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Abstract

Large language models (LLMs) have made tremendous
progress in natural language understanding and they have
also been successfully adopted in other domains such as
computer vision, robotics, reinforcement learning, etc. In
this work, we apply LLMs to image generation tasks by di-
rectly generating the virtual brush strokes to paint an image.
We present Painter, an LLM that can convert user prompts
in text description format to sketches by generating the cor-
responding brush strokes in an auto-regressive way. We
construct Painter based on off-the-shelf LLM that is pre-
trained on a large text corpus, by fine-tuning it on the new
task while preserving language understanding capabilities.
We create a dataset of diverse multi-object sketches paired
with textual prompts that covers several object types and
tasks. Painter can generate sketches from text descriptions,
remove objects from canvas, and detect and classify objects
in sketches. Although this is an unprecedented pioneering
work in using LLMs for auto-regressive image generation,
the results are very encouraging.

1. Introduction

Large language models (LLMs) are growing at an in-
credible pace and becoming ubiquitous solutions in every
domain [4, 6, 1, 3, 28]. This tremendous success is partly
owed to the auto-regressive nature of these models i.e., they
look at the past and predict the future.

Image generation and text-to-image conversion have seen
a fast progress recently [25, 26, 5]. Current methods, despite
very impressive results, are not explainable . As such, it is
hard to address the shortcomings of these methods.

Here, we present Painter, an LLM that is employed for
image generation. Unlike the existing image generation
methods [25, 5], Painter draws sketches the way humans do
i.e., by generating a sequence of brush strokes in an auto-
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regressive way. Since this is an unprecedented work in this
domain, we start with a relatively easier task which is sketch
generation.

To train such a network, a dataset of text–image pairs is
needed where the images should be expressed in the form
of brush strokes. The only existing dataset in a similar
format is Quick-Draw [16] which is a collection of 50 mil-
lion class-label–drawing pairs across 345 categories. Since
Quick-Draw always has a single object and there are no text
descriptions, we create a new dataset by including single
or multiple objects in a drawing, defining a composition or
a relationship between them, and assigning a text prompt
to each sample from a list of tasks. By training Painter
on the created dataset, it not only is able to draw sketches,
it can also perform other tasks like completing incomplete
sketches, wiping objects off a drawing, reproducing a sketch
by generating the corresponding brush strokes and detecting
and classifying the objects in a drawing.

Since the LLM used in Painter needs to be multi-modal to
consume interleaved text–image data, we make the necessary
modifications to the vanilla LLM architecture to convert it
to a language-vision model. This is done by adding residual
cross-attention blocks that measure cross-attention between
image features and hidden states of LLM. Furthermore, we
equip the LLM with a visual feedback loop to monitor the
state of the canvas as image generation progresses. This
is similar to a robotics problem setting where the agent
observes the state frequently.

Our contributions are as follows: we introduce a model
which to the best of our knowledge is the first to create
images using auto-regressive language generation, we create
a dataset of text-description–sketch pairs where the sketches
are expressed in the format of strokes, and we enhance visual
grounding in LLMs via feedback loop, cross-attention layers,
and multitasking.

2. Painter
In this section, we provide more technical details about

the data generation process, model design, and the overall
training method.
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2.1. Dataset

To train Painter, we need a dataset of text-description–
sketch pairs where the sketches should be in strokes format
i.e., all the brush movements should be recorded. To the
best of our knowledge, Quick-Draw is the only large-scale
dataset of this type. It consists of 50 million class-label–
sketch pairs from 345 individual classes. There are two
limitations in Quick-Draw for being directly used to train
Painter: 1) there is a single object in each sample. This
could limit the capability of Painter to learn the relationships
between objects, object counts, and object compositions. 2)
The text descriptions in Quick-Draw are limited to class
labels. This provides a poor description of the objects in
the sample and lacks concepts such as size and location. To
alleviate these two limitations, we create the Multi-Object-
Quick-Draw dataset. More details are provided in the next
two subsections.

2.1.1 Multi-object sketches

Each sketch sample in Multi-Object-Quick-Draw contains
one or more objects where the objects come from Quick-
Draw and go through some processing. We establish an
association between these objects by defining a relationship
between them or adding relative location tags to them.

Relationships: to define a relationship between the ob-
jects, we follow Sketchforme’s [15] approach with some
modifications as follows. We initially parse the Visual
Genome [21] relationships and select the relationships where
both subject and object are present in Quick-Draw classes.
Then we perform the followings processing per selected re-
lationship, 1) normalize the bounding boxes of subject and
object to our canvas size (256×256) with a small random
perturbation, 2) randomly select the subject and the object
from Quick-Draw based on their associated classes, 3) scale
their strokes to fit the normalized bounding boxes, and 4)
put them on the canvas.

Location tags: the process above exhausts a small portion
of Quick-Draw. For the remaining Quick-Draw samples, we
divide them randomly into groups of 1, 2, 3, or 4 objects
from the same or different classes and randomly place them
across the canvas after the required size normalization.

2.1.2 Text descriptions

We define task-dependent text descriptions for the sketches
in Multi-Object-Quick-Draw i.e., we associate a random
task to the sketch from a list of predefined tasks and define a
prompt based on the selected task.

Tasks: while the primary application of Painter is text-to-
sketch conversion, we train it on auxiliary tasks to improve
the performance on the primary task via better object, loca-
tion, and relationship grounding and adding complementary

capabilities including wiping out object from a sketch and
understanding the contents of a given sketch. Currently, the
6 following tasks are defined to create the dataset, however,
this list can grow arbitrarily.
• generate-all: includes drawing a single or multiple

objects on a blank canvas.
• generate-partial: includes completing a partial ob-

ject or adding new objects to a sketch.
• remove-all: includes wiping off the object(s) of a

sketch.
• remove-partial: includes removing an object from a

multi-object sketch.
• reproduce: includes reproducing a given sketch by

generating the strokes that form the sketch.
• classification: includes counting and classifying

the objects of a sketch.
Prompt text: For each sketch in Multi-Object-Quick-

Draw, we randomly select a task. Then, depending on the
task and the number of objects and the associations be-
tween the objects in the sketch, we define a prompt text.
Table 1 shows the default prompt texts for each task at dif-
ferent scenarios where the scenario can be the number of
objects, whether a specific location is defined, whether a
relationship exists between the objects, etc. In order to di-
versify prompt texts, we extend the default prompt texts by
rephrasing them in several ways using a pre-trained BLOOM-
176B model [27]. We randomly select one of the generated
prompts to assign to a sketch.

Once a task-dependent prompt is assigned to a sketch,
a prompt sketch and a ground-truth sketch are generated
where both could include modifications compared to the
original sketch based on the selected task. The prompt sketch
is given to the network as a part of the prompt and the
ground truth sketch is used for supervised training. Task-
dependent modifications can vary widely, for example in the
generate-all task, all the objects are removed from the
sketch to generate the prompt sketch and a blank canvas is
given to the network to begin with, while the ground-truth
sketch does not include any modifications.

2.2. Model details

This section provides more details about the Painter
model, including how prompts and responses are encoded,
how Painter digests interleaved texts and images, and how
to equip Painter with a visual feedback loop to monitor the
state of the canvas.

Prompt format: We use the HTML format to encode
the prompts and the responses i.e., commands and responses
enclosed between <command> and </command> tags
and <response> and </response> tags, respectively.
We encode strokes in a similar way and include stroke color
and thickness as follows:

<stroke> color R G B width W points



Table 1. Default prompts per task for different scenarios.
Task Scenario Default prompt
GENERATE-ALL SINGLE W/O LOCATION Draw a sketch of <class-article><class-name>

SINGLE W/ LOCATION Draw <class-article><class-name><location-tag> this sketch
MULTI W/ REL Draw a sketch of <relationship-tag>
MULTI W/O REL Draw a sketch of <objects-list>

GENERATE-PARTIAL SINGLE Complete this sketch as <class-article><class-name>
MULTI W/ LOCATION Add <class-article><class-name><location-tag> this sketch
MULTI W/O LOCATION Add <class-article><class-name> to this sketch

REMOVE-ALL SINGLE Remove <class-article><class-name> from this sketch
MULTI Remove all the objects from this sketch

REMOVE-PARTIAL MULTI W/ LOCATION Remove <class-article><class-name><location-tag> this sketch
MULTI W/O LOCATION Remove <class-article><class-name> from this sketch

REPRODUCE ALL Reproduce this sketch
CLASSIFICATION SINGLE What is the class of this sketch

MULTI W/ LOCATION What is the object <location-tag> this sketch
MULTI W/O LOCATION What are the objects in this sketch

* <location-tag>∈{at the top of, at the bottom of, at the center of, at the right side of, at the left side of, at the top right corner of, at the top left corner of,
at the bottom right corner of, at the bottom left corner of}.

* <class-article> ∈{a, an, the} depending on <class-name>.
* <relationship-tag> includes subject, object, and the relationship between them.
* <objects-list> refers to the objects in the sketch with their counts.
* rel refers to the cases where a relationship (from Visual Genome) exists between the objects.

x1 y1, x2 y2, ..., xL yL </stroke>
where xi and yi are the coordinates of the points in a

stroke in string format and L is the length of the stroke. Draw
actions use black ink and thickness of 1 pixel, while remove
actions redraw objects in white ink and thickness of 2 pixels.

To process interleaved texts and images in the model,
we insert an image-placeholder in the text wherever an
image is needed. As such, the full prompt text for the
classification task becomes:

<command> What is the class of this

sketch <image-placeholder> </command>
<response> A tree </response>

where the response section is used in training only. The
same applies to other tasks.

Multi-modal LLM: We use an off-the-shelf pre-trained
LLM and modify it similar to [2] to receive and process inter-
leaved texts and images. The overall block diagram is shown
in Figure 1. As can be seen there, images are fed to a sepa-
rate head and are consumed via residual single-head cross-
attention components [8, 23] wherever there is a correspond-
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Figure 1. Block diagram of the multi-modal model.



Table 2. Iterative inference steps.
Step Prompt Response
1 <command> Draw an apple <image-placeholder> </command> <response> <stroke> color ... width ... points ... </stroke>

2
<command> Draw an apple <image-placeholder> </command>
<response> <stroke> color ... width ... points ... </stroke>
<image-placeholder>

<stroke> color ... width ... points ... </stroke>

... ... ...

N-1

<command> Draw an apple <image-placeholder> </command>
<response> <stroke> color ... width ... points ... </stroke>
<image-placeholder>
...
<stroke> color ... width ... points ... </stroke>
<image-placeholder>

<stroke> color ... width ... points ... </stroke>

N

<command> Draw an apple <image-placeholder> </command>
<response> <stroke> color ... width ... points ... </stroke>
<image-placeholder>
...
<stroke> color ... width ... points ... </stroke>
<image-placeholder>
<stroke> color ... width ... points ... </stroke>
<image-placeholder>

</response>

** The first <image-placeholder> in prompt corresponds to a blank canvas that is passed to the model to draw on and the subsequent ones correspond to canvas state feedbacks after each stroke.

ing image placeholder in the text. To formalize the cross-
attention behavior, let us assume T = {t0, t1, ..., tL−1} and
I = {I0, ..., IM−1} denote the sequences of text tokens (in-
cluding the image placeholder token) and images that are
fed to the model. Here, L and M represent the lengths of
text tokens and image sequences, respectively.

In the text input head of the LLM, the discrete text tokens
ti are converted to continuous embeddings ei and passed
through the self-attention blocks of the LLM to generate the
hidden states hl

i, where both e and h belong to RL×H , l and
H represent the LLM layer index and the embedding/hidden-
state dimensionality. In the image input head of the LLM,
the images Ii are converted to features fi ∈ RM×F where F
represents image features dimensionality after flattening.

Where there is an image-placeholder in the text, let us
assume location j, cross-attention between the correspond-
ing image features fi and the hidden states hl

j are measured
and added to the hidden states. In the cross-attention com-
ponent, keys and values are extracted from fi and queries
are extracted from hl

j . This is done for all the LLM layers
except the last one as formulated below:

hl
j += Cross-Attn(fi,h

l
j), for 0 ≤ l < L− 1 (1)

It is worth noting that we concatenate positional embed-
dings to image features fi before passing them to cross-
attention blocks, to preserve spatial information.

Visual feedback: In order to mimic the way humans paint
by looking at the canvas while drawing, we equip Painter
with a visual feedback loop to monitor the state of the canvas

while generating strokes. As such, the generated strokes
are applied on the canvas on-the-fly using an off-the-shelf
line drawer. During training, prompts are augmented with
the intermediate canvas states. During inference, recursive
prompting is done i.e., once a stroke is generated by the
LLM, is it drawn on the canvas, the feedback is applied, and
a subsequent prompt with the updated prompt is executed.
This is summarized in table 2 for the generate-all task.

2.3. Loss

We finetune the LLM used in our model with a standard
masked cross-entropy loss function via supervised training.
We measure loss in the token domain on the response section
only while the image placeholders are masked out. It is
worth mentioning that we use the default LLM tokenizer’s
vocabulary as all the prompt contents are in string format
and we do not introduce any special tokens.

3. Experiments
3.1. Training setup

The multi-modal architecture in Painter is general enough
to work with almost any off-the-shelf LLM. Here, we use
two pre-trained LLMs from the OPT family [32], specifically
OPT-125M and OPT-1.3B. Most vision-language models
that are used in high-level vision tasks such as visual QA
and image/video captioning [1, 9], use a pre-trained ViT [7]
or a CLIP [22] image encoder to extract visual features.
However, these image feature extractors are highly biased
toward high-level visual features, while in Painter, pixel-

Table 3. Quantitative results.

Model Train Dataset
classification
accuracy (%)

remove-all
PSNR (dB)

remove-partial
PSNR (dB)

reproduce
PSNR (dB)

OPT-125M MULTI-OBJECT-QUICK-DRAW 34.50 20.15 22.69 17.74

OPT-125M
MULTI-OBJECT-QUICK-DRAW +
THE PILE

17.57 20.25 22.95 17.21

OPT-1.3B MULTI-OBJECT-QUICK-DRAW 3.20 19.56 22.27 17.20

OPT-1.3B
MULTI-OBJECT-QUICK-DRAW +
THE PILE

40.26 20.64 23.90 16.97



Copy an image of a 

hand around a cell 

phone.

Duplicate a picture of 3 

airplanes.

Render a hammer at the 

top right corner of this 

diagram.

Generate an illustration 

of 4 t-shirts.

Produce a diagram of a 

wheel on a skateboard.

Would you mind making 

a diagram of a keyboard 

that has a key?

Would you please draw 

3 horses?

Outline a hedgehog at 

the bottom of this image.

Can you please draw a 

wine bottle at the bottom 

left corner of this 

illustration?

Could you please draw 1 

dresser and 1 motorbike 

and 1 sun for me?

Prompt 

text

Output 

image

(a)

Can you please include 

a speedboat at the 

bottom left corner of this 

drawing?

Can you complete this 

diagram as a broom?

Can you please sketch a 

mouth at the top right 

corner of this picture?

Sketch a basket at the 

top of this drawing.

Could you finalize this 

illustration as a 

lighthouse?

Can you complete this 

drawing as a lighter for 

me?

Can you please 

incorporate eyeglasses 

at the bottom of this 

picture?

Can you finish this 

image as an anvil for 

me?

Could you complete this 

drawing as an 

asparagus?

Add an illustration of a 

carrot at the right side of 

this image.

Prompt 

text

Prompt 

image

Output 

image

(b)

Figure 2. Selected (a) generate-all and (b) generate-partial results.

level visual information is required for better grounding and
accurate guidance of the network. Hence, we use a pre-
trained ResNet-50 [13] for image feature extraction.

During training, the LLM is fine-tuned, the feature ex-
tractor remains frozen, and the randomly initialized cross-
attention layers are trained. We train the models on Multi-
Object-Quick-Draw. Multi-Object-Quick-Draw contains
about 20 million samples, but here we use a subset of it
with around 2M samples including all the samples with a
relationship from Visual Genome (around 300K samples)
and 1.7M samples with location tags. We use a small portion
of this dataset containing around 1000 samples for evalua-
tion and reserve the rest for training and validation. Since
the LLM is already pre-trained on a large text corpus and is
highly skilled in natural language understanding, we regular-
ize the training on The Pile [10] dataset to retain the natural
language understanding capabilities of the LLM.

We train the models using Adam [19] optimizer with a
learning rate of 1e − 5 on two A100 Nvidia cards for one
training epoch with a batch size of 4.

During inference, we use greedy sampling in the
classification task and use top-p sampling with p =
0.9 for the other tasks.

3.2. Results

We can evaluate the tasks that Painter is trained on as
follows:
• remove-all, remove-partial, and reproduce

can be evaluated using pixel-level metrics such as MSE
and PSNR, since exact results are expected from them.

• classification accuracy can be measured by com-
paring the detected classes with the ground-truth classes.

• generate-all and generate-partial are not
trivial for quantitative evaluation and need a user-study to

Can you tell me what 

group the object the top 

of this image belongs 

to?

Can you categorize this 

diagram?

Can you assign classes 

to the objects of this 

diagram?

Can you categorize the 

object at the bottom left 

corner of this image?

What is the type of the 

object at the left side of 

this diagram?

What is the category of 

the object at the top left 

corner of this drawing?

What is the object at the 

left side of this image?

Can you categorize the 

object at the bottom right 

corner of this image?

Can you tell me what 

group this picture falls 

under?

Can you tell me what 

group this image 

belongs to?

Penguin Bee Pillow on a bed Computer Flashlight Hospital Snowflake Sock Stethoscope Tennis racket

Penguin Bee Pillow on a bed Computer Flashlight Hospital Snowflake Sock Stethoscope Tennis racket

Prompt 

text

Prompt 

image

GT 

class

Pred. 

class

Figure 3. Selected classification results.



Can you please take 

away the ocean from 

this diagram?

Clean this drawing. Delete the windmill from 

this diagram.

Can you please erase all 

the objects from this 

picture?

Clear this diagram.Prompt 

text

Prompt 

image

Output 

image

(a)
Delete the whale at the 

top of this drawing.

Clear the string  bean at 

the to left corner of this 

illustration.

Erase the snorkel at the 

top left corner of this 

diagram.

Can you please take out 

the bowtie at the left 

side of this illustration?

Can you please delete 

the asparagus at the 

bottom of this 

illustration?

Prompt 

text

Prompt 

image

Output 

image

(b)
Could you reproduce 

this image?

Reproduce this drawing. Can you replicate this 

drawing for me?

Would you mind making 

a new drawing of this 

illustration?

Would you mind 

reproducing this image?
Prompt 

text

Prompt 

image

Output 

image

(c)

Figure 4. Selected (a) remove-all, (b) remove-partial,
and (c) reproduce results.

rate the generated results. Since an extensive user-study
is out of budget of this work, for these two tasks we show
qualitative results only.
We report quantitative results for classification

in terms of classification accuracy and for remove-all,
remove-partial, and reproduce tasks in terms of
PSNR in table 3.

We show selected qualitative results for the
generate-all and generate-partial tasks
in figure 2. The qualitative results that are shown in this
paper are all generated using the Painter model based on
OPT-1.3B which is trained on Multi-Object-Quick-Draw
and regularized on The Pile, unless otherwise noted. As can
be seen from this figure, the model understands concepts
such as shapes, relevant locations among objects, objects
counts, and relationships.

Additionally, we show selected qualitative results for
the classification task in figure 3 and for the

remove-all, remove-partial, and reproduce
tasks in figure 4.

3.3. Discussion

As can be noted in table 3, the classification accuracy is
quite low. Our investigation leads to two main causes for
this. The first reason is that we count a classification label
as correct if there is an exact match between the ground
truth label and the label that Painter generates. There are
examples such as ”pillow under a cat” versus ”cat on a pillow”
that are conceptually the same, but are counted as wrong in
our evaluation. The second reason is that there are objects
classes that are very similar visually and are very hard to
distinguish even for a human rater, such as ”birthday cake”
versus ”cake” or ”pen” versus ”marker”. Some examples
from both categories of reasons are shown in figure 5.

To examine the attention maps that Painter learns in
the cross-attention blocks, we visualize them for a few
classification examples in figure 6. As can be seen
here, Painter can locate the objects in the input images and
correctly attend to them, this is more pronounced in the first
and third cross-attention blocks.

One of the shortcomings that Painter has in its current
form, is the limited number of object categories that it
can identify which is limited to the 345 classes in Quick-
Draw. We are working on expanding the object vocabulary
in Painter via techniques like reinforcement learning.

4. Related work
In spite of the great progress of auto-regressive LLMs

and their extensive footprints in every domain, their full
potential is not released in the image generation domain,
as the latest methods utilize their representation learning
aspect but do not benefit from their powerful auto-regressive
nature. Therefore, we group existing image generation works
into two broad categories: non-auto-regressive and auto-
regressive methods.

4.1. Non-auto-regressive methods

Variational autoencoders (VAEs) [20, 29] are one of the
pioneering works for image generation. Later, Generative
Adversarial Models (GANs) [11, 18, 17] improved a lot upon
VAEs on image generation and were considered the best-
performing method, until recently. Diffusion models and
their variants [14, 25, 26, 5] are now state-of-the-art in this
domain as they are very creative and generate mesmerizing
results.

4.2. Auto-regressive methods

There are very a limited number of works in this category
and to the best of our knowledge, none has a pre-trained auto-
regressive LLM backbone for image generation. Sketch-
RNN [12] is an early work that generates sketches from a



Can you identify the type 

of this illustration?

What is the type of the 

object at the bottom right 

corner of this image?

Can you tell me what 

group the object at the 

bottom of this illustration 

belong to?

What is the class of the 

object at the top of this 

illustration?

What is the class of this 

drawing?

Can you determine the 

category of the object at 

the top of the drawing?

Can you assign a class 

to the object the top left 

corner of this 

illustration?

Can you assign a class 

to the object at the top 

right corner of this 

illustration?

What are the categories 

of the object of this 

illustration?

What are the objects in 

this picture?

Hot tub Lightning Face Car Pillow Hat Light bulb Paintbrush Grass by a sheep Pillow under a cat

Postcard Knee Smiley face Police car Diving board Triangle Hot air balloon Carrot Sheep on grass Cat on bed

Prompt 

text

Prompt 

image

GT 

class

Pred. 

class

Figure 5. Selected incorrect classification results.

single class using a recurrent VAE. Sketchforme [15] extends
to multi-object drawing via a combination of a transformer
and a Sketch-RNN. Sketchformer [24] can classify, retrieve,
and reconstruct sketches via an embedding that is learned
in stroke space. Parti [31] is a hybrid approach that uses
an encoder-decoder LLM for language understanding and
embedding and a pre-trained ViT-VQGAN [30] for image
generation.

Conclusions

We present Painter, the first-ever LLM-based image gen-
eration solution that draws sketches by generating strokes in
an auto-regressive way. We build the Multi-Object-Quick-

Draw dataset consisting of diverse text-description–sketch
pairs where the sketches contain single or multiple objects
with relationships or relative location tags between the ob-
jects, and the text descriptions are devised from a list of pre-
defined tasks with additional prompt diversification using a
very large language model. We modify the LLM architecture
by adding residual cross-attention layers to make it a vision-
language model, and additionally add a visual feedback loop
to actively observe the state of the canvas. Our results show
the viability of Painter’s approach. There are shortcomings
in Painter including the limited number of object categories
that will be addressed in future work.

(a) Prompt: What is the classification of the object at the right side of this image?

(b) Prompt: What is the category of the object at the right side of this drawing?

(c) Prompt: What is the type of this picture?

(d) Prompt: Can you tell me what type of diagram this is?

(e) Prompt: Can you tell me the category of this drawing?

Figure 6. Cross-attention maps of an OPT-125M-based Painter model for several classification examples. There are 11 attention
maps per example that from left to right correspond to the first layer to the eleventh layers in OPT-125M (there all cross-attention blocks in
all 12 OPT-125M layers except the last one).
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José Lezama, Lu Jiang, Ming-Hsuan Yang, Kevin Murphy,
William T. Freeman, Michael Rubinstein, Yuanzhen Li, and
Dilip Krishnan. Muse: Text-to-image generation via masked
generative transformers. CoRR, abs/2301.00704, 2023.

[6] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul Barham,
Hyung Won Chung, Charles Sutton, Sebastian Gehrmann,
Parker Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua
Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam
Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob Austin,
Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke,
Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk

Michalewski, Xavier Garcia, Vedant Misra, Kevin Robin-
son, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan,
Hyeontaek Lim, Barret Zoph, Alexander Spiridonov, Ryan
Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie
Pellat, Aitor Lewkowycz, Erica Moreira, Rewon Child, Olek-
sandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang,
Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta,
Jason Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff Dean,
Slav Petrov, and Noah Fiedel. Palm: Scaling language model-
ing with pathways. CoRR, abs/2204.02311, 2022.

[7] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. In 9th International Conference on Learning Represen-
tations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net, 2021.

[8] Zi-Yi Dou, Aishwarya Kamath, Zhe Gan, Pengchuan Zhang,
Jianfeng Wang, Linjie Li, Zicheng Liu, Ce Liu, Yann LeCun,
Nanyun Peng, Jianfeng Gao, and Lijuan Wang. Coarse-to-fine
vision-language pre-training with fusion in the backbone. In
NeurIPS, 2022.

[9] Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey Lynch,
Aakanksha Chowdhery, Brian Ichter, Ayzaan Wahid, Jonathan
Tompson, Quan Vuong, Tianhe Yu, Wenlong Huang, Yev-
gen Chebotar, Pierre Sermanet, Daniel Duckworth, Sergey
Levine, Vincent Vanhoucke, Karol Hausman, Marc Toussaint,
Klaus Greff, Andy Zeng, Igor Mordatch, and Pete Florence.
Palm-e: An embodied multimodal language model. CoRR,
abs/2303.03378, 2023.

[10] Leo Gao, Stella Biderman, Sid Black, Laurence Golding,
Travis Hoppe, Charles Foster, Jason Phang, Horace He, Anish
Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy.
The Pile: An 800gb dataset of diverse text for language mod-
eling. arXiv preprint arXiv:2101.00027, 2020.

[11] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron C. Courville,
and Yoshua Bengio. Generative adversarial networks. CoRR,
abs/1406.2661, 2014.

[12] David Ha and Douglas Eck. A neural representation of
sketch drawings. In 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Conference Track Proceedings. OpenRe-
view.net, 2018.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition,
CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pages
770–778. IEEE Computer Society, 2016.

[14] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. In Hugo Larochelle, Marc’Aurelio
Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-
Tien Lin, editors, Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Pro-
cessing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, 2020.



[15] Forrest Huang and John F. Canny. Sketchforme: Composing
sketched scenes from text descriptions for interactive applica-
tions. In François Guimbretière, Michael S. Bernstein, and
Katharina Reinecke, editors, Proceedings of the 32nd Annual
ACM Symposium on User Interface Software and Technology,
UIST 2019, New Orleans, LA, USA, October 20-23, 2019,
pages 209–220. ACM, 2019.

[16] Jonas Jongejan, Henry Rowley, Takashi Kawashima, Jongmin
Kim, and Nick Fox-Gieg. The quick,draw! - a.i. experiment.
2016.

[17] Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen,
Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Alias-free
generative adversarial networks. In Marc’Aurelio Ranzato,
Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jen-
nifer Wortman Vaughan, editors, Advances in Neural Infor-
mation Processing Systems 34: Annual Conference on Neural
Information Processing Systems 2021, NeurIPS 2021, Decem-
ber 6-14, 2021, virtual, pages 852–863, 2021.

[18] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019,
pages 4401–4410. Computer Vision Foundation / IEEE, 2019.

[19] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Yoshua Bengio and Yann LeCun,
editors, 3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015.

[20] Diederik P. Kingma and Max Welling. Auto-encoding varia-
tional bayes. In Yoshua Bengio and Yann LeCun, editors, 2nd
International Conference on Learning Representations, ICLR
2014, Banff, AB, Canada, April 14-16, 2014, Conference
Track Proceedings, 2014.

[21] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson,
Kenji Hata, Joshua Kravitz, Stephanie Chen, Yannis Kalan-
tidis, Li-Jia Li, David A. Shamma, Michael S. Bernstein, and
Li Fei-Fei. Visual genome: Connecting language and vision
using crowdsourced dense image annotations. Int. J. Comput.
Vis., 123(1):32–73, 2017.

[22] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual
models from natural language supervision. In Marina Meila
and Tong Zhang, editors, Proceedings of the 38th Interna-
tional Conference on Machine Learning, ICML 2021, 18-24
July 2021, Virtual Event, volume 139 of Proceedings of Ma-
chine Learning Research, pages 8748–8763. PMLR, 2021.

[23] Tanzila Rahman, Hsin-Ying Lee, Jian Ren, Sergey Tulyakov,
Shweta Mahajan, and Leonid Sigal. Make-a-story: Visual
memory conditioned consistent story generation. In CVPR,
2023.

[24] Leo Sampaio Ferraz Ribeiro, Tu Bui, John P. Collomosse, and
Moacir Ponti. Sketchformer: Transformer-based representa-
tion for sketched structure. In 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, CVPR 2020,
Seattle, WA, USA, June 13-19, 2020, pages 14141–14150.
Computer Vision Foundation / IEEE, 2020.

[25] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, CVPR
2022, New Orleans, LA, USA, June 18-24, 2022, pages 10674–
10685. IEEE, 2022.

[26] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay
Whang, Emily L. Denton, Seyed Kamyar Seyed Ghasemipour,
Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans,
Jonathan Ho, David J. Fleet, and Mohammad Norouzi. Pho-
torealistic text-to-image diffusion models with deep language
understanding. In NeurIPS, 2022.

[27] Teven Le Scao, Angela Fan, Christopher Akiki, Ellie
Pavlick, Suzana Ilic, Daniel Hesslow, Roman Castagné,
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