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Abstract

In this paper we show how Group Equivariant Convolu-
tional Neural Networks use subsampling to learn to break
equivariance to the rotation and reflection symmetries. We
focus on 2D rotations and reflections and investigate the im-
pact of the broken equivariance on network performance.
We show that a change in the input dimension of a net-
work as small as a single pixel can be enough for com-
monly used architectures to become approximately equiv-
ariant, rather than exactly. We investigate the impact of net-
works not being exactly equivariant and find that approxi-
mately equivariant networks generalise significantly worse
to unseen symmetries compared to their exactly equivariant
counterparts. However, when the symmetries in the train-
ing data are not identical to the symmetries of the network,
we find that approximately equivariant networks can relax
their equivariance constraints, matching or outperforming
exactly equivariant networks on common benchmarks.

1. Introduction

Nature contains a lot of symmetries [18] and networks
used for computer vision have been shown to benefit greatly
from prior knowledge of these symmetries. Most notably,
the introduction of the convolution operator resulted in the
creation of Convolutional Neural Networks (CNN) [29],
form a backbone of many computer vision applications.
Convolutions are equivariant to the translation symme-
try [22], meaning that if an object in the input image is
shifted, the output of the convolution is shifted equally. Due
to translation equivariance, networks no longer have to ex-
plicitly learn to recognise objects at all possible locations,
as the knowledge that location plays no role is embedded
into the network.

Images, however, regularly contain other relevant sym-
metries for which CNNs are not equivariant. Take for ex-
ample the field of histopathology, which entails the micro-
scopic examination of organic tissue. In histopathology, the
rotational orientation of the tissue is arbitrary [24]. A net-
work that varies its output when the input is rotated is there-
fore a cause for uncertainty. More formally, the output of
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Figure 1: Example of how subsampling can break equiv-
ariance. Dotted arrows indicate a Rotation and the dashed
arrows indicate a MaxPool subsampling layer with a ker-
nel size and stride of 2. The locations where MaxPool ap-
plies its pooling are coloured. One can see that f(T (x))
and T ′(f(x)) contain completely different numerical val-
ues, breaking equivariance.

the network should be invariant to rotation, meaning that
the output should not change when the input is rotated.

A major innovation in equivariance for computer vision
was the introduction of Group Equivariant Convolutions
(GEC) [5], which made it possible for CNNs to guarantee
equivariance or invariance to a finite group of discrete trans-
formations, also referred to as a symmetry group. Using
GECs instead of standard convolutions to create a network
yields a Group Equivariant Convolutional Neural Network
(GCNN). Due to the group equivariant properties of GECs,
GCNNs guarantee that the network output does not change
when the input is rotated.

In this paper, we explore subsampling layers in GCNNs
that allow the networks to break their guarantee of equiv-
ariance. Consider the MaxPool subsampling layer in Fig-
ure 1. The feature map resulting from first rotating and
then subsampling contains completely different numerical
values than the result of first subsampling and then rotat-
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ing, and as such the MaxPool layer is not equivariant to
rotations. Whether a subsampling layer breaks equivari-
ance is dependent on the width and height of the input,
also referred to as input dimension. Including a subsam-
pling layer that breaks equivariance in a GCNN will void
the entire GCNN’s guarantee of equivariance. However,
subsampling layers are deemed almost essential for com-
puter vision models and are used in nearly all GCNNs and
modern CNNs. Typically, no distinction is made between
GCNNs that do or do not contain subsampling layers that
break equivariance. In this work, we show why a distinction
should be made. We refer to networks in which subsam-
pling layers break the guarantee of equivariance as approx-
imately equivariant and networks in which the guarantee is
not broken are referred to as exactly equivariant.

We offer the following contributions. We give a formal
definition of exact equivariance under subsampling and can
analyse when equivariance is broken. We show that approx-
imately equivariant networks learn to become less equivari-
ant and as a result generalise significantly worse to unseen
symmetries compared to their exact counterparts. We show
that slightly changing the input dimensions is often enough
to make a network exactly equivariant rather than approxi-
mately equivariant.

2. Related Work

2.1. Equivariance in Deep Learning

CNNs are able to learn to become equivariant from
data [12, 28]. However, this does not guarantee equivari-
ance to the symmetries in the data and results in a redun-
dancy in the filters of the network. For example, the net-
work learns one filter to detect horizontal lines and a sep-
arate one to detect vertical lines, rather than a single filter
to detect lines. Much work has been written about how to
efficiently teach networks equivariance to relevant symme-
tries during training, either by separating symmetry weights
from filter weights [16, 23, 40], using contrastive learn-
ing [4, 11] or using marginal likelihood [34, 35]. However,
while these methods significantly increase a network’s abil-
ity to become equivariant, they do not guarantee it. Each
method relies on the network learning the equivariance from
the training data. However, the training data seldom guar-
antees a full and uniformly distributed representation of the
relevant symmetries. These possible biases in the training
data can then propagate into biases in the network. This can
be cause for concern, as biased networks make systematic
errors due to faulty assumptions about the data.

If the symmetry group for which a network needs to
be equivariant is known, a common solution is to encode
the symmetries into the network as prior knowledge us-
ing Group Equivariant Convolutions (GECs) [5]. GECs
are equivariant to finite set of discrete transformations de-

fined in a symmetry group. Filter weights are then shared
within the GECs according to the transformations. Because
the GECs include all transformations from their symmetry
group, GECs guarantee equivariance to the symmetries, re-
gardless of biases in the training data.

The introduction of GECs kickstarted much follow-up
work, including extensions from 2D planes to 3D man-
ifolds [6, 7, 37] and the generalisation from discrete to
continuous transformations using Lie algebra [8] or other
means [32]. In this work, we focus on using GECs to be-
come equivariant and invariant to the 2D roto-translation
group, as the group has been proven to be useful in the
field of histopathology [2, 24, 36] and processing satellite
data [13, 25]. The 2D roto-translation groups consists of all
rotations and translations in a 2-dimensional space. How-
ever, GECs are equivariant to discrete transformations and
the 2D roto-translation group is continuous. Therefore, we
make our networks equivariant to the p4-group [5], consist-
ing of all compositions of translations and 90◦ rotations,
meaning that the networks are also equivariant to rotations
of 180◦ and 270◦.

2.2. Breaking Equivariance

While CNNs are generally regarded to be translation
equivariant, a plethora of work has shown that this is not
completely the case. Convolutions and pooling with a stride
larger than 1 have been shown to break translation equiv-
ariance [3, 15, 38, 39]. CNNs have also been shown to
be able to learn absolute positions, thereby breaking the
translation equivariance [19]. This is important to note, as
Group Equivariant Convolutions assume that standard con-
volutions are translation equivariant to prove their equivari-
ance to other transformations. Preventing networks from
breaking their roto-translation equivariance has been inves-
tigated for reconstruction learning by introducing a group
equivariant subsampling layer [38]. This method however
requires additional compute and the effects on classification
has not been investigated, where invariance is often more
desirable than equivariance. In this work, we extend the
current literature by investigating the influence of subsam-
pling on roto-translation equivariance for classification.

The general proof for equivariance in GCNNs holds
when the convolution convolves over the entire input. How-
ever, networks often unknowingly break this restriction.
Pooling and strided convolutions are often used to aggre-
gate local information and increase the receptive field of a
network [17]. The combination of stride, input size and ker-
nel size in subsampling layers can result in different values
from the input feature map being sampled, resulting in ap-
proximate equivariance rather than exact equivariance [30].
While it might seem like a minute detail, we find that it
causes GCNNs to underperform relative to other equivariant
networks in related works. Examples of rotation equivari-



ant GCNNs exhibiting unexpected behaviour can be found
in [1, 26]. In this work, we show that we can guarantee
equivariance for GCNNs by introducing a relatively simple
restriction on the combination of input size, kernel size and
stride.

2.3. Relaxing Equivariant Constraints

Recent work has shown the possible benefits of relaxing
equivariant constraints, showing that networks can gain per-
formance by allowing them to learn to become less equiv-
ariant [31, 33]. This is relevant for our work, since being
approximately equivariant seems to allow networks to relax
their own equivariant constraints. Similarly to the afore-
mentioned works, our solution also enables the user to make
a conscious decision whether to relax the equivariant con-
straints on a network.

3. How subsampling breaks equivariance
In this section we provide a more formal introduc-

tion to equivariance and Group Equivariant Convolutions
(GConvs). We will then show a simple network config-
uration including a subsampling operation that breaks the
equivariance property of GConvs. Subsequently we intro-
duce a constraint on the network configuration that does
guarantee exact equivariance under subsampling, and pro-
vide a proof for rotations and mirroring.

3.1. Group Equivariant Convolutions

A network f is equivariant to transformation T , when the
output of f on input x changes predictably when x is trans-
formed by T . More formally, there exists a transformation
T ′ for which the following equality holds:

f(T (x)) = T ′(f(x)). (1)

GCNNs are equivariant to a set of transformations de-
fined in a symmetry group G, where in practice the trans-
formations are stored in an additional group dimension in
the feature maps. In the case of the p4-group, T ′ consists
of a rotation in the spatial dimensions and permutation of
the group dimension on the feature map. Invariance to T is
achieved by applying a coset pooling operation on the group
dimension, such that the final representation satisfies

f(T (x)) = f(x). (2)

As such, invariance is considered a special case of equivari-
ance.

3.2. Exact and Inexact Equivariance

From Equation 1 and the cyclic permutation defined by
T ′ it follows that the feature maps of an exactly equivariant
GCNN should contain the same numerical values regardless

of the applied rotation T to the input. However, layers that
perform subsampling on the input can introduce numerical
differences depending on the input transformation, resulting
in the network architecture no longer being exactly equiv-
ariant, as we will now demonstrate.

Let x be a rectangular input of dimension i = 5, f a
network consisting of a single MaxPool layer with kernel
size k = 2 and stride s = 2, and T a clockwise rotation
of 90◦. As the reference point of the 2D subsampling op-
eration is always defined at the (0, 0) index of the input,
applying T results in the sampling indices being shifted by
a single pixel from the perspective of the MaxPool layer.
Subsequently, T ′(f(x)) and f(T (x)) contain different nu-
merical values, as shown in Figure 1. To guarantee exact
equivariance we therefore need to ensure that the same in-
dices are sampled, irrespective of the order in which the
sampling operation and rotation are applied. Our proposed
solution is simple as it does not require any modifications
to the network architecture and relies purely on setting ap-
propriate input dimensions to the network. For comprehen-
sibility, we focus on the case of square inputs ∈ Ri×i and
an arbitrary kernel size k and stride s, but the proof can be
readily extended to rectangular inputs ∈ Rj×i.

A GCNN is exactly equivariant to rotations of multiples
of 90◦ if the following equation holds for all layers in the
network:

(i− k) mod s = 0. (3)

We prove that Equation 3 is a necessary condition for ex-
act equivariance to 90◦ rotations by asserting that the sam-
pled indices for a given output index remain the same under
rotation. We define a new function called index, that returns
the indices of the input values used by a convolutional or
pooling layer to calculate the value located at index (x, y)
in the output:

index
([

x
y

])
=

[[
sx
sy

]
,

[
sx+ k − 1
sy + k − 1

]]
. (4)

Here s is the stride used for subsampling and k represents
the kernel size. The output of the function is a square patch,
denoted as [u⃗, v⃗], where u⃗ and v⃗ represent the indices of the
top left and bottom right corner, respectively. The sampled
indices include all integer tuples within this patch. We also
introduce the function R, which takes an index (x, y) as
input and returns the indices rotated 90◦ counterclockwise:

Rn

([
x
y

])
=

[
y

n− 1− x

]
, (5)

where n indicates the width and height of the feature map
in which the index (x, y) is located. We further generalise
Equation 5 to an input patch [u⃗, v⃗] rather than a single coor-



dinate, resulting in Equation 6:

Rn ([u⃗, v⃗]) = Rn

([[
x1

y1

]
,

[
x2

y2

]])
=

[[
y1

n− 1− x2

]
,

[
y2

n− 1− x1

]] (6)

In the resulting output coordinates x1 and x2 get inter-
changed due to the counterclockwise rotation of the patch:
the top left corner becomes the bottom left corner, while the
bottom right corner becomes the top right corner.

Given that our layer takes a feature map with a width and
height of i as input, we can write the width and height of the
output feature map as

o = ⌊ i− k

s
⌋+ 1. (7)

For a layer to be exactly equivariant, determining the
sampled indices and then rotating should return the same
result as rotating first and then determining the sampled in-
dices, which we can formally denote as

index
(
Ro

([
x
y

]))
= Ri

(
index

([
x
y

]))
. (8)

To solve the left-hand side, we substitute Equation 5 into
Equation 4, yielding

index
(
Ro

([
x
y

]))
=

index
([

y
⌊ i−k

s ⌋ − x

])
=[[

sy
s⌊ i−k

s ⌋ − sx

]
,

[
sy + k − 1

s⌊ i−k
s ⌋ − sx+ k − 1

]]
.

(9)

The same can be done for the right-hand side, by substitut-
ing Equation 4 into Equation 6, resulting in

Ri

(
index

([
x
y

]))
=

Ri

([[
sx
sy

]
,

[
sx+ k − 1
sy + k − 1

]])
=[[

sy
i− k − sx

]
,

[
sy + k − 1
i− 1− sx

]]
.

(10)

Substituting Equations 9 and 10 into Equation 8, we find
two equations

s⌊ i− k

s
⌋ − sx = i− k − sx, (11)

s⌊ i− k

s
⌋ − sx+ k − 1 = i− 1− sx. (12)

Removing duplicate terms yields a single equation

s⌊ i− k

s
⌋ = i− k, (13)

which can be simplified to Equation 3. As Equation 3 holds
for a rotation of 90◦, it automatically holds for rotations of
180◦ and 270◦, as these can be composed using multiple
rotations of 90◦. We provide a similar proof for mirroring
in the supplementary material.

3.3. Measuring Equivariance and Invariance

We evaluate the exactness of the equivariance property
of GConvs both in terms of their measured invariance and
equivariance.

Measuring equivariance Since in GConvs both T and
T ′ are known transformations, feature maps f(T (x)) and
T ′(f(x)) can be computed independently. We can thus de-
fine the equivariance error in terms of the Mean Squared
Error (MSE) between the two feature maps:

ϵ = MSE(f(T (x)), T ′(f(x)))

=
1

ijk

√∑
i,j,k

|f(T (x))ijk − T ′(f(x))ijk|2, (14)

where i and j sum over the spatial dimensions of the fea-
ture map and k sums over the group dimension. The equiv-
ariance error can be evaluated at any GConv layer in the
network.

Measuring invariance To measure the invariance of the
network output after coset pooling we apply a range of rota-
tions in [0◦, 360◦) to the test set and report the test accuracy
for each set separately. However, rotating an image by de-
grees other than multiples of 90◦ introduces artefacts at the
corners of the image, as shown in Figure 2 (left). These arti-
facts have an additional detrimental effect on the network’s
performance. To ensure we only measure the performance
drop due to rotation, we apply a CircleCrop, which sets all
values whose coordinates are not inside the largest possi-
ble inscribed circle to 0, as visualised in Figure 2 (right).
To prevent any domain shift between the train and test set,
we apply CircleCrop during both training and evaluation.
Nearest Neighbour Interpolation also affected model per-
formance and so all rotations are performed using Bilinear
Interpolation.

4. Experiments

4.1. Breaking Equivariance

In this subsection, we show how networks can learn to
break their equivariance to improve their performance, and
demonstrate that they in practice do so on commonly used
classification datasets.



Figure 2: Left: Rotated input without CircleCrop. Right:
Rotated input with CircleCrop. Without CircleCrop the ro-
tation is distinctive.

Can GCNNs break equivariance? If a GCNN is truly in-
variant, it should be unable to distinguish between an input
x and T (x), where T is a 90◦ rotation. We challenge this
assumption by explicitly training a simple GCNN to dif-
ferentiate between the two input samples x and T (x). We
construct a network consisting of (i) a GConv layer with
k = 3, s = 2, 1 output channel and a padding of 1; (ii)
a global average pooling layer over the spatial dimensions;
(iii) a coset max pooling layer over the group dimension to
obtain a rotation invariant representation; and (iv) a fully
connected layer with two output features.

We define an input x1 ∈ R32×32 as shown in the top left
of Figure 3 and train the network on x1 and T (x1). We find
that the network can perfectly distinguish between the two
samples as shown by the feature maps in the right column in
Figure 3. This demonstrates that the network is not invari-
ant, despite the pooling operation on the group dimension.
We furthermore define a second input x2 ∈ R33×33 and re-
peat the experiment. The network is not able to distinguish
between x2 and T (x2), showing that the same network ar-
chitecture is exactly invariant for inputs in R33×33, while
not being invariant for inputs in R32×32. This is in line with
our findings in Section 3.2, as for k = 3, s = 2 and i = 33

(i− k) mod s = (33− 3) mod 2 = 0

holds, whereas for i = 32

(i− k) mod s = (32− 3) mod 2 = 1 ̸= 0

does not. Thus, GCNNs can break equivariance.

Breaking equivariance on common benchmarks. We
have shown that when the objective of a GCNN is to break
its equivariance, it will do so if possible. However, the
question remains whether a network will also learn to do so
when breaking equivariance is not explicitly the objective.

We first investigate the ImageNet [9] classification prob-
lem. We create a rotation equivariant ResNet18 [14] by sub-
stituting standard convolutions with p4-convolutions. The

Figure 3: A subsampling Group Equivariant net f that is
equivariant to the 90◦ rotation transformation T can learn
a filter that returns almost inverted values for f(x) and
T−1(f(T (x))), while these outputs should be identical in
theory. Because the outputs are not equal, a network using
the filter f can perfectly distinguish between x and T (x).

network width is divided by
√
4 to keep the number of pa-

rameters approximately equal to a standard ResNet18 and
the input images are kept at their original 224 × 224 size.
Training is performed for 90 epochs using the default train-
ing settings, i.e. SGD with momentum 0.9 and learning
rate 0.1, which is step-wise reduced by a factor 0.1 every
30 epochs. The network is trained to classify the standard
ImageNet classes, so there is no explicit objective to distin-
guish between rotations. Throughout training we monitor
the equivariance error as defined in Equation 14 after the
first layer and each of the four ResNet stages. The measured
equivariance errors are shown in Figure 4a. We observe that
initially all equivariance errors drop to a more or less con-
stant value, and upon decreasing the learning rate at epoch
30 the equivariance error further drops in most stages in the
network. However, the error at the last stage of the network
increases rapidly, finally plateauing at a value higher than
after random initialization.

Secondly, we look at the PatchCamelyon dataset [36].
This dataset is interesting because it is pathology data,
which, unlike ImageNet images, should not contain any
dominant rotation bias. We use a similar setup to our pre-
vious ImageNet experiment, but we replace the ResNet18
with a ResNet44. The network width is decreased to ob-
tain an approximately equal number of parameters as in
the architecture used by Veeling et al. [36] when evaluating
on PatchCamelyon. The results on PatchCamelyon can be
found in Figure 4b. As the first layer and the first stage both



(a) (b)

Figure 4: The measured equivariance error at different depths in a p4-ResNet, trained on ImageNet (a) and PatchCamelyon
(b), respectively. The classification accuracy is indicated as a dotted red line. The equivariance error in the final layer
increases throughout training, indicating that the network is learning to become less equivariant, even when trained on the
rotation invariant PatchCamelyon dataset.

have a stride of 1, the equivariance error is a constant 0 at the
first two depth measurements. The other two stages show
a similar behavior as in the ImageNet experiment, with a
rapid decrease in the initial part of the training and a grad-
ual decrease in the final stage throughout the remainder of
the training run. Interestingly, even though PatchCamelyon
is a rotation invariant dataset by definition, the network still
learns to break its equivariance.

We can thus conclude that a network that is equivariant
to rotations can learn to abuse its approximate equivariance
to become less equivariant to rotations. This occurs both
when the network is trained on ImageNet, a dataset which
contains only a limited amount of rotations and a clear up-
right orientation bias, as well as the PatchCamelyon dataset
which should be rotation invariant by definition. A network
learning differences between rotations in a rotation invari-
ant setting is cause for concern, as the rotations are arbitrary
and therefore should not contain any relevant information.

4.2. Impact of Exact Equivariance

Performance on unseen rotations Due to the discrete na-
ture of GCNNs, it is impossible to include all continuous
rotations in the discrete group. Thus, it is important to gen-
eralise well to rotations that are not part of the group di-
mension. To compare how well approximately and exactly
equivariant networks generalise to unseen rotations, we per-
form a controlled experiment on the MNIST [10] dataset of
handwritten digits. Since MNIST contains limited rotations
due to slanted handwriting, we are able to control what rota-
tions are included during training and testing by transform-
ing the data.

For this experiment, we use the Z2CNN and P4CNN ar-
chitectures introduced by Cohen et al. [5]. The Z2CNN
consists of 6 layers of 3 × 3 convolutions, followed by a

single 4× 4 convolutional layer, each layer consisting of 20
channels. Each layer is followed by a ReLU activation and
batch normalisation layer. A dropout layer with p = 0.3
is added after layers 1 through 5, and a max-pooling layer
with a stride of 2 after the second layer. The convolutional
part is followed by a global spatial average-pooling layer,
and lastly, a fully connected layer. The P4CNN architec-
ture is created by substituting standard convolutions with
p4-convolutions and introducing a group coset max-pooling
layer before the fully connected layer. To keep the number
of parameters of Z2CNN and P4CNN approximately equal,
the number of channels in P4CNN is divided by

√
4. We use

the default input size of 28× 28 for exact equivariance, and
input sizes 27 × 27 and 29 × 29 for approximate equivari-
ance. The results are averaged over 10 runs with different
random seeds. The models are trained for 50 epochs us-
ing Adam [20] and an initial learning rate of 0.01, which is
halved every 10 epochs.

The results in Figure 5 show the performance of a model
trained on MNIST and evaluating on RotMNIST, a uni-
formly rotated version of MNIST. An exactly equivariant
network will significantly outperform approximate counter-
parts on rotated samples. All the p4-equivariant networks
still outperform the Z2CNN baseline. We also observe a
much higher standard deviation in the performance of the
approximately equivariant networks. The performance in-
crease of Z2CNN at 180◦ can be attributed to the rotational
symmetries in the MNIST dataset. The 0, 1 and 8 classes
stay roughly identical when rotated 180◦.

To further evaluate network generalisability to unseen
rotations, we create two new versions of RotMNIST with
biased rotation transformations. The rotation of each train-
ing digit is sampled from a normal distribution. Both
datasets use a mean rotation of 45◦, one has a standard devi-



Figure 5: The equivariance of a network can be evalu-
ated by explicitly applying the transformation on the test
set. When the training contains no data augmentations, an
exactly equivariant network generalises significantly better
than its approximate counterpart.

ation of 20◦ and the other of 40◦. We then train the networks
on these biased training sets and evaluate them on a test set
with uniform rotations. The results in Figure 6 show that,
similarly to training on non-rotated data, the exactly equiv-
ariant network generalises noticeably better than the others.
The exactly equivariant network almost becomes invariant
to rotations in general, while all other networks exhibit a
significant drop in performance on rotations that are not in
the training data. Since the transformation distributions in
the training data are often unknown, it is important to gen-
eralise to instances of the transformation that are not in the
training data.

We further evaluate the impact of exact and approxi-
mate equivariance on common benchmark datasets, where
we differentiate between datasets with and without rota-
tional symmetries. Datasets with rotations include Flow-
ers102 [27], where many classes have a rotationally sym-
metric shape, and PatchCamelyon [36], which is completely
invariant to rotation. Datasets without rotational symme-
tries include Cifar10, Cifar100 [21] and ImageNet [9].
We evaluate for unseen rotations by rotating the test set
by multiples of 90◦ and averaging the performance over
the four rotations. To achieve exact and approximate p4-
equivariance, we change the input size of the network, such
that equation 3 holds for all layers in the network. The
results are shown in Table 2. The approximately equiv-
ariant networks are outperformed by the exactly equivari-
ant networks in all cases. The difference is most signifi-
cant for datasets that contain limited rotations, i.e. Cifar10,
Cifar100 and ImageNet, as here the model is not able to
learn the symmetries from data. Both the exact and inexact
networks outperform the baseline CNN by a large margin,
showing that in general inexact equivariance is a beneficial
property.

Model Equivar. MNIST RotMNIST

Z2CNN - (28) 98.47± 0.17 91.60± 1.25
P4CNN Approx (27) 98.52± 0.26 96.92± 0.27
P4CNN Exact (28) 97.69± 0.17 96.89± 0.21
P4CNN Approx (29) 98.42± 0.25 96.87± 0.25

Table 1: Network accuracy denoted as mean ± standard de-
viation on MNIST and RotMNIST test sets. The standard
deviation is calculated using a 100 runs with different seeds.
The equivariance column indicates whether the network is
exactly or approximately equivariant and contains the net-
work input size in parentheses.

Performance on seen rotations For the performance on
rotations that are included in the training data, also referred
to as seen rotations, we first evaluate MNIST and RotM-
NIST using P4CNN and Z2CNN as in Section 4.2. We
report the mean and standard deviations of the test accu-
racies over 100 run with different random seeds in Table 1.
On MNIST the exactly equivariant network exhibits a per-
formance drop between 0.65% and 0.91% compared to its
approximately equivariant counterparts, which is confirmed
to be statistically significant, as shown in the supplementary
material. On RotMNIST the exact network performs identi-
cally to the approximate networks, as the approximate net-
works are able to learn to become invariant from the trans-
formations found in the training data.

To evaluate for seen rotations on common classification
benchmarks we compute the model accuracy on the default
test set. The benchmark results can be found in Table 2.
The exactly equivariant networks are generally matched or
outperformed by their approximately equivariant counter-
parts, even on datasets containing rotational symmetries.
This seems to indicate that there lies value in relaxing the
equivariant constraints of networks. Furthermore, both p4-
equivariant networks outperform their z2-equivariant coun-
terparts, even when the dataset is not known for contain-
ing many rotational symmetries. This could indicate that
the improvements from the group equivariant architecture
might not be solely from equivariance, but could also orig-
inate from other traits of GCNNs. Other possible expla-
nations are the increase in computations or the amount of
gradients a GCNN uses compared to a standard CNN.

5. Conclusion

In this work, we show that Group Equivariant Convolu-
tions [5] can and do learn to break their equivariance to-
wards the 2D rotations in common use cases. We prove
theoretically and empirically that changing the input size of
the network is sufficient to prevent a network from breaking
its equivariance. We find that exactly equivariant networks



Figure 6: An exactly equivariant network generalises significantly better to unseen rotations in case of a rotation bias in the
training data. The rotation angles of the training set are sampled from a normal distribution N (µ, σ), visualised at the bottom
of each plot. The plot on the left shows the performance on a biased distribution with σ = 20. The plot the right shows the
performance on a biased distribution with σ = 40, which is less severe but still significant.

Dataset Model Unseen rotations Seen rotations
Approx. p4 Exact p4 Standard Approx. p4 Exact p4 Standard

Flowers102 ResNet-18 83.32 ± 1.21 86.65 ± 1.41 68.78 ± 0.29 86.28 ± 1.32 86.65 ± 1.41 82.18 ± 0.53
PCam ResNet-44 86.66 ± 0.72 87.40 ± 0.71 82.43 ± 1.71 87.52 ± 1.20 87.40 ± 0.71 85.35 ± 1.04
CIFAR10 ResNet-44 79.19 ± 0.47 93.41 ± 0.09 52.68 ± 0.11 94.80 ± 0.21 93.41 ± 0.09 93.20 ± 0.11
CIFAR100 ResNet-44 58.82 ± 0.36 72.28 ± 0.40 38.62 ± 0.16 75.00 ± 0.52 72.28 ± 0.40 70.09 ± 0.28
ImageNet ResNet-18 60.01 72.55 48.10 72.48 72.55 70.00

Table 2: Test accuracies of ResNet models on seen and unseen rotations of common classification benchmarks. Exactly
equivariant networks perform significantly better on unseen rotations, especially on datasets containing no rotation symme-
tries, i.e. CIFAR and ImageNet. Approximate networks are able to relaxe equivariance constraints and perform better on
seen rotations. All p4-equivariant networks outperform the standard CNN.

generalise significantly better to unseen rotations than their
approximately equivariant counterparts, but that when the
training data contains all relevant rotations there is no sig-
nificant difference. We find that due to broken translation
equivariance, the rotation equivariance of GCNNs is also
broken. It could prove interesting to further investigate
the effect of making networks truly equivariant to transla-
tions [3] on equivariance to other symmetries.

Interestingly, we also find results that suggest equivari-
ant networks offer performance increases to datasets that
do not contain the relevant transformations, suggesting that
using GCNNs might offer benefits other than equivariance
to certain symmetries. Furthermore, we find that relaxing
equivariant constraints can be beneficial for network per-
formance. However, relaxing equivariant constraints also
allows networks to become biased towards the distribution
of transformations in the training data.

6. Limitations and Future Work
The symmetries our method applies to are limited to ro-

tations and reflections. While these symmetries are relevant,
future work can include other symmetries, or more rotations

in the group dimension, such as all rotations of 45◦, rather
than rotations of 90◦.

We found experimentally that padding has a large influ-
ence on how well a GCNN generalises to unseen rotations,
similar to CNNs [19]. We found no explanation, but believe
it is worth further investigating.

Section 4.1 suggests that equivariant layers are more de-
sirable at some depths than others, since the equivariance
error drops at some depths and rises at others. An inter-
esting future work would be making a robust analysis of
desirability of equivariance at different depths in a network.

Finally, we welcome further investigations of our results
on PatchCamelyon, where we found that the approximately
equivariant network learned to break its equivariance to in-
crease performance, even on a problem supposedly invari-
ant to rotation. With the rise of relaxed equivariant con-
straints [31, 33], an interesting question to ask would be
whether we are actually achieving better performance or
simply exploiting unknown biases in data or in the network.
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Welling. Coordinate independent convolutional networks–
isometry and gauge equivariant convolutions on riemannian
manifolds. arXiv preprint arXiv:2106.06020, 2021. 2

[38] Jin Xu, Hyunjik Kim, Thomas Rainforth, and Yee Teh.
Group equivariant subsampling. Advances in Neural Infor-
mation Processing Systems, 34:5934–5946, 2021. 2

[39] Richard Zhang. Making convolutional networks shift-
invariant again. In International conference on machine
learning, pages 7324–7334. PMLR, 2019. 2

[40] Allan Zhou, Tom Knowles, and Chelsea Finn. Meta-
learning symmetries by reparameterization. arXiv preprint
arXiv:2007.02933, 2020. 2


