(Ix)}. In ,
M 1is the image dimension, and NN is the number of frames.

3.2. 3D Trajectory estimation

Given a sequence X C R2?, the goal is to lift this se-
quence of 2D locations into the 3D space. To that end, we
need to estimate a function g(+), which maps a sequence of
2D points sequence to its corresponding 3D sequence, such
that:

g: X CR?>— Y CR3. 3)

Estimating the 3D location from individual frames leads to
a temporally incoherent result, where the independent error
from each frame leads to unstable 3D position estimation
over the video sequence. Thus, in our work, we follow the
same approach proposed in [22} [17] for human pose esti-
mation where a fully convolutional architecture is used to

perform temporal convolution over 2D skeleton joint posi-
tions in order to estimate the 3D skeleton in a video. There-
fore, the function ¢(-) is approximated by a Sequence to Se-
quence (Seq2Seq) Temporal Convolutional Network (TCN)
model as can be seen in Figure @ using 1D temporal convo-
lution. Consequently, the sequence of 3D locations can be
obtained using the combination of the functions f(-) and
g(+), such that Yy = g o f(Vi), where o denotes function
composition.

We note that TCN is a variation of convolutional neural net-
work for sequence modelling tasks. Compared to traditional
Recurrent Neural Networks (RNNs), TCN offers more di-
rect high-bandwidth access to past and future information.
This allows TCN to be more efficient to model the temporal
information of the input data with fixed size [[16]]. TCN can
be causal; meaning that there is no information “leakage”
from future to past, or non-causal where past and future in-
formation is considered. The main critical component of
the TCN is the dilated convolution [9] layer, which allows
to properly treat temporal order and handle long-term de-
pendencies without an explosion in model complexity. For
simple convolution, the size of the receptive field of each
unit - block of input which can influence its activation - can
only grow linearly with the number of layers. In the dilated
convolution, the dilation factor d increases exponentially at
each layer. Therefore, even though the number of parame-
ters grows only linearly with the number of layers, the ef-
fective receptive field of units grows exponentially with the
layer depth. The dilated convolution %4 with a dilation fac-
tor d of a 1D signal s with a kernel of size k is defined as:

(k*qs), = Z kr - Si—dqr. @)

T=—00

Convolutional models enable parallelization over both the
batch and the time dimension while RNNs cannot be par-
allelized over time [2]]. Moreover, the path of the gradient
between output and input has a fixed length regardless of the
sequence length, which mitigates the vanishing and explod-
ing gradients. This has a direct impact on the performance
of RNNs [2]. Architectures with dilated convolutions have
been successfully used for audio generation in Wavnet [21]],
semantic segmentation [25]], machine translation [11]], and
3D pose estimation [22]. As stated in [2], TCNs generally
outperform most of the commonly used networks such as
Long Short-Term Memory (LSTM) [8]] or Gated Recurrent
Unit (GRU) [4]] for different tasks.

4. Data generation

In the space domain, given the difficulty of obtaining
large real datasets, synthetic datasets are currently the
default approach for developing DL methods for Space
Sitiuational Awareness (SSA) and ADR tasks. To the best
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Figure 4. 3D Trajectory estimation model for each frame in time ¢, we forward the historical 2D coordinate (u, v) from the previous frames
and estimated its 3D coordinate (z, y, z) using temporal convolution network (TCN) leading to stable and accurate trajectory estimation.

of our knowledge, existing datasets [23, [12]], and more
recently [10]], do not provide temporal data as they were
designed specifically for single image spacecraft pose
estimation [6].

To study spacecraft trajectory estimation, we utilized our
realistic space simulation environment, providing a large
range of diversity in sensing conditions and trajectories.

Figure 5. Samples from our generated SPARK-T dataset. Top row
— Jason satellite, middle row — heat shield tile, down row — Cube-
Sat.

We used 3D models of three target spacecrafts: (1) a 3D
model of ‘Jason’ satellite with dimensions 3.8m x 10m X
2m with the solar panels deployed; (2) 1RU generic ‘Cube-
Sat’ with dimensions 10cm x 11lem x 11lem; and (3) for
debris we used a heat shield tile model with dimensions

15em x 10em x 3em. The 3D models were obtained from
NASA 3D resources [/1]].

SPARK-T dataset was generated by placing the target space-
craft in different trajectories within the field of view of
a camera mounted on a chaser. Furthermore, the Sun
and Earth were rotated around their respective axes. This
has ensured a diversity in the generated dataset with high-
resolution photorealistic RGB images for different orbital
scenarios.

For this work, 50 sequences were generated for each of the
three spacecrafts, with 50 frames each, and including their
3D trajectories as ground truth and the corresponding R, ¢
of the spacecraft with respect to the camera reference frame.
Finally, all images were resized to 512 x 512 and pro-
cessed with a zero-mean Gaussian blurring with variance
02 = 1 and an additive Gaussian white noise with variance
o? =0.001.

5. Experiments

In this section, we present the experimental setup along
with the obtained results. To evaluate the proposed ap-
proach, experiments were conducted on our generated
spacecraft trajectories dataset presented in Section 4}

5.1. Data preparation

The data were split into 80% (i.e., 120 sequences) for
training , and 20% (i.e., 30 sequences) for testing.
For training the 2D location estimation model f(.) pre-
sented in Section [3.1] the training data were shuffled in
order to eliminate the temporal dependency in the dataset.
During training, the input 2D coordinates p = (u,v) were
normalized to be in the range [-1, 1], as in [19].
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Figure 6. Three examples of groundtruth trajectories (in green) and the estimated 3D trajectories using TCN (in red) and the estimated 3D

positions using direct regression (in blue).

@

Figure 7. Visualization of the predicted spacecraft 2D location
with the heat map overlaid on the input image. The red point e is
the ground truth 2D location, the green point e is the predicted 2D
location, in (a) Jason satellite successfully detected, (b) detected
debris, (c) detected CubeSat, in (d) wrongly detected cube sat due
to optical sensor sun flare (zooming in might be necessary).

For training the 3D trajectory estimation model g(.), pre-
sented in Section the model was trained with the se-
quence of 2D location of the ground truth as an input and
3D trajectories ground truth as an output. The 2D /3D point
sequences were normalized in order to have values in the

range [0,1] for training the TCN model.
5.2. Implementation details

In order to detect the 2D coordinates of the space ob-
ject present in the image, we train our 2D regression model
presented in Figure [3] by passing the output of a single-
channel normalized heatmap from U-Net to the DSNT
layer [[19]] that outputs numerical coordinates, then we cal-
culate the Euclidean distanceE] between the prediction p and
the ground truth p as

Leuc(,uvp) = ”p - H||2- (@)

The estimated 2D coordinate sequences X are passed
through a TCN network in order to obtain the correspond-
ing 3D coordinate sequences. By using a TCN network
we preserve the temporal coherence present in the 2D se-
quences which leads, in turn, to improving the quality of the
estimated 3D coordinates. The following parameters were
used: kernel size k = 6; dilationrate d € {1, 2,4, 8}; Adap-
tive Moment Estimation (ADAM) optimizer with learning
rate of 0.001; and 100 epochs.

To highlight the difference between using TCN for tem-
poral consistency and direct 3D location regression, we
trained another model similar to the one presented in Fig-
ure[3|(2D points regression) with adding an auxiliary brunch
from the bottleneck of the ResNet encoder to directly
regress the 3D location ¢ = (x,y,2) and jointly train the
model to predict p and /.

5.3. Results

We evaluate the obtained results qualitatively and quan-
titatively at the two levels, namely, (1) 2D location estima-

2No unit as 2D locations are normalized.
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tion, and (2) 3D trajectory with respect to the camera.

With regards to the 2D location, we have used our proposed
model presented in Figure [3] As a result we obtained an
error L, of 0.48 for training and 0.62 for testing. Over-
all and in most of the cases, the obtained 2D coordinate
detection from a single RGB image has a small error. In-
vestigating the cases with high error, we found that those
correspond to images generated under direct sun illumina-
tion and subject to lens flare. These challenging conditions
contributed the most to wrongly detected 2D coordinates
in these images as can be seen in Figure [/| (d). We note,
nonetheless, that these frames do not appear continuously
in a video. Using multiple frames for estimating the posi-
tion is therefore a suitable strategy to mitigate errors coming
from isolated frames.

In order to estimate the 3D trajectories of the spacecraft,
we have lifted the 2D coordinates to 3D space using the
proposed TCN based model presented in Section and
illustrated in Figure ] Figure [6] shows a visual compari-
son between the 3D trajectory estimated with the proposed
model (red) and the one estimated using direct 3D position
regression from single images (blue). We note that our ap-
proach provides a smoother and a more temporally coher-
ent trajectory. The overall quantitative result confirms the
qualitative observation, with a mean squared error (MSE
of 0.009 for training and 0.012 for testing as compared to
0.084 and 0.174 for training and testing, respectively, in the
case of direct 3D position regression. The obtained results
confirm a significant improvement as compared to directly
estimating the 3D locations from the corresponding RGB
images.

6. Conclusion

In this paper, we investigated the problem of spaceob-
ject 3D trajectory estimation using only RGB information.
We proposed a two-step approach decomposing the prob-
lem into: (1) a per-image 2D spacecraft detection; followed
by (2) a per-sequence 3D trajectory estimation. Our exper-
imental results showed that by properly leveraging tempo-
ral information, it is possible to simplify the problem and
further increase accuracy as compared to a direct 3D posi-
tion regression. Furthermore, we proposed a large realistic
synthetic dataset that provides ground truth trajectories for
three spacecrafts, under various sensing conditions. This
dataset will be publicly shared with the research commu-
nity in order to further the research on spacecraft trajectory
estimation in the context of ADR.

References

[1] Nasa 3d resources.
gov /L

https://nasa3d.arc.nasa.

3No unit as coordinates are normalized.

(2]

(3]

[4

—_

[5

—

[6

—

[7

—

[8

—

[9

—

(10]

(11]

(12]

(13]

(14]

[15]

(16]

(17]

3821

S. Bai, J. Z. Kolter, and V. Koltun. An empirical evaluation
of generic convolutional and recurrent networks for sequence
modeling. arXiv:1803.01271, 2018.

Robin Biesbroek, Sarmad Aziz, Andrew Wolahan, Ste-
fano Cipolla, Muriel Richard-Noca, and Luc Piguet. The
clearspace-1 mission: Esa and clearspace team up to remove
debris.

KyungHyun Cho, Bart van Merrienboer, Dzmitry Bah-
danau, and Yoshua Bengio. On the properties of neural
machine translation: Encoder-decoder approaches. CoRR,
abs/1409.1259, 2014.

Bruno Esmiller and Christophe Jacquelard. Cleanspace
“small debris removal by laser illumination and complemen-
tary technologies”. AIP Conference Proceedings, 1402:347—
353,11 2011.

Albert Garcia, Mohamed Adel Musallam, Vincent
Gaudilliere, Enjie Ghorbel, Kassem Al Ismaeil, Mar-
cos Damian Perez, and Djamila Aouada. Lspnet: A 2d
localization-oriented spacecraft pose estimation neural
network. CoRR, abs/2104.09248, 2021.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR, 2016.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term
memory. Neural Comput., 9(8):1735-1780, Nov. 1997.
Matthias Holschneider, Richard Kronland-Martinet, Jean
Morlet, and Ph Tchamitchian. A real-time algorithm for
signal analysis with the help of the wavelet transform. In
Wavelets, pages 286-297. Springer, 1990.

Yinlin Hu, Sebastien Speierer, Wenzel Jakob, Pascal Fua,
and Mathieu Salzmann. Wide-depth-range 6d object pose es-
timation in space. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 15870-15879, June 2021.

Nal Kalchbrenner, Lasse Espeholt, Karen Simonyan, Aaron
van den Oord, Alex Graves, and Koray Kavukcuoglu. Neu-
ral machine translation in linear time. arXiv preprint
arXiv:1610.10099, 2016.

M. Kisantal, S. Sharma, T. H. Park, D. I1zzo, M. Martens,
and S. D’Amico. Satellite pose estimation challenge:
Dataset,competition design and results. [EEE Trans. ON
Aerospace AND Electronic Systems, 2020.

Eric Marchand, Francois Chaumette, Thomas Chabot, Key-
van Kanani, and Alexandre Pollini. Removedebris vision-
based navigation preliminary results. In IAC 2019-70th In-
ternational Astronautical Congress, pages 1-10, 2019.

C. Priyant Mark and Surekha Kamath. Review of active
space debris removal methods. Space Policy, 47:194-206,
2019.

J. Martinez, R. Hossain, J. Romero, and J. J. Little. A sim-
ple yet effective baseline for 3d human pose estimation. In
ICCV, 2017.

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter
Abbeel. A simple neural attentive meta-learner, 2017.
Mohamed Adel Musallam, Renato Baptista, Kassem Al Is-
maeil, and Djamila Aouada. Temporal 3d human pose es-
timation for action recognition from arbitrary viewpoints.


https://nasa3d.arc.nasa.gov/
https://nasa3d.arc.nasa.gov/

(18]

[19]

[20]

(21]

(22]

(23]

[24]

[25]

(26]

In 2019 International Conference on Computational Sci-
ence and Computational Intelligence (CSCI), pages 253—
258. IEEE, 2019.

Mohamed Adel Musallam, Kassem Al Ismaeil, Oyebade
Oyedotun, Marcos Damian Perez, Michel Poucet, and
Djamila Aouada. Spark: Spacecraft recognition leveraging
knowledge of space environment, 2021.

Aiden Nibali, Zhen He, Stuart Morgan, and Luke Prender-
gast. Numerical coordinate regression with convolutional
neural networks, 2018.

DE Olmos, TV Peters, J Naudet, CC Chitu, and K Sewerin.
Android small active debris removal mission. In Proceedings
of the Fifth CEAS Air and Space conference, Delft, Nether-
lands, pages 7-11, 2015.

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen
Simonyan, Oriol Vinyals, Alex Graves, Nal Kalchbrenner,
Andrew Senior, and Koray Kavukcuoglu. Wavenet: A gener-
ative model for raw audio. arXiv preprint arXiv:1609.03499,
2016.

Dario Pavllo, Christoph Feichtenhofer, David Grangier, and
Michael Auli. 3d human pose estimation in video with
temporal convolutions and semi-supervised training. arXiv
preprint arXiv:1811.11742, 2018.

P. F Proenga and Y. Gao. Deep learning for spacecraft pose
estimation from photorealistic rendering. In 2020 IEEE Int.
Conf. on Robotics and Automation (ICRA), 2020.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation,
2015.

Fisher Yu and Vladlen Koltun. Multi-scale context
aggregation by dilated convolutions. arXiv preprint
arXiv:1511.07122, 2015.

Xingyi Zhou, Dequan Wang, and Philipp Krihenbiihl. Ob-
jects as points, 2019.

3822



