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Abstract

Estimating the number of clusters and cluster structures
in unlabeled, complex, and high-dimensional datasets (like
images) is challenging for traditional clustering algorithms.
In recent years, a matrix reordering-based algorithm called
Visual Assessment of Tendency (VAT), and its variants have
attracted many researchers from various domains to esti-
mate the number of clusters and inherent cluster structure
present in the data. However, these algorithms face signifi-
cant challenges when dealing with image data as they fail to
effectively capture the crucial features inherent in images.
To overcome these limitations, we propose a deep-learning-
based framework that enables the assessment of cluster
structure in complex image datasets. Our approach utilizes
a self-supervised deep neural network to generate repre-
sentative embeddings for the data. These embeddings are
then reduced to 2-dimension using t-distributed Stochastic
Neighbour Embedding (t-SNE) and inputted into VAT based
algorithms to estimate the underlying cluster structure. Im-
portantly, our framework does not rely on any prior knowl-
edge of the number of clusters. Our proposed approach
demonstrates superior performance compared to state-of-
the-art VAT family algorithms and two other deep cluster-
ing algorithms on four benchmark image datasets, namely
MNIST, FMNIST, CIFAR-10, and INTEL.

1. Introduction
Data clustering is a widely used unsupervised learning

technique that involves dividing a collection of unlabeled
objects into k groups of similar objects. Various cluster-
ing algorithms are available in the literature, such as hierar-
chical clustering, centroid-based approaches, density-based
algorithms, and distribution-based clustering. Most cluster-
ing algorithms require k, the number of clusters to seek,

as an input, which is the clustering tendency assessment
problem. One common method to determine the number
of clusters and their underlying structure is to visualize the
data points using a 2D or 3D plot. However, this approach
is only feasible for two- or three-dimensional datasets. For
high-dimensional datasets such as images, time-series, vi-
sualizing and interpreting cluster structures using 2D or
3D visualization is not practical. Although various dimen-
sionality reduction techniques, such as principal component
analysis (PCA) and linear discriminant analysis (LDA), ex-
ist in the literature, these techniques often result in a low-
dimensional representation of complex, high-dimensional
datasets that may not fully reflect the inherent cluster struc-
ture due to information loss.

There are various formal (based on statistics) and infor-
mal (other approaches) techniques [1,2] available in the lit-
erature for cluster structure assessment, but they are not
completely effective. In contrast, visual approaches [3]
have been in use for many years and serve as the foundation
for many visual data analysis methods. The Visual Assess-
ment of Clustering Tendency (VAT) [4], a matrix reordering-
based visual-analytical method, is one of such algorithm
which provides a visual way to assess the clustering ten-
dency of various datasets. There are several variants of
VAT available for different types of data, which are collec-
tively known as the VAT family of algorithms. The VAT
family of algorithms has become an acceptable and widely
used tool in several domains like biomedical applications,
speech processing, image segmentation, transportation ap-
plications, and etc for exploratory data analysis.

VAT algorithm employs a variant of Prim’s minimum
spanning tree algorithm [5] to perform matrix reordering of
the pairwise dissimilarity matrix to generate a reordered dis-
similarity matrix. The reordered dissimilarity matrix can be
viewed as a monochrome image called a Reordered Dissim-
ilarity Image (RDI) or cluster heat map. The RDI displays
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a possible cluster structure of the data set by showing dark
blocks (data points of low dissimilarity values) along the
diagonal. One method to obtain an accurate estimate of the
number of clusters (k) from the RDI in the data is to count
the number of dark blocks along the diagonal of the RDI.
That means VAT not only can be used for cluster tendency
assessment but also can be used for subsequent clustering of
the input datasets, without needing the number of clusters.

This method is particularly effective for datasets with
well-separated, compact clusters since the dark blocks
along the diagonal are easily identifiable. However, for
complex datasets (e.g., images, time series) having overlap-
ping cluster structures (which is the case for most real-life
datasets), existing VAT approaches perform poorly as the
RDI quality degrades and the contrast between dark blocks
along the diagonal and the rest of the image decrease. This
makes it difficult to count the dark blocks along the diago-
nal.

There have been some efforts [6–8] to improve the qual-
ity of VAT generated RDI to accurately estimate the number
of clusters for various complex geometry datasets. The VAT
family algorithms, commonly used for analyzing cluster
structures, exhibit poor performance when applied to image
datasets, especially those with overlapping clusters. In the
typical workflow, images are flattened before employing the
VAT algorithms, resulting in the loss of their crucial spatial
features. Consequently, the pixel-wise Euclidean distance
becomes less effective in accurately capturing similarities
or dissimilarities between images due to the feature loss
incurred during flattening and the curse of dimensionality.
Figure 1 shows an improved Visual Assessment of Tendency
(iVAT) [6] RDI for a synthetic, high-dimensional dataset
(number of samples = 1000, dimensions= 100) having three
well-separated Gaussian mixtures (so k=3) in View (a), and
RDI for a sample of popular MNIST dataset (number of
samples = 1000 dimensions= 784, k = 10 classes) in View
(b). It is evident from the figure that iVAT performs well
when the data has inherently well separated clusters as we
can clearly see three dark blocks along the diagonal in its
RDI representing three clusters. However, when it comes
to image datasets like MNIST, it struggles to provide mean-
ingful results, as the resulting RDI does not exhibit clear
dark blocks along the diagonal. This limitation highlights
the need for a VAT variant that can effectively preserve the
essential features of images, enabling more accurate assess-
ments of cluster structures in image datasets.

As unsupervised deep learning methods (like autoen-
coders [9] and contrastive learning [10]) excel at extracting
robust features from complex images, it makes them well-
suited for developing a dedicated VAT algorithm for image
datasets.

To address the above concerns, we propose a novel
visual-analytical framework called DeepVAT. DeepVAT uti-

(a) (b)

Figure 1: (a) iVAT image of 100-dimensional Compact and
Separated (CS) Gaussian mixture data (3 Gaussians); (b)
iVAT image of flattened MNIST data (784 dimensional)

lizes deep learning techniques to extract meaningful deep
features from images, enabling more effective assessment
of cluster structures. Unlike traditional VAT approaches,
DeepVAT can uncover hidden cluster structures within im-
age data, even in situations where ground truth labels or in-
formation about the number of classes are unavailable. Our
major contributions are as follows:

1. We proposed a deep, self-supervised learning frame-
work, DeepVAT, that can provide visual evidence
of the number of clusters present in complex image
datasets.

2. In our method, we did not incorporate any prior knowl-
edge about the ground truth number of clusters of data.

3. We performed experiments on four real-world, pub-
licly available, large image datasets to show the superi-
ority of DeepVAT over other state-of-the-art VAT fam-
ily algorithms (proposed for high-dimensional data) in
terms of quality of RDI, clustering accuracy, and nor-
malized mutual information (NMI) score.

To the best of our knowledge, our work represents the
first investigation in the literature exploring the utilization
of deep features from images in the context of VAT meth-
ods. This contribution highlights the importance of incor-
porating deep learning techniques in the development of
VAT models for accurate and insightful analysis of image
datasets.

Here is an outline of the rest of this article. Section 2
presents the preliminaries for the VAT/iVAT algorithm and
reviews related work. The proposed algorithm, DeepVAT, is
discussed in Section 3. Section 4 discusses the experiments
and results, followed by conclusions in Section 5.

2. Preliminaries and Related work
2.1. VAT and iVAT

Consider we have a set of N objects, denoted as O =
o1, o2, . . . , oN , where each object in O is described by a
p-dimensional feature vector (∈ Rp). Alternatively, the
data can be represented as a dissimilarity matrix, denoted
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Figure 2: The proposed architecture of DeepVAT

as DN = [dij ], where dij indicates the dissimilarity be-
tween object oi and object oj computed using a suitable
distance measure. The VAT algorithm considers the dis-
similarity matrix, DN as input and reorders (by shuffling
the rows and columns) using a modified Prim’s algorithm.
The image I(DN ) of the reordered distance matrix DN dis-
plays each pixel’s intensity to indicate the dissimilarity be-
tween the corresponding row and column objects. When
dark blocks appear along the diagonal, they might represent
distinct clusters, ideally k (the original number of clusters
in data) clusters. As single-linkage clusters are always diag-
onally aligned in VAT ordered images [11], kp aligned clus-
ters can be obtained by cutting the largest (kp − 1) edges
(given by the MST cut magnitude order d) from the MST.
Here, kp is the estimated number of clusters from VAT/iVAT
RDI.

The improved-VAT (iVAT) [6] enhances the quality of
VAT [4] RDI by using path-based distance transformation.
The iVAT transformed matrix D

′

N = [d
′

ij ] is generated us-
ing a path-based minimax distance [5]:

d
′

ij = min
p∈Pij

max
1<h<|p|

Dp[h]p[h+1] (1)

where p ∈ Pij is an acyclic path in the set of all acyclic
paths between objects (oi) and (oj) (vertices i and j) in O.

2.2. VAT Variants for Large Volumes of High-
Dimensional Data

Although the VAT tool, discussed above, finds its use-
fulness in many applications, it can be computationally ex-
pensive as the size of the data set grows due to its O(N2)
complexity. To understand the clustering structure for large
volume datasets, a scalable version of VAT called scal-
able VAT (sVAT) was developed by Hathaway et al. [12],
which utilizes a smart sampling based approach. To begin,

sVAT extracts a smart sample of size n (where n << N )
from the large data set X using Maximin Random Sampling
(MMRS) [13]. The extracted sample is then used to com-
pute the distance matrix Dn, which is input into VAT.

To handle large volumes of high-dimensional datasets,
Rathore et. al in [7] proposed FensiVAT, an ensemble-
based, hybrid clustering framework that combines fast data-
space reduction using random projection with an intelli-
gent sampling strategy to assess the clustering tendency of
high-dimensional data. Recently, Zhang et al. [8] proposed
another method that leverages a kernel-based dissimilarity
matrix to refine the RDI further, called kernel-based iVAT
(KernelVAT). They use a Gaussian kernel and Isolation ker-
nel (data-dependent) to transform the RDI.

The SpecVAT [14] algorithm is another approach that
improves the quality of the RDI produced by VAT. It utilizes
spectral graph theory to transform the raw distance matrix
into a graph embedding space using graph Laplacian. It
then creates an alternative feature representation of the data
by selecting the r most significant eigenvectors that corre-
spond to the highest eigenvalues. VAT is then applied to this
transformed representation, resulting in a much-improved
RDI.

To our knowledge, none of the existing VAT family of
algorithms, including those reviewed in this section, have
been investigated thoroughly on image datasets. Moreover,
they have been shown to perform poorly on image datasets
in their numerical experiments. Below, we discuss our pro-
posed framework, DeepVAT.

3. Proposed Framework: DeepVAT
In this paper, we propose a deep learning-based frame-

work, DeepVAT, to advance the VAT family of algorithms
for cluster structure assessment in complex image datasets.



Figure 2 presents each step of our proposed framework.
Below, we briefly explain each step of DeepVAT keyed to
the blocks shown in figure 2.

3.1. Generating Image Embeddings

The first step in our framework is representation learning
by employing deep learning architectures. The objective
of this step is to attain a cluster-friendly representation of
images, which involves bringing similar data points closer
to each other and pushing dissimilar points further away.
While deep learning architectures like autoencoders can be
explored for this purpose, they may lack the inherent capa-
bility to produce a truly cluster-friendly representation.

Recently, a wide range of self-supervised approaches
such as contrastive learning based models has been pro-
posed that can provide cluster-friendly representations for
images using deep neural networks, without the need
for ground truth information. These models include
Simple Contrastive Learning of Representations (Sim-
CLR) [10], Barlow Twins [15], Decoupled Contrastive
Learning (DCL) [16], SimSiam [17], Bootstrap Your Own
Latent (BYOL) [18], and many others.

We observed that incorporating SimCLR as the feature
extractor in the DeepVAT pipeline led to significantly su-
perior iVAT images compared to when an autoencoder was
used as the feature extractor. The significant difference ob-
served can be attributed to the inherent capabilities of Sim-
CLR compared to basic autoencoders. SimCLR has the
ability to effectively group similar points together and push
dissimilar points apart, thanks to the InfoNCE loss it mini-
mizes [19]. In contrast, basic autoencoders lack this inher-
ent capability. Additionally, a recent study [20] suggests
that the InfoNCE loss aids in learning cluster-preserving
representations of images, further highlighting the suitabil-
ity of SimCLR for DeepVAT. Hence, we chose SimCLR as
our primary model for creating embeddings in our proposed
framework.

In SimCLR, the first stage includes performing auxiliary
tasks or a given batch of images, such as corrupting the data,
adding noise, and creating augmented views of the same
data. These transformations generate fresh views of the
same images, effectively enlarging the training set. Gray-
scale images cannot undergo certain transformations such
as color jitters. Instead, an affine stretch is utilized along
with rotation, resizing, and blurring. Through these tasks,
the models can acquire a rich and beneficial representation
of the data.

SimCLR consists of an encoder network and a non-linear
projection head. The augmented images are fed into the
encoder to extract high-level features. The encoder con-
sists of several convolutional and fully connected layers
and is trained using a contrastive loss function. The Sim-
CLR framework utilizes an InfoNCE loss function [19] to

measure the similarity between different views of an im-
age. The model aims to maximize the similarity between
the two views of the same image and minimize the similar-
ity between views of different images. By doing so, Sim-
CLR learns to extract valuable features robust to variations
in the input data, which is helpful for generalization in real-
world scenarios. The encoder projects the images into (say)
d-dimensional space.

Then, the projection head, a small neural network, fur-
ther maps the encoded features (d-dimensional) to a (lower)
m-dimensional set of embeddings, and then back to a
lower-manifold of d-dimensional space, resulting in a rank-
deficient weight matrix. This projection head is trained
alongside the encoder during training. After training suc-
cessfully, the projection head is discarded, and the data is
passed through the trained encoder to generate embeddings.
The projection head serves as an additional non-linear trans-
formation that helps to increase the quality of the learned
features.

3.2. Dimensional Reduction using t-SNE

Despite the fact that SimCLR embeddings (shown with
a pink bar in figure 2) can be used to compute the dissim-
ilarity matrix for VAT/iVAT, the high dimensionality of the
SimCLR embeddings can lead to the curse of dimension-
ality problem, which can affect the quality of the resulting
visualization. In our experiments, as discussed in Section 4,
we observed that using SimCLR embeddings to compute
the dissimilarity matrix did not result in a significant im-
provement in the quality of the resulting RDI for complex
image datasets (CIFAR-10 [21] and INTEL [22]).

One way to tackle this issue is to apply t-SNE on a data
representation obtained from SimCLR. Compared to the
original flattened image data, t-SNE works better on Sim-
CLR embeddings because SimCLR is a deep-layer archi-
tecture that can more efficiently represent the highly varying
data manifold in multiple nonlinear layers [10,23]. The pro-
jections generated by SimCLR’s projection head can iden-
tify highly varying manifolds better than a local method like
t-SNE, resulting in a higher quality visualization compared
to using t-SNE on the original high-dimensional data [23].
However, it is important to acknowledge that represent-
ing the complete structure of intrinsically high-dimensional
data in just two or three dimensions is fundamentally im-
possible, highlighting a fundamental limitation.

3.3. Smart Sampling: Maximin Random Sampling
(MMRS)

Computing and analyzing VAT RDI using t-SNE embed-
dings (shown with a pink bar in figure 2), generated in the
last step, may be infeasible for image datasets with large
samples (N) due to O(N2) complexity of VAT. To deal
with large image datasets, we exploit a smart sampling ap-



proach called Maximin and Random Sampling (MMRS).
Let X = {xi}Ni=1 represent the set of t-SNE reduced em-

beddings obtained from the trained encoder, where xi ∈ R2.
The MMRS technique is an intelligent way to obtain sam-
ples in large batch data sets by combining MaxiMin (MM)
and Random Sampling (RS). The MM sampling process
starts by identifying a set of k

′
(an overestimate of k) dis-

tinguished objects, which are the farthest from each other in
the input data X. Then each point in the set X is grouped
with its nearest distinguished object using the nearest pro-
totype rule (NPR) (mentioned in [7]), which divides the
entire dataset into k′ groups {Gi}k

′

i=1 where Gi ⊆ X,
∀i ∈ {1, 2, . . . , k′} by associating |Gi| points to ith MM
sample, which represents each of the k

′
group. Finally, the

sample S of size n << N is formed by selecting random
data-points from each of the k

′
groups {Gi}k

′

i=1. The num-
ber of points nj extracted from group Gj is proportional
to the cardinality of Gj , i.e nj ∝ |Gj |. To be precise,
nj = ⌈n× |Gj |/N⌉, where ⌈.⌉ is the ceiling function. This
step gives us a smart sample of size n << N in lower di-
mensional space. Rather than feeding a large number of
embeddings directly into iVAT for visualization, we feed a
smart sample of size n, obtained using MMRS.

3.4. Dissimilarity Matrix Computation for
VAT/iVAT

The reduced-dimension, smart samples are used to com-
pute dissimilarity matrix Dn which is fed to the VAT/iVAT
algorithm to obtain reordered dissimilarity matrix D

′

n. The
visualization of I(D

′

n) suggests the number of clusters k
present in the dataset.

4. Experiments
We performed experiments on four publicly available,

real, image datasets. We evaluated the ability of Deep-
VAT to suggest the number of clusters in image datasets and
compared its performance with other VAT family methods
that are claimed to work better with high-dimensional data.
We also compare DeepVAT with two well known deep-
clustering based methods. The experiments were conducted
on a regular PC with the following configuration: OS:
Ubuntu 22.04.2 LTS (64 bit); processor: Intel(R) Xeon(R)
Gold 5220R CPU @ 2.20GHz; RAM: 62 GB; GPU: Nvidia
Quadro RTX 6000, 24 GB.

4.1. Datasets

We performed our experiments on the following
datasets:

1. MNIST [24]: It has a total of 60, 000 grayscale train-
ing images of digits with a dimension of 28∗28 ranging
from 0 to 9, i.e., total 10 classes, with each class hav-

ing 6,000 images. The full training set is used in all
experiments (60,000 images).

2. FMNIST [25]: It has a total of 60,000 grayscale train-
ing images of fashion apparel with a dimension of
28 ∗ 28, i.e., it has a total of 10 classes, with each class
having 6,000 images. The full training set is used in
all experiments (60,000 images).

3. CIFAR10 [21]: It has a total of 50, 000 natural RGB
training images with a dimension of 32 ∗ 32 ∗ 3. It
has a total of 10 classes, with each class having 5, 000
images. The full training set is used in all experiments
(50,000 images).

4. Intel Image Dataset [22]: It has 14, 034 natural
RGB training images and 3,000 testing images with
6 classes. We clubbed both sets and used the final
count of 17, 000 images to perform various experi-
ments. Each image has a dimension of 32 ∗ 32 ∗ 3.

4.2. Evaluation Criteria

We show all (best) iVAT images with an estimated num-
ber of clusters (kp) for all the compared algorithms in Ta-
ble 1. To estimate kp, we used the algorithm presented
in [26]. As mentioned in section 2.1, kp clusters can
be obtained by cutting (kp-1) edges in MST provided by
VAT/iVAT algorithm. We used the predicted labels and
ground truth information of each dataset to compute the par-
tition accuracy (PA) for the estimated value of k (from iVAT
image) and normalized mutual information (NMI). The PA
of a clustering algorithm is the percentage (%) ratio of the
number of samples with matching ground truth and algo-
rithmic labels to the total number of samples in the dataset.
To ensure consistent label mapping between the predicted
and true labels, the Kuhn-Munkres algorithm [27] is em-
ployed to find the best mapping between the predicted and
ground truth labels. A higher value of PA and NMI implies
a better match to the ground truth partition.

4.3. Comparison of DeepVAT with other Models

In this section, we make a qualitative and quantitative
comparison of DeepVAT with existing state-of-the-art VAT
family methods that claim to work with high-dimensional
and complex data (images when flattened can be seen as
high-dimensional data). Specifically, we compare Deep-
VAT with the following methods:

1. VAT family methods

(a) FensiVAT: FensiiVAT [7] is applied on a small
MMRS subset of the embeddings extracted from
the trained encoder of SimCLR.



(b) KernelVAT: KernelVAT [8]. is applied on a
small MMRS subset of the embeddings extracted
from the trained encoder of SimCLR.

(c) SpecVAT: SpecVAT [14] is applied on a small
MMRS subset of the embeddings extracted from
the trained encoder of SimCLR.

2. Deep-Clustering methods

(a) DEC [28]: iVAT is applied to the t-SNE reduced
embeddings, extracted from the trained encoder
of DEC. Specifically, iVAT is applied to a smaller
MMRS subset.

(b) LSD-C [29]: The t-SNE reduced embeddings,
extracted from the trained encoder of DEC, are
utilized for applying iVAT. More specifically,
iVAT is applied to a smaller MMRS subset.

(c) Autoencoder + iVAT: We trained a vanilla au-
toencoder and obtained embeddings from the
trained encoder network. Subsequently, t-SNE
is applied to these embeddings, and iVAT is then
applied specifically to a smaller MMRS subset of
the reduced embeddings.

4.3.1 Parameter Settings

In DeepVAT, the SimCLR model was trained using the
LARS optimizer [30] for each dataset, with 1, 000 epochs.
The output dimension of the encoder network was set to
d = 2, 048, and the projection head network was chosen
to have m = 128. We performed each experiment five
times on each dataset and reported the average results. We
use a batch size of 700 for MNIST and FMNIST and 256
for CIFAR10 and Intel Image Dataset. The parameters for
MMRS sampling are k′ = 15 for MNIST, FMNIST, and CI-
FAR10, and 10 for INTEL, number of samples, n: 4,000
for all datasets.

Euclidean distance is utilized as the metric to generate
the RDI for the t-SNE reduced embeddings of the MNIST
dataset. Likewise, in the ablation study discussed in Sec-
tion 4.4, Euclidean distance is employed to generate the
RDI for the t-SNE reduced embeddings of the raw-flattened
MNIST data. For all other experiments, cosine dissimilarity
is utilized as the dissimilarity measure to generate the RDI.

The input to all three VAT based methods is 2048-
dimensional SimCLR embeddings as these methods trans-
form the original data into a suitable embedding space/low
dimensional space by virtue of their design. In KernelVAT,
radial basis function (RBF) kernel is used, with the preci-
sion parameter (γ) set to 0.05. In FensiVAT, the down-space
(reduced) dimension for random projection is chosen 100
when FensiVAT is applied to a 2048-dimensional SimCLR
embedding. In SpecVAT, we performed iterations over the

parameter number of eigen-values (r) ranging from 1 to 10
and noted the best result.

DEC [28] and LSD-C [29] heavily rely on prior informa-
tion about the number of clusters in a dataset, while Deep-
VAT do not require this specific information. As stated in
Section 4.3.1, we deliberately choose an overestimate for
the number of clusters in all our experiments involving VAT
algorithms. Consequently, for a fair comparison, we adopt
the same overestimate (k

′
= 15 for MNIST, FMNIST, and

CIFAR-10, and k
′

= 10 for INTEL) for DEC (which requires
the value of k for performing k-means) and LSD-C (where
the linear layer after the encoder has the same number of
neurons as the number of classes).

To ensure fairness in the assessment, just like DeepVAT
utilized t-SNE reduced embeddings from the SimCLR en-
coder, we also apply t-SNE to reduce the embeddings gener-
ated from the encoders of DEC and LSD-C to 2 dimensions
before generating the RDI.

We keep all the parameter settings the same unless stated
otherwise.

4.4. Ablation Study

4.4.1 Results and Discussions

Table 1 shows the comparison of all six models based on
the RDI quality and their ability to estimate the underlying
clusters (kp) accurately. Table 2 shows the comparison of
DeepVAT with all the six methods mentioned above based
on the PA and NMI.

We can see that the DeepVAT method generates much
clearer and sharper dark blocks compared to the SpecVAT,
KernelVAT, and FensiVAT models. Consequently, the num-
ber of dark blocks generated by DeepVAT (kp) is close to
the original number of classes (k) in the dataset, making
it the most accurate in estimating the potential number of
clusters compared to other algorithms. When applying Fen-
siVAT and KernelVAT directly to the high-dimensional em-
bedding, we observed that they produced blurry RDI (the
cluster count is good but the quality of RDI is poor) and only
achieved moderate quantitative results in terms of PA and
NMI (refer Table 2) for simple datasets such as MNIST and
FMNIST. However, when dealing with complex datasets
like CIFAR-10 and INTEL, both algorithms failed to gener-
ate high-quality RDI and quantitative results (refer Table 2).
Note that clustering algorithms face significant challenges
when dealing with these datasets, as the ground truth labels
may not accurately reflect distinct clusters within the fea-
ture vector representation of the data points. These results
suggest that our approach produces more visually appealing
and informative representations of the data.

Based on the results presented in Table 2, DeepVAT
demonstrates a significant performance advantage over
state-of-the-art VAT family methods in terms of both PA and



Table 1: Qualitative comparison with other methods. When considering the visual quality of the RDI, our method stands
out by providing the most accurate estimate of the number of clusters. Note: Columns 2, 3, and 4: FensiVAT, KernelVAT,
and SpecVAT are applied to 2048-dimensional embeddings from SimCLR. Columns 5 and 6: iVAT is applied to the t-SNE
reduced embeddings from the encoder of DEC and LSD-C, respectively. Column 7: iVAT is applied to the t-SNE reduced
embeddings from the encoder of the autoencoder.

Dataset FensiVAT KernelVAT SpecVAT DEC LSD-C Autoencoder Ours

MNIST

k = 10 kp = 10 kp = 8 kp = 3 kp = 15 kp = 7 kp = 10 kp = 10

FMNIST

k = 10 kp = 3 kp = 2 kp = 3 kp = 4 kp = 3 kp = 4 kp = 5

CIFAR-10

k = 10 kp = 2 kp = 1 kp = 2 kp = 5 kp = 4 kp = 4 kp = 5

INTEL

k = 6 kp = 2 kp = 1 kp = 3 kp = 5 kp = 4 kp = 3 kp = 6

Table 2: Quantitative comparison with other methods. Our method almost constantly reaches state-of-the-art perfor-
mances by a good margin on all four datasets.

````````````MODELS
DATASETS MNIST FMNIST CIFAR-10 INTEL

PA (%) NMI PA (%) NMI PA (%) NMI PA (%) NMI
FensiVAT †on Φ 51.78 0.62 29.5 0.5 10.2 0.01 17.8 0.01
KernelVAT †on Φ 40.01 0.58 29.4 0.49 10.13 0.01 17.55 0.01
SpecVAT †on Φ 11.37 0.004 10.27 0.006 10.19 0.004 17.6 0.003
DEC ‡+ iVAT 51.20 0.62 27.69 0.22 12.8 0.01 31.93 0.13
LSD-C ‡+ iVAT 51.94 0.58 41.47 0.46 38.17 0.41 39.64 0.31
Autoencoder + iVAT 41.32 0.61 40.80 0.53 17.80 0.075 30.05 0.14
Ours 82.02 0.89 43.76 0.61 51.26 0.47 56.84 0.46
Φ: 2048 dimensional SimCLR embedding; †: Models from VAT/iVAT family
‡: Deep clustering models.

NMI metrics. DeepVAT demonstrates its superiority over
deep-clustering algorithms by achieving a 35% improve-
ment in PA and 30% improvement in NMI. Furthermore,
it outperforms simple autoencoders by an impressive 95%
on PA and 203% on NMI metrics, clearly highlighting its
remarkable performance. As a result, DeepVAT surpasses

all six competitive models in both PA and NMI measures.

The success of DeepVAT can be attributed to the use
of SimCLR and t-SNE. SimCLR is effective at generating
a robust representation of the dataset by leveraging non-
linear functions, such as deep CNN encoders and projection
heads, to approximate its intrinsic dimensionality. By ap-



Table 3: Ablation study. We analyze the effects of removing different blocks from the DeepVAT pipeline on PA and NMI.

````````````MODELS
DATASETS MNIST FMNIST CIFAR-10 INTEL

PA (%) NMI PA (%) NMI PA (%) NMI PA (%) NMI
Full DeepVAT 82.02 0.89 43.76 0.61 51.26 0.47 56.84 0.46
DeepVAT minus SimCLR 37.27 0.51 29.87 0.51 18.25 0.07 31.27 0.15
DeepVAT minus t-SNE 40.73 0.60 30.61 0.52 10.14 0.01 17.52 0.007
DeepVAT minus MMRS – – – – – – – –
DeepVAT minus SimCLR minus t-SNE 11.27 0.009 10.01 0.007 10.12 0.06 15.12 0.005

plying t-SNE on the representation produced by SimCLR,
we obtain a better low-dimensional embedding, as SimCLR
is better equipped to detect highly varying manifolds than
t-SNE alone.

To examine the impact of various components in our
model, we perform a three-part ablation study on all four
datasets. We systematically eliminate one component at a
time from the DeepVAT pipeline (Fig. 2) to assess its re-
liance within the complete pipeline. Our model is sum-
marised as DeepVAT = SimCLR + t-SNE + MMRS +
iVAT.

1. DeepVAT minus SimCLR: We flatten each image in
the dataset and apply t-SNE on top of them. Then we
sample using MMRS and compute the final iVAT im-
age for the samples. This will show that our model not
only benefits from the t-SNE block.

2. DeepVAT minus t-SNE: Images are passed through a
trained SimCLR encoder, and we sample the learned
high-dimensional embeddings using MMRS. The final
iVAT image is computed on the sampled embeddings.

3. DeepVAT minus MMRS: iVAT image is computed on
full set of embeddings. However, as iVAT/VAT fam-
ily algorithms require computation of dissimilarity ma-
trix, which has a time complexity of order O(N2), it
will take hours to get the results. Hence, due to such
large time complexity and resource constraint, we are
not reporting the results of this ablation.

4. DeepVAT minus tSNE minus SimCLR: We apply
iVAT directly on the MMRS sub-set of raw flattened
images.

The findings of the ablation study (1) (Table 3) suggest
that the generation of RDI by DeepVAT is not solely re-
liant on t-SNE. Although t-SNE applied directly to raw flat-
tened images produces reasonably good results, it is not as
accurate as DeepVAT. However, when dealing with com-
plex datasets like CIFAR-10, utilizing t-SNE on raw flat-
tened images fails to provide meaningful information about

the cluster structure. Additionally, the role of the SimCLR
module in DeepVAT is investigated in the study (2). The re-
sults in Table 3 indicate that SimCLR alone does not yield
satisfactory outcomes, although it still demonstrates limited
interpretability for simple datasets like MNIST and FM-
NIST. Nevertheless, when iVAT is applied to SimCLR em-
beddings for complex datasets, it fails to convey meaningful
results. This limitation may be attributed to the high dimen-
sionality of the SimCLR embeddings (2048), which hinders
the accurate inference of cluster presence by iVAT.

5. Conclusions and Future Work

This article proposes a deep, self-supervised learning
based VAT framework, DeepVAT, for cluster structure as-
sessment in image data. The self-supervised learning
method SimCLR significantly improved the performance of
iVAT both qualitatively and quantitatively. Our experimen-
tal results suggest that when t-SNE is used as dimension-
ality reduction on top of SimCLR embeddings, the iVAT
yields a much sharper RDI, thus a more accurate estimate
of the number of clusters. This is because SimCLR can cap-
ture the intrinsic dimensionality of image datasets which
helped t-SNE in generating a good low dimensional rep-
resentation. Based on our numerical experiments on four
image datasets, we have also shown that DeepVAT signifi-
cantly outperformed other VAT family methods (FensiVAT,
KernelVAT and SpecVAT) and two deep clustering meth-
ods (DEC and LSD-C) based on clustering partition accu-
racy (PA) and NMI. We believe that deploying more deep
learning based models like deep metric learning and semi-
supervised, which have partial access to labels can further
improve the iVAT image for complex datasets.

At present, the training time for major self-supervised
contrastive learning models is quite extensive. As part of
our future work, we aim to focus on reducing the training
time required for such models. Our objective is to develop
methods that can generate high-quality iVAT images using
self-supervised contrastive learning models in significantly
less time.
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