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Prompt: a sheep by another sheep standing on the grass with sky above and the ocean by a tree and a boat on the grass

SG2Im [23] GLIDE [41] DALL.E 2 [48] SceneGenie (Ours)

Figure 1: Synthesized images from SG2Im [23], GLIDE [41], DALL.E 2 [48], and SceneGenie. For SG2Im, and SceneGenie,
the sentence is first converted to a scene graph before feeding into the model. While the sentence describes two sheep and a
boat in a specified scene, text-to-image generators like GLIDE, and even larger models like DALL.E 2 generate considerably
inaccurate results; while SceneGenie accurately represents the scene defined by the prompt.

Abstract

Text-conditioned image generation has made significant
progress in recent years with generative adversarial net-
works and more recently, diffusion models. While diffusion
models conditioned on text prompts have produced impres-
sive and high-quality images, accurately representing com-
plex text prompts such as the number of instances of a spe-
cific object remains challenging.

To address this limitation, we propose a novel guidance
approach for the sampling process in the diffusion model
that leverages bounding box and segmentation map infor-
mation at inference time without additional training data.
Through a novel loss in the sampling process, our approach
guides the model with semantic features from CLIP embed-
dings and enforces geometric constraints, leading to high-
resolution images that accurately represent the scene. To
obtain bounding box and segmentation map information,
we structure the text prompt as a scene graph and enrich
the nodes with CLIP embeddings. Our proposed model

*The first two authors contributed equally to this work

achieves state-of-the-art performance on two public bench-
marks for image generation from scene graphs, surpassing
both scene graph to image and text-based diffusion models
in various metrics. Our results demonstrate the effective-
ness of incorporating bounding box and segmentation map
guidance in the diffusion model sampling process for more
accurate text-to-image generation.

1. Introduction

Image generation using deep neural networks is a rapidly
evolving field in computer vision, with the objective of cre-
ating models that have a deep understanding of the objects
and scenes they are creating. In recent years, significant
progress has been made in text-to-image synthesis using
Recurrent Neural Networks (RNNs) [69] and Generative
Adversarial Networks (GANs) [44, 55], which can gener-
ate high-quality, photorealistic images from textual descrip-
tions. Lately, diffusion models, a class of generative mod-
els, excelled GAN models [7] and became the prominent
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method in the image generation task. However, most of
these methods often struggle with creating complex scenes
from long, natural language descriptions. This is because
sentences are linear structures that may not efficiently de-
scribe complex scenes.

To tackle this problem, we propose SceneGenie, which
is a novel layout-based approach for guiding the sampling
process of a diffusion model. Our method leverages bound-
ing box and segmentation information as a guidance in the
reverse sampling process. The bounding box and segmenta-
tion map information are predicted by a Graph Neural Net-
work (GNN) after structuring the text prompt in the form
of a scene graph. We propose using scene graphs as they
are powerful structured representations of objects and their
relationships in both the image and language domains.

Our proposed guidance is similar to classifier guidance.
We compute the classifier gradients for each object based
on the distance between the CLIP image embedding in the
region of interest (RoI) for that specific object and the cor-
responding CLIP text embedding for that object in the form
of a Photo of an obj. To compute object-wise gradients in
the RoI, we inject gaussian noise outside the RoI and then
compute the total gradient as the weighted sum of the gra-
dients for different objects in the scene. For segmentation
guidance, we take advantage of the first-stage autoencoder
of the diffusion model to measure how semantically close
the segmentation map and the image are. Using such guid-
ance for the diffusion model sampling results in higher qual-
ity and more accurate images that better represent the input
prompt.

Recently, there have been approaches such as Make a
Scene [9, 61] that condition the diffusion model directly on
the segmentation map or scene layout, or methods such as
SDEdit [35] that use the segmentation map as the initial-
ization in the sampling process. However, these methods
either require additional training for the input condition or
need different architectural designs for different conditions.

Our proposed method differs from these other works in
that it directly optimizes the sampling process using ad-
ditional information and does not necessarily need to be
paired with the images in the training dataset due to its us-
age at inference time. This allows us to create more com-
plex and accurate scenes while still maintaining the high
quality of generated images. We demonstrate the effective-
ness of our approach through experiments on public bench-
marks, showing that our method outperforms existing text-
to-image diffusion models as well as state-of-the-art scene
graph to image approaches without any additional training.

In summary, our work makes several key contributions:

• We propose a novel approach for guiding the sampling
process in a diffusion model that places greater empha-
sis on the regions of interest (RoI) by incorporating the
gradients computed from predicted bounding box and

segmentation maps.

• Our proposed guidance is applied during the reverse
sampling process. Therefore, it does not require any
additional training and can be applied to any diffusion
model architecture.

• To enable the use of bounding box guidance in the
sampling process, we propose a novel method of noise
injection outside the RoI. For the segmentation guid-
ance, we take advantage of the first-stage autoencoder
of the diffusion model. Therefore, we effectively lever-
age the bounding box and segmentation map informa-
tion and improve the accuracy of generated images.

• Our method achieves notably higher image generation
performance compared to scene graph to image models
in high resolution image generation, and outperforms
the state-of-the-art in text-to-image generation.

• Finally, we demonstrate that incorporating CLIP em-
beddings as node features in the scene graph improves
the accuracy of bounding box and segmentation pre-
dictions.

2. Related Work
The high dimensionality of images poses a challenge for

image generation based on deep learning. Recent advances
in generative models, in particular, Generative Adversarial
Networks (GANs) [11], have boosted the quality and diver-
sity of generated images. A line of works explore gener-
ative models for unconditional image generation [26, 25].
Conditional image generation models have also been ex-
plored [36] with a diverse set of priors such as semantic
segmentation maps [4, 59, 44], natural language descrip-
tions [66, 30] or translating from one image domain to an-
other using paired [20] or unpaired data [68]. Conditional
image generation models also enable the possibility of in-
teractive image manipulation by partial image generation
using hand-crafted part replacement [19] or by incorporat-
ing a user interface for specifying the locations that need to
be inpainted [28]. The inpainting process of the specified
regions [45, 33] can also be guided by semantic informa-
tion [63, 18, 42] or edges [64, 39]. For instance, in GLIDE
[41], the model is capable of replacing original content with
the guidance from the CLIP [47] embeddings by extra fine-
tuning.

Diffusion Models A recent and impressive improvement
in image generation is achieved by diffusion models [17, 7].
Diffusion models [17, 7] are generative models that produce
images by successively denoising images. Unconditional
image generation with diffusion models initiated with the
denoising approach with the work of Sohl et al. [52] that
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Figure 2: Overview of SceneGenie. Our pipeline starts by getting a text prompt as input. The triplets are structured in
form of a scene graph. The graph is then processed by a GCN which outputs object embeddings per node in the graph. The
embeddings are used to predict bounding box coordinates and pseudo-segmentation maps corresponding to each object in the
scene, as well as a final segmentation map from the whole image. We use a diffusion model to generate images conditioned
on the text prompt by guiding the sampling process through the bounding box and segmentation map information.

formalized diffusion models as multi-scale convolutions,
and then the same work was extended by Ho et al. [17];
later, Song et al. [53] proposed a non-Markovian method
for the forward process. Conditional image generation by
diffusion models based on classifier guidance was proposed
by Dhariwal et al. [7], which uses a classifier to guide the
diffusion model during the sampling process. In many ap-
plications, the conditional diffusion models are utilized; for
instance, in Palette [51], the diffusion model is conditioned
on a low-resolution image to generate a high-resolution im-
age, or in SDEdit [35], the diffusion model is conditioned
with a low-quality image to sharpen and enhance colors and
textures. Recently, image generation conditioned on text
has captured a lot of attention, where CLIP [47] guidance is
often utilized.

Contrastive Language-Image Pre-Training By suc-
cessfully incorporating text-and-image pairs through con-
trastive learning, Contrastive Language-Image Pre-Training
(CLIP) [47] has been extensively applied in object detection
[58, 12], image captioning [38, 15], and text-to-image gen-
eration [41]. CLIP [47] is able to capture similar represen-
tation beyond modality by minimizing the distance between
text and picture embeddings from the same pair while max-
imizing the distance between those from dissimilar pairs.

Scene Graph to Image Scene graphs [24] are graphs that
represent a scene by defining the objects in the scene as

nodes in the graph and the relationships between them as
edges. Scene graphs gained more attention recently due to
the rise of large-scale scene graph datasets such as Visual
Genome [27], MOMA [34], and Action Genome [22]. A
broad line of works [32, 60, 40, 14, 46, 65, 57, 54] explore
the generation of scene graphs from images, while John-
son et al. proposed SG2Im [23], which is the first pipeline
that attempts to generate images from scene graphs. Typi-
cally, the task can be divided into two parts: first, convert
a scene graph to an intermediate layout, then use the lay-
out as an input to conditional GANs [4, 44, 55] for image
synthesis. Some works [67, 55, 56] focus on generating
images directly from scene layouts. Recent works either
focus on enhancing the model’s capacity for graph under-
standing [10] or improving intermediate layout quality [62].
Herzig et al. [13] deals with semantic equivalence in large
complex scene graphs, while [21] intends to reduce blurry
and overlapping objects in the scene layout in a coarse-to-
fine manner. Modified GCNs are engaged in a cascaded re-
finement network in [4] to reduce high-dimensional embed-
dings. However, the literature has widely studied that deep
Graph Neural Networks suffer from over-smoothing issues
[43, 29, 1] that average all information in the graph, caus-
ing semantic ambiguities. Recently, there has been models
[6, 37, 2] proposed that focus on image manipulation, where
users are able to control the synthesis results by modifying
the scene graph interactively.



3. Background

Diffusion models use a Markov chain that gradually
adds Gaussian noise to an image x0 to get the approximate
posterior q(x1:T |x0) with x1, . . . , xT being the noisy ver-
sions of x0. If T is large enough xT is approximated by
N (0, I). By learning the reverse process pθ(xt−1|xt) :=
N (µθ(xt),

∑
θ(xt)) of this Markov chain, one can gen-

erate new images x0 ∼ pθ(x0) from pure noise xT ∼
N (0, I) by gradually denoising in a sequence of steps
xT−1, xT−2, . . . , x0. Such a model is obtained by gener-
ating noisy samples xt ∼ q(xt|x0) and training a model θ
(typically a U-Net) to predict the added noise using an MSE
loss:

LDM = Ex0,ε,t[‖ε− εθ(xt)‖
2
] (1)

This model can then successively generate images by de-
noising images step by step starting from pure noise.

3.1. Guided Diffusion

Denoising diffusion probabilistic models (DDPM) [17]
have shown exceptional performance in unconditional im-
age generation. Yet, generating images with desired seman-
tics is still challenging due to DDPM’s nature as a stochastic
generation process. Therefore previous work has focused
on classifier guiding [7], perturbing the mean µθ(xt|y) and
variance

∑
µ(xt|y) of the diffusion model by a classifier

gradient. The perturbed mean µ̂θ(xt|y) is given by

µ̂θ(xt|y) = µθ(xt|y) + α ·Σθ(xt|y)∇xt log pφ(y|xt) (2)

Where α is a hyperparameter called guidance scale that con-
trols sample quality vs. sample diversity [7].

3.2. Latent Diffusion Models

Latent Diffusion Models (LDMs) [49] are trained to ap-
ply the diffusion process and reverse sampling process on
image latent space, which significantly reduces the com-
putational complexity compared to the diffusion models
trained on the image space. Latent embeddings of the im-
ages are coded by Kl-autoencoder [49] or VQGAN [8]. The
diffusion and denoising processes of LDM [49] can be de-
rived as:

q(z1:T |z0) = ΠT
t=1q(zt|zt−1) (3)

pθ(z0:T ) = p(zT )ΠT
t=1pθ(zt−1|zt) (4)

4. Methodology

Our method consists of two steps: 1) Training a model
for the prediction of bounding boxes and segmentation
maps from a scene graph obtained from the text prompt,
2) Generating the image guided by the bounding box coor-
dinates, the segmentation map, and the text embedding. We

focus on the extraction of bounding boxes and segmenta-
tion maps from scene graphs in subsection 4.1, while sub-
section 4.2 concentrates on guiding the diffusion model in
order to generate more accurate images.

We are given a dataset D of images x, and text prompts
τ , and bounding box coordinates c. Optionally, we can have
segmentation maps s. The text prompts are split into triplets
in the form of (object, predicate, subject), where the pred-
icate r defines the relationship between the object and the
subject. The scene graph G is composed of the the object
categories o and the relationships r, where object categories
are the nodes in the graph and the edges are the relation-
ships between them. More formally, a graph can be formed
as G = (O,E) where O = {o1, . . . , on} are n objects in
the graph, and E = {(oi, r, oj)|oi, oj ∈ O, r ∈ R} with R
as the relationship category between objects.

4.1. Scene Graph to Segmentation (SG2SEG)

Given the scene graph G with objects (nodes) and rela-
tionships (edges), we aim to synthesize segmentation maps
that transform the information from the text space to the
image space. These segmentations ought to be realistic in
terms of object shapes, as well as semantically consistent in
terms of object relationships.

Firstly, we acquire object embeddings using CLIP [47]
features in each node of the graph. The assumption is that
CLIP [47] is able to generate the object features fobj that
are consistent with the text feature ftext describing each ob-
ject. To form the input to CLIP’s [47] text encoder, we build
a prompt for each oi ∈ O, e.g., a photo of an [obj] with
[obj] substituted by the corresponding object classes. The
generated CLIP [47] features ftext ∈ Rn×512 are then fed
to a Graph Neural Network to learn the object embedding
femb ∈ Rn×d, where d is a hyperparameter that controls the
embedding dimensionality. As a trade-off between compu-
tation and model expressiveness, we select d = 128. Note
that, we treat edge E, that stands for relationships, as learn-
able embeddings.

Secondly, we explicitly constrain the output of our
SG2SEG on ground truth, instead of learning an interme-
diate representation, as in SG2Im [23]. Given the i-th ob-
ject embedding f iemb ∈ R1×d, we apply a mask regression
network (Mask Net) and box regression network (B. Box
Net) as in SG2Im [23], but remove the remaining parts of
layout sampling and merging. The benefits are twofold: 1)
By explicitly constraining the predicted mask and bound-
ing boxes, we are able to achieve higher quality in both re-
sults, 2) Predictions are more reliable with even less com-
putational power.

The SG2SEG network is optimized with three objective
functions:
1) Box loss Lbox =

∑m
i=1 ||ci, ĉi||1 is the L1 difference be-

tween the 4 coordinate values of the predicted and ground



truth bounding boxes.
2) Mask loss Lmask = BCE(mi, m̂i) is the binary cross
entropy loss for each predicted object mask and ground
truth.
3) Segmentation loss Lseg = ||s, ŝ||1 is the L1 difference
between the segmentation map from predicted masks and
the ground truth. It helps the network to generate more
consistent results when merging multiple object masks to-
gether.

Figure 3: Example of Gaussian Noise padded bounding box
in the image. We compute the gradients (∂obj) for each ob-
ject in the image based on the CLIP score and then aggre-
gate the gradients for all the object for the backpropagation
step.

4.2. Conditional Image Generation with Diffusion
Models

In our work, we replace the gradient of the classifier
in Equation 2 with combinations of gradients defined in
subsubsection 4.2.1, subsubsection 4.2.2, and subsubsec-
tion 4.2.4. The main objective is to guide the image gen-
eration toward a correct scene layout and object realism.

4.2.1 CLIP Text Guidance

In order to generate an image which corresponds to a spe-
cific input text in the sampling process, we add guidance
in the sampling process. Given an input text text and in-
put image img along with CLIP [13] image encoder Ei and
CLIP [13] text encoder Et, we calculate the gradient of the
CLIP score with respect to the latent space z of input image
of LDM [49]. The calculated gradient is used in the sam-
pling process for the guidance as described in equation 2. It
is formulated as:

Ltext = Ei(img) ∗ Et(text) (5)

For LDM, the gradient is formulated as:

∇Ltext = −∂Ltext
∂z

(6)

For other diffusion model whose diffusion process is on im-
age space x, the gradient is computed by:

∇Ltext = −∂Ltext
∂x

(7)

4.2.2 CLIP Bounding Box Guidance

In addition to using an input prompt to generate the entire
image, we want to make a certain region in image that cor-
responds to the input prompt. Here we propose CLIP [13]
Bounding Box Guidance. From SG2SEG framework, the
size and location of bounding box of a certain object is in-
ferred.

For an object objk in a bounding box, we pad the bound-
ing box with Gaussian Noise into the size of the original
image as illustrated in Figure 3. Then we calculate the
CLIP score between CLIP [47] image embedding of Gaus-
sian Noise padded Bounding Box objk and CLIP text em-
bedding of the category of object lk in format starting with
”A photo of” as follows:

Lobjk = Ei(objk) ∗ Et(lk) (8)

where Ei and Et are pretrained CLIP Image Encoder and
Text Encoder.
Assuming there are N objects obj1, obj2, ..., objN in one
image, we have the entire bounding box guidance score as
weighted sum of the object bounding box guidance:

Lboxg =

N∑
i=1

wi ∗ Lobji (9)

The weights wi are normalized and proportional to the size
of each bounding box. The gradient used for the guidance
of LDM[49] will be:

∇Lboxg = −∂Lboxg
∂z

(10)

, where z is the image latent of LDM[49]. For other dif-
fusion model whose diffusion process is on image space x,
the gradient is formulated as

∇Lboxg = −∂Lboxg
∂x

(11)

4.2.3 Augmented CLIP Bounding Box Guidance

Based on CLIP Bounding Box guidance, we propose an
Augmented CLIP Bounding Box Guidance by strengthen-
ing the guidance gradient with gradient of Gaussian noise.
The aim of Augmented CLIP Bounding Box Guidance is to
increase the guidance in the region where the object should
appear. Along with calculating the gradient of a Gaussian
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Figure 4: Some qualitative results on the comparison of SceneGenie against related work on the COCO stuff [3] test
set. As it can be seen, the images generated by SceneGenie represent the given prompt more accurately compared to previous
work. SceneGenie, in addition to high quality image generation, correctly generates the number of given instances in the
image and represents the scene more accurately overall.

Noise padded image above, we also calculate the gradient
of a pure Gaussian Noise γ with the same size.

∇Lgauss = −∂Lgauss
∂γ

(12)

The formulation for this Augmented CLIP Bounding Box
Guidance∇Laug,boxg is:

∇Laug,boxg = λ ∗ (∇Lboxg −∇Lgaus) +∇Lgaus (13)

where ∇Lbbox represents the gradient of Gaussian Noise
padded bounding box, ∇Lgaus represents the gradient of
pure Gaussian Noise with the same size, λ is a hyperpa-
rameter to control the intensity of guidance. If λ is set to

1, Augmented CLIP Bounding Box Guidance is exactly the
same as the vanilla CLIP Bounding Box Guidance.

4.2.4 Segmentation Map Guidance

Given the first-stage autoencoder of the LDM [49] , T (.) ,
segmentation map s for the image and generated image x in
the reverse process of the diffusion model, we calculate the
score to measure how semantically close the segmentation
map and the generated image are. The score is formulated
as:

Lsegg = T (s) ∗ T (x) (14)



, the gradient of the score function for LDM [49] with re-
spect to the latent space z will be

∇Lsegg = −∂Lsegg
∂z

(15)

Then, the total diffusion guidance gradient is computed
as follows:

∇Ldiff = ∇Lsegg +∇Ltext +∇Laug,boxg (16)

5. Experiments
In this section, we present the implementation details

of our method and the results of our experiments on two
public benchmarks, which are commonly used for image
generation from scene graphs, namely Visual Genome [27],
and COCO stuff [3]. We evaluate our model both quantita-
tively and qualitatively on these datasets and compare them
against the state-of-the-art in Text2Image and Scene Graph
to image models.

5.1. Datasets

The Visual Genome [27] dataset consists of images and
semantic scene graph annotations, along with the bounding
box coordinates. The relationships in the scene graphs of
VG dataset are purely semantic and only implicitly encode
geometric information; while the COCO [3] dataset does
not originally include scene graph annotations, the bound-
ing box coordinates and the captions in this dataset are used
to generate geometric scene graphs. The COCO dataset in-
cludes images with semantic segmentation, bounding box
coordinates and captions as annotations.

5.2. Experimental Setup

For all the experiments unless specified, we use a pre-
trained U-Net [50] as our diffusion model based on LDM
[49], and perform image generation using our proposed
guidance. The diffusion model is pre-trained on the Ima-
geNet dataset [5]. Our model does not require any fine-
tuning and is applicable to existing networks while the guid-
ance happens during the inference time. We adopt the
LDM-8 (KL) pre-trained model. The sampling process is
done via DDIM [53] sampling with 100 sampling steps. For
the model trained on 64× 64 images from COCO, we com-
bine our guidance with GLIDE [41].

We report the performance of our model using inception
score (IS), Fréchet Inception Distance (FID) and Kernel In-
ception Distance (KID) which are common image quality
metrics. In addition, we report the Semantic Object Accu-
racy [16] metrics (SOA-O and SOA-I) for our model and
the LDM [49] that checks whether a pre-trained object de-
tection model recognizes the given objects. We use CLIP
[47] as the text encoder. We empirically found 0.5 as the

best value for scaling segmentation guidance in the total
guidance. The architecture details will be provided in the
supplementary material.

Since the VG dataset does not include semantic segmen-
tation annotations, we omit the scene graph to segmentation
step in our model and only predict the bounding box coor-
dinates. For the same reason, our final model in VG only
uses CLIP embeddings and bounding box guidance.

5.3. Results

We provide qualitative and quantitative results of our ap-
proach compared against the state-of-the-art. We present
two variations of our model in Table 1 and Table 2, which
are either with predicted or ground truth bounding box and
segmentation map information. We present more qualitative
results on COCO and VG in the supplementary material.

Comparison against SOTA The results of our model
compared against the state-of-the-art on COCO [3] and Vi-
sual Genome (VG) [27] datasets are provided in Table 1
and Table 2 respectively. As it can be seen, our proposed
model SceneGenie, outperforms the state-of-the-art diffu-
sion model, LDM [49] as well as the scene graph to image
[23] model on both datasets.

We also present some qualitative results on COCO in
Figure 4. The qualitative results show that our proposed
model generates more accurate images conditioned on the
prompt. One main advantage of our model is in situations,
where the number of object instances are defined. In such
cases, the text guided image generation models fail in rep-
resenting the scene correctly, while SceneGenie generates a
more representative image.

Ablation Study We present an ablation study of the com-
ponents of our model in Table 3. We analyze different val-
ues for scaling the augmented bounding box in the diffu-
sion process, and we find the best value of 1.2 based on
FID. The best overall performance is obtained by combin-
ing the bounding box and segmentation guidance with GT
values. We also analyze the effect of incorporating CLIP
embbedings in the graph nodes for the models with pre-
dicted bounding box and segmentation map and show its
effectiveness in improving the image generation quality. In
addition, we measure the bounding box prediction error
with and without using CLIP embeddings for the nodes in
the graph. The bbox prediction error is 0.736, and 0.749,
with an without CLIP embeddings respectively.

5.4. Discussion

The introduction of bounding box and segmentation map
guidance in our approach enables the model to accurately
represent the scene. As it can be seen in the qualitative re-
sults in Figure 4, the generated images by our model repre-



Table 1: Comparison against SOTA on COCO stuff [3]. We present the results on 64× 64, and 256× 256 resolutions. We
present the results of different methods with different generator architectures. The models identified by Pred use predicted
bounding box, segmentation map, or scene layouts, while GT identifies experiments with ground truth information.

Method Pred / GT Resolution IS ↑ FID ↓ KID (×102) ↓ SOA-C (×102) ↑ SOA-I (×102) ↑
SG2Im [23] GT 64× 64 5.30 113.61 58±0.3 - -
SceneGenie (Ours) GT 64× 64 9.05 67.51 7.86±0.087 - -
SG2Im [23] GT 256× 256 6.6 127.0 - - -
PasteGAN [31] GT 256× 256 11.0 70.2 - - -
Specifying [2] GT 256× 256 12.4 65.2 - - -
Canonical [13] GT 256× 256 19.5 64.65 7.03±0.177 33.94 48.55
LDM [49] GT 256× 256 22.24 63.83 6.06±0.114 45.38 57.22
SceneGenie (Ours) GT 256× 256 21.72 63.05 5.54±0.105 45.67 56.91
SceneGenie (Ours + Seg) GT 256× 256 21.50 62.38 5.10±0.095 45.80 57.39
Canonical [13] Pred 256× 256 9.03 113.30 7.67±0.173 34.78 50.93
SceneGenie (Ours) Pred 256× 256 22.16 63.27 4.98±0.101 43.80 56.61

Table 2: Comparison against SOTA on Visual Genome
[27]. The results are presented on images with 256 × 256
resolution. Our final model is the combination of predicted
bounding box, with augmented bounding box guidance.

Method IS ↑ FID ↓ KID (×102) ↓
Canonical [13] 16.5 45.7 -
LDM [49] 20.02 42.69 8.63±0.505

SceneGenie (Ours) 20.25 42.21 8.43±0.517

Table 3: Ablation Study on COCO stuff [3]. We study the
different components of our model. We analyze the effect of
bounding box and segmentation guidance, and the different
values for the bounding box guidance scale. B: Bounding
Box, S: Segmentation Map.

Guidance λ IS ↑ FID ↓ KID (×102) ↓
GT

- - 22.24±1.778 63.83 6.06±0.114

B 1 21.46±1.49 63.14 5.82±0.114

B 1.1 21.93±1.44 63.14 5.21±0.103

B 1.2 21.72±1.45 63.05 5.54±0.105

B 1.3 21.87±1.60 64.19 5.78±0.109

B 1.4 22.07±1.83 63.76 5.93±0.111

B + S - 21.50±1.31 62.38 5.10±0.095

Pred
B - 21.73±1.65 63.61 5.88±0.114

B + CLIP - 22.04±2.19 63.37 5.31±0.112

B + S + CLIP - 22.16±1.65 63.27 4.98±0.101

sent the input prompt more accurately. Specifically, when
the input prompt defines the number of objects in the scene,
previous works fail to correctly generate the specified num-
ber of objects (e.g. Generating an image of two skiers in-

stead of one or an image of one animal instead of two). Our
model can be used either with predicted bounding box and
segmentation map information from a text prompt or with
ground truth bounding box and segmentation map. Both
variations outperform the state-of-the-art in text to image
and scene graph to image generation.

5.5. Limitations

Despite the high capacity of our method in generation
of accurate and high quality images, it still fails to gener-
ate high quality images of complex structures such as faces.
This limitation is consistent in different models and has also
been existing in previous work. We believe that, by fine-
tuning the model on a more constrained dataset of, for ex-
ample, faces, this issue can be solved. Another issue is the
high time consumption for the generation of image in the re-
verse sampling process, which is common in diffusion mod-
els. One limitation of our method is that the guidance pro-
cess requires predicted segmentation maps and bounding
box information, which can be tackled by employing off-
the-shelf semantic segmentation and object detection mod-
els.

6. Conclusion

In this work, we presented a novel guidance for the sam-
pling process in a diffusion model. Our proposed guidance
enforces geometric constraints in the sampling process us-
ing the bounding box and segmentation information pre-
dicted from a scene graph. To improve the prediction of
bounding box and segmentation map from the scene graph,
we encode the nodes with CLIP embedding. Our proposed
guidance, as well as the employment of CLIP embeddings
in the graph nodes, facilitate the generation of higher quality
and more accurate images. The proposed guidance does not
require any training and is applicable during the sampling



process. Our method achieves better performance com-
pared to the models trained for conditional scene graph to
image generation without any training on the target datasets
and also outperforms the state-of-the-art in text to image
generation.
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