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Figure 1: New AI-generated image models are released regularly. We train classifiers that distinguish real images from
generated ones in an online setting, whereby we add models to training in a simulated release order. We evaluate on unseen
model releases to see how well detectors might generalize into the future.

Abstract

With advancements in AI-generated images coming on a
continuous basis, it is increasingly difficult to distinguish
traditionally-sourced images (e.g., photos, artwork) from
AI-generated ones. Previous detection methods study the
generalization from a single generator to another in iso-
lation. However, in reality, new generators are released
on a streaming basis. We study generalization in this set-
ting, training on N models and testing on the next (N + k),
following the historical release dates of well-known gen-
eration methods. Furthermore, images increasingly con-
sist of both real and generated components, for example
through image inpainting. Thus, we extend this approach to
pixel prediction, demonstrating strong performance using
automatically-generated inpainted data. In addition, for
settings where commercial models are not publicly avail-
able for automatic data generation, we evaluate if pixel de-
tectors can be trained solely on whole synthetic images.

1. Introduction
Since the advent of photography, image manipulation

has been a source of misinformation and propaganda. In
the digital age, tools to modify and distribute images have
grown in effectiveness and scope. The emergence of AI-
generated images has amplified these risks, democratizing
the capacity to create realistic synthetic images indistin-
guishable from authentic images by human observers. De-
veloping mechanisms to detect AI-generated images is crit-
ical to help address these concerns.

Recent advances in image generation have increased the
quality of synthetic outputs [37, 41, 60, 38], with new mod-
els and model variants released on a regular basis. This fast
pace of development highlights future generalization as a
necessary component for an effective generative image de-
tector. Previous methods [57, 12] studying synthetic image
detection and generalization suggest that different methods
contain related, identifiable artifacts, showing that training
a detector on one generator generalizes to another.

The true setting that we live in is online, with new meth-
ods coming out at a regular cadence. While recent meth-
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ods are driven by diffusion [48, 22, 49], many contain a fu-
sion of elements, such as autoregressive components [60],
GAN-based upsampling or decoding [38, 24, 20], or per-
ceptual losses [38, 62]. In addition, the amount of publicly
available information for methods varies by model, from
full open-source models with code and weights available
to closed-source industry-based models, with only images
available. Can the sum total of available information on to-
day’s generators be used to detect tomorrow’s models?

To answer this, we study detection and generalization
emulating an online setting. We collect a dataset of 14 well-
known generative models and simulate a real-world learn-
ing setting by training incremental CNN detectors, preserv-
ing the historical order by model release date. We evaluate
detector performance on images from both previously seen
and unseen generative models, giving insight into the real-
world performance of a live detector system.

In line with previous works, we find that current gen-
erative models continue to have exploitable cues that can
be reliably detected when seen in the training set. A sin-
gle classifier can even detect multiple generators simultane-
ously. Encouragingly, performance on unseen models also
increases, as the seen model history grows. This suggests
that online training methodologies can exploit a collection
of historical synthetic images to generalize to future unseen
generative AI models.

In addition, as generative models start serving as the
backbone of image editing pipelines, images are increas-
ingly a mixture of captured (real) and generated pixels. One
common method for generating such composites is by us-
ing generative models to “inpaint”, or generate the pixels
within the confines of a mask, replacing the original pixels
behind it. We extend our approach from the detection of
wholly generated images to pixel-level predictions to detect
such images and study generalization across Stable Diffu-
sion [55, 7] versions and Adobe Firefly [1].

We first investigate if synthetically generated inpainted
images can be used to train a pixel-level detector. Next,
we recognize that a challenge in pixel-level detection is
the variation in available training data (e.g., ground truth
masks), especially with closed models where we cannot
synthetically generate inpainted images. For such situa-
tions, we show that one can leverage whole images to create
pixel-wise predictions by using CutMix augmentation [61].

In summary our contributions are:

• We study detection of AI-generated images in an on-
line setting, utilizing 570,221 images from 14 genera-
tive methods.

• We study pixel-level prediction for inpainting appli-
cations, showing that CutMix augmentation improves
performance in the absence of pixel-wise training data.

2. Related work

Generative modeling. Generative models aim to model
the distribution of data, given a set of samples. Early at-
tempts, utilizing deep networks, include restricted Boltz-
mann machines (RBMs) [47] and deep Boltzmann ma-
chines (DBMs) [42]. Recent approaches include variational
autoencoders (VAEs) [28], autoregressive models [53, 52],
normalizing flows [16], generative adversarial networks
(GANs) [20], and diffusion models [48, 22, 49]. The Pro-
GAN/StyleGAN family [25, 26] has demonstrate photore-
alistic results, mostly focused on single-class generation.
Such methods prompted the exploration of forensics tech-
niques to detect synthetic imagery. Recently, diffusion
models have shown breakthrough results on arbitrary text-
to-image generation, with multiple methods, such as Sta-
ble Diffusion (based on LDMs) [38], DALL·E 2 [37], Im-
agen [41], released in quick succession. With the capabil-
ity to now seemingly generate “everything and anything”,
the ability to distinguish real from synthetic has become in-
creasingly challenging.

Detecting generated images. Media forensics on syn-
thetic images from traditional tools has a long history [18,
54], for example leveraging signals such as resampling arti-
facts [35], JPEG quantization [5], and shadows [27], and de-
tecting operations such as image splicing [63, 23] or Photo-
shop warps [56]. As deep generative methods have democ-
ratized synthesis of arbitrary image content, recent work has
explored the ability of deep discriminative methods to de-
tect such content [57, 12], primarily in the context of GAN-
based techniques [25, 26, 10].

A key question is how well detectors generalize to meth-
ods not seen during training. Wang et al. [57] find that a
simple classifier, trained on one GAN model, can generalize
to others, especially when using aggressive augmentations.
Chai et al. [12] demonstrate that even small patches contain
sufficient cues for detection. Other features, for example,
focusing on frequency cues [19, 29], using co-occurrence
matrices [31], or even pretrained CLIP [36] features, and
techniques such as augmentation with representation mix-
ing [11] are also effective. A common failure case when
generalizing to a new generator is that while average preci-
sion is high, accuracy is low, demonstrating effective sep-
aration between real and fake classes but poor calibration.
Ojha et al. [33] demonstrate that a simple nearest neighbors
classifier improve accuracy, though at the cost of inference
time. We build on the general observation that even baseline
classifiers can generalize across generators, by studying and
characterizing their behavior in an online setting.

Do images from recent diffusion methods still contain
detectable cues? Recent work [15, 14, 45] show that al-
though GAN-based detectors do not generalize to diffusion
methods [15], diffusion models are detectable and exhibit



Generation
architecture Method/Dataset

Training
set

Method availability Ordering Dataset size

Paper Open-src # Date Train Val Test
Real images LAION-400M [44] – – – – – 179,900 22,479 22,490

Diffusion
U-net

Denoising Diffusion Prob. Model (DDPM) [22] LSUN [59] ✓ ✓ 1 Jun 20 6,271 784 785
Denoising Diffusion Implicit Model (DDIM) [49] LSUN [59] ✓ ✓ 2 May 21 8,000 1,000 1,000
GLIDE [32] Private ✓ ✓ 3 Dec 21 7,442 929 931
DALL·E 2 [37] Private ✓ ✗ 5 Apr 22 2,000 954 2,000

Diffusion
+Decoder

Latent Diffusion (LDM) [38] LAION-400M [44] ✓ ✓ 4 Dec 21 8,172 1,021 1,022
Retrieval-Augmented Diffusion (RDM) [9] LAION-400M [44] ✓ ✓ 7 Jul 22 8,528 1,066 1,066
Stable Diffusion v1.1-v1.4 [38, 55] LAION-2B [43] ✓ ✓ 8 Aug 22 34,508 3,807 3,838
Stable Diffusion 2.0(-v), 2.1(-v) [38, 7] LAION-5B [43] ✓ ✓ 10 Nov 22 35,997 4,000 4,000

Diffusion U-Vit Diffusion w/ Transformers (DiT) [34] ImageNet [40] ✓ ✓ 11 Dec 22 3,199 400 401

Unknown
(product release)

Midjourney v2 [3] Unknown ✗ ✗ 6 Jul 22 42,875 5,358 5,359
Midjourney v3 [3] Unknown ✓ ✓ 9 Nov 22 70,035 8,754 8,755
Midjourney v4 [3] Unknown ✗ ✗ 12 Feb 23 100,000 10,000 76,122
Midjourney v5 [3] Unknown ✗ ✗ 13 Mar 23 63,310 7,914 7,918
Adobe Firefly [1] Unknown ✗ ✗ 14 Mar 23 15,525 2,070 3,105

Table 1: Online dataset. We gather recent generative models. We show the methods, grouped by their image generation
method. For our training experiments, we order them chronologically, recreating an online training scenario from recent
history. As many of the generated methods are general text-to-image generators, we use a subset of LAION [44] to represent
real images. Note that for some methods (Dall·E 2, Midjourney, Firefly), the models are not open-sourced and only accessible
through web interfaces, with no official architectural details available for some (Midjourney, Firefly).

some generalizability to each other. We take these studies
further by training a detector on 14 methods in an online
fashion, simulating their release dates, and releasing an ac-
companying dataset of 570k images.

While these works detect whole images, local predic-
tion also offers important use-cases. For example, forensics
methods have targeted edits from traditional tools, such as
Photoshop warping [56] and image splicing [63, 23]. Chai
et al. [12] show that patch-based classifiers can generate
heatmaps for regions that contain more detectable cues. In
this work, we investigate if inpainted regions can be local-
ized. We show that even without direct access to inpainted
examples, by using CutMix augmentation [61], whole im-
ages can be leveraged to produce pixel predictions.

3. Online detection of AI-generated images
3.1. Dataset

To begin, we collect generated images from 14 mod-
els, released between June 2020 and March 2023, shown
in Table 1. These models reflect the rapid pace of advance-
ment in realistic synthetic image generation, including aca-
demic papers [22, 49, 32, 38, 34] as well as company re-
leases [37, 3, 1, 55, 7]. As the architecture of the genera-
tive model plays a large role in what features might be de-
tectable, we group approaches by model architecture.

This dataset is useful to evaluate the generalization of de-
tectors to unseen generative models. We use these images
and the corresponding release dates of the source models to
simulate an online learning setting. For publicly available
models, we use the model release time from the repository.
For products that can only be queried with an API (Midjour-
ney [3] and Firefly [1]), as the release date and details exact

deployed version is not known, we use the date we query the
model. In total, our dataset is composed of 570,221 images
(405,862 train, 48,057 val, 116,302 test).

Diffusion with U-Nets First, we collect pixel diffu-
sion methods, starting with DDPM [22], DDIM [49] and
GLIDE [32]. These methods are accompanied by papers
and source code releases (a smaller model version, in the
case of GLIDE). All of them use a U-Net [39] with a
diffusion-based objective [48] as their architecture. DDPM
and DDIM train unconditional models on smaller datasets,
while GLIDE performs text-to-image generation.

Additionally, we include DALL·E 2 [37], a high-profile
model from OpenAI. During data collection time, the model
was only available through web interface, which makes
collecting a large-scale dataset challenging. Instead, we
scrapped the DALL·E 2 Reddit, keeping images of 1024 ×
1024 (to filter out extraneous content, such as memes). Be-
cause the web interface generates a watermark that would
be easily identifiable by a classifier, we crop out the bottom
16 pixels of the image.

Diffusion with other architectures. The next largest
family of methods are latent diffusion models (LDMs), first
introduced by Rombach et al. [38] and subsequently used
with retrieval-based augmentation [9]. These methods use
a U-Net to perform diffusion in a latent domain, and then
decode the latent signal with a decoder, trained as part
of a variational autoencoder [28], in combination with a
GAN [20] and LPIPS perceptual loss [62]. LDMs were
subsequently popularized by the release of Stable Diffu-
sion [55] and Stable Diffusion 2 [7], a scaled-up version
of Latent Diffusion trained on large scale web data, con-
taining multiple subversions. Additionally, several methods



propose to change the diffusion U-Nets with transformers
based on ViT [17], which have been shown to have advan-
tages in discriminative tasks [34, 8].

Product releases. With the success of image genera-
tion models, companies have released proprietary products.
Such models make for interesting test cases, as one can
speculate that they contain common elements from publicly
available models, but such details are not publically dis-
closed. We sample images from Midjourney [3] and Adobe
Firefly [1]. We obtain Midjourney images by scraping the
Discord API. As the model may be changing under the API
and we do not know the true underlying model subversion,
we date the models based on our scraping date. We query
Adobe Firefly images (without the watermarking used in
their web interface).

Prompt sourcing. For GLIDE, LDM, RDM, and Firefly
(all sets), and Stable Diffusion (train+val), we use prompts
from DiffusionDB [58]. For the Stable Diffusion test set,
we use prompts from various web sources [6, 4, 50, 2].We
sample unique prompts, in order to not have overlap be-
tween train, validation, and test sets.

3.2. Training details

We progressively train a binary classifier with a cross-
entropy loss to distinguish between naturally sourced “real”
images and those generated by AI. We follow best practices
from Wang et al. [57], which show that a simple classifier
can generalize across generators. We use a common CNN
architecture, ResNet-50 [21], pre-trained on ImageNet [40]
as the backbone for the online detector model. The train-
ing sequence follows Table 1 and Figure 1, simulating the
real-world release dates of generative models. Each detec-
tor training step in the sequence continues from the previ-
ous model weights and incorporates all historical images
seen to date. Release dates are determined by paper publi-
cation date, service launch announcement, or public release
of model weights as relevant for the generative source.

Non-generated images sourced from LAION-400M are
included at the start of training and remain a fixture through-
out learning. During each training stage, we use a class-
balanced random sampler to balance the distribution of gen-
erated and non-generated images over an epoch. Wang et
al. [56] find that augmentations improve generalization. As
such, we use a random 256×256 crop randomly apply-
ing Gaussian blur (with probability p = .01), grayscale
(p = .05), and invisible watermarks [46] (p = .2), a com-
mon feature of generative services. For evaluation, we cen-
ter crop to 256×256 with no augmentation.

3.3. Results

In Figure 2, we show the results of our online detector.
The x-axis of the two heatmaps is the online model’s train-
ing progress through time. Every column is a step in the

learning progression, with a classifier trained on all models
up to that cell, which are ordered by release date. For ex-
ample, the “LDM” column includes images from DDPM,
DDIM, GLIDE, and LDM. The y-axis represents the test
set, with model release date ordered from bottom to top. In
this way, cells in the upper left triangle show generalization
performance of the online detector model on models, not
yet included in the training.

Metrics. Figure 2a shows accuracy on the synthetic im-
ages. Figure 2b shows the area under the curve (AuC)
between real and fake, sweeping over different thresholds,
plotting the true positive and false positive rate, and taking
the integral. The AuC metric shows how well the distri-
butions are separated and is not sensitive to the classifier
threshold. A high score indicates that the top most suspi-
cious images can be reliably surfaced from a collection of
images, useful in triaging scenarios. However, a common
failure case of detectors on unseen distributions of synthetic
images is classifying them as all real (low accuracy), as ob-
served by Ojha et al [33], even when AuC is high. Accuracy
on real images typically remains near 100%. Thus, we show
both AuC, which measures if the classifier has the right set
of features, and synthetic accuracy, which measures if the
classifier also has the right calibration.

Does directly training on a generator work? Before in-
vestigating out-of-distribution generalization, we first per-
form a sanity check that a detector can be directly trained
on a given generator. Observe the diagonal in Figure 2, out-
lined in green, which indicates the performance on a given
generator directly after adding it to the training set. Indeed,
even a straightforward CNN-based classifier can differenti-
ate from generated images and real images fairly well. Re-
call that while we are evaluating in-distribution, these are on
a separate held-out set of images. AuC is at 100% across all
models, indicating perfect separation. Accuracy is near per-
fect, with worst case being 96% accuracy. This test serves
as a sanity check and follows conclusions from previous
work [57], that generators continue to have detectable cues,
despite leaps in generative quality.

Can a detector reliably detect multiple seen generators
simultaneously? After adding in other datasets, perfor-
mance on seen generators (bottom-right) remains at roughly
the same accuracy level. The final column is trained on
all our generators and produces near-perfect performance
across the datasets. This indicates that a single detector can
learn the different artifacts from generators, without run-
ning out of capacity.

Can a detector generalize to unseen generators? Next,
we investigate generalization ability and observe the upper-
left of the matrix, testing on not-yet-released models. If
classifiers do not generalize at all, we would see 0% accu-
racy and chance 0.5 AuC in the upper triangle. Previous



DDPM
DDIM

GLIDE
LDM

Dalle2
Midjv2

RDM
SDv1

Midjv3
SDv2

DiT MidJv4
Midjv5

Firefly

Firefly

Midjv5

MidJv4

DiT

SDv2

Midjv3

SDv1

RDM

Midjv2

Dalle2

LDM

GLIDE

DDIM

DDPM

0 0 0.03 0.3 0.07 0.12 0.15 0.1 0.41 0.37 0.49 0.27 0.35 0.99

0 0 0.02 0.14 0.08 0.27 0.33 0.38 0.96 0.99 0.99 0.99 0.99 1

0 0 0.01 0.44 0.14 0.38 0.56 0.55 1 1 1 1 1 1

0.03 0.03 0.1 0.26 0.13 0.12 0.25 0.22 0.71 0.91 1 1 1 1

0 0 0.02 0.32 0.22 0.36 0.5 0.64 0.98 1 1 1 1 1

0.02 0.06 0.22 0.82 0.76 0.86 0.89 0.89 1 1 1 1 1 1

0 0 0.02 0.87 0.9 0.97 1 1 1 1 1 1 1 1

0 0.01 0.09 0.49 0.3 0.59 1 1 1 1 1 1 1 1

0.02 0.05 0.3 0.83 0.8 1 1 1 1 1 1 1 1 1

0 0.02 0.09 0.11 0.96 0.97 0.96 0.96 0.96 0.96 0.96 0.95 0.95 0.96

0.02 0.04 0.14 0.99 0.99 1 1 1 1 1 1 1 1 1

0.1 0.15 0.98 0.99 0.98 0.99 0.99 0.99 1 0.99 0.99 0.99 0.99 0.99

0.96 0.99 0.98 0.97 0.98 0.98 0.99 0.99 0.99 0.98 0.99 0.98 0.98 0.99

0.96 0.99 0.98 0.97 0.98 0.98 0.99 0.99 0.99 0.98 0.99 0.98 0.98 0.99

(a) Accuracy

DDPM
DDIM

GLIDE
LDM

Dalle2
Midjv2

RDM
SDv1

Midjv3
SDv2

DiT MidJv4
Midjv5

Firefly

Firefly

Midjv5

MidJv4

DiT

SDv2

Midjv3

SDv1

RDM

Midjv2

Dalle2

LDM

GLIDE

DDIM

DDPM

0.5 0.46 0.67 0.92 0.74 0.85 0.86 0.85 0.94 0.94 0.95 0.92 0.92 1

0.51 0.49 0.54 0.89 0.84 0.93 0.95 0.97 1 1 1 1 1 1

0.44 0.38 0.48 0.96 0.82 0.94 0.97 0.98 1 1 1 1 1 1

0.64 0.63 0.76 0.92 0.84 0.87 0.92 0.93 0.99 1 1 1 1 1

0.43 0.43 0.57 0.94 0.89 0.95 0.97 0.99 1 1 1 1 1 1

0.73 0.69 0.81 0.99 0.96 0.98 0.99 0.99 1 1 1 1 1 1

0.48 0.48 0.59 1 1 1 1 1 1 1 1 1 1 1

0.6 0.59 0.73 0.97 0.93 0.98 1 1 1 1 1 1 1 1

0.75 0.73 0.87 0.99 0.98 1 1 1 1 1 1 1 1 1

0.62 0.66 0.8 0.84 1 1 1 1 1 1 1 1 1 1

0.7 0.7 0.79 1 1 1 1 1 1 1 1 1 1 1

0.82 0.82 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Figure 2: Online detector performance. We order generative methods by their release date and train a real vs. fake classifier,
in a progressive fashion (x-axis). We show (a) accuracy on synthetic images and (b) area under the curve (AuC) between real
and fake images, across different test sets (y-axis). When testing on a generator that is in the training data, performance jumps
to near 100% in both metrics, as seen on the green diagonal. After adding other generative sources, performance remains near
100% (bottom triangle). Even before being directly trained on (upper left triangle), accuracy and AuC on generative sources
not yet seen by the detector increases, as the historical training set grows (for example, see SDv2 row). AuC considers both
generative and non-generative images and is less sensitive to prediction thresholds, suggesting the online detector model
rapidly learns features useful for differentiating AI generated images from non-generative images across a wide variety of
models, although requiring some additional calibration (threshold selection) to improve accuracy.

work [57, 12] observe that classifiers do generalize, and in-
deed, we see values higher than chance, even before they
are directly trained on, however performance degrades over
time, indicating that online training will still be required as
new models are released.

Looking at the values one row above the diagonal indi-
cates performance of training on N models and testing on
the (N + 1)th. Many of the methods – DDIM, Midjourney
(v2 to v5), RDM, Stable Diffusion (v1 and v2), DiT – have
AuC at 0.98 or above, indicating that the classifier contains
the right features early on in training, after DALL·E 2 is
added, the 5th model.

The accuracy scores are less consistent. For example,
GLIDE achieves 15% accuracy while having perfect AuC,
indicating that additional calibration is needed. The last
model, Adobe Firefly, has relatively low accuracy, even
when training on all previous models, indicating significant
differences to previous models.

Which generators have high impact on one another? It
is also interesting to note that related models are correlated.
For example, adding LDMs [38] has outsized influence on

a number of models, as indicated by the step up in perfor-
mance in the AuC (Fig 2b). This includes direct descen-
dants of RDMs [9], Stable Diffusion versions [55, 7], as
well as Midjourney, an unknown model.

Viewing the accuracy (Fig 2a), Midjourney v3 has large
influence over subsequent versions of v4 and v5, indicating
a large version change compared to Midjourney v2. As spe-
cific details of the model are not known, this sheds some
light into the underlying model changes.

4. Detection of Generative Inpainting

Outputs from generative models are increasingly used
in editing pipelines, where final images are a composite of
both AI-generated pixels and traditionally sourced images.
One common way these images are generated is with “in-
painting”, where a masked region of an image is seamlessly
filled with generated content. To evaluate how well we can
detect these types of edits, we create a dataset from Adobe
Firefly and Stable Diffusion’s inpainting models. As ground
truth masks may be difficult to acquire in real-world set-
tings, e.g., with closed models, we examine how one can



Original SDv1 Inpaint GT Mask SDv1 Cutmix SDv1 Detector
SDv1 Cutmix + 

Inpaint

Figure 3: Inpainting detection and generalization (SDv1). Here we highlight the successful detection of SDv1 inpainted
regions on LAION images. We also compare pixel detectors trained by various methods. While a SDv1 CutMix detector
does provide some predictive power, inpainted example images are required in training for high accuracy.

leverage whole images to get pixel-wise labels, using Cut-
Mix [61] augmentation. We also investigate generalization
by the inclusion of images from multiple inpainting models.

4.1. Dataset

We create three inpainting datasets, using Stable Diffu-
sion (v1 and v2) [55, 7] and Adobe Firefly [1]. Table 2 sum-
marizes model release dates, input source, masked pixel dis-
tribution, and dataset size. We sample input images and cor-
responding prompts from the LAION-400M Dataset[44].
We resize images to 512 pixels on the short side and cen-
ter crop and generate a mask. We create masks covering 15
to 35% of each image, with random overlapping strokes and
shapes. In order to preserve the fidelity of the non-masked
region and isolate the generated pixels from the original,
we copy the original image back into the non-masked re-
gion. Importantly, we do not observe this approach to cause
a visible seam.

For whole image sets, we use LAION images from Table

Inpaint Model Release Date Input Mask % Train Val Test
SDv1 Oct 22 LAION 15-35 9375 1250 1875
SDv2 Nov 22 LAION 15-35 9375 1250 1875
Firefly Mar 23 LAION 15-35 9091 1206 1813

Table 2: Inpainting dataset. We investigate pixel-wise
generative detection by creating a dataset of inpainting re-
sults, using Stable Diffusion and Adobe Firefly.

2 and sample the desired generative models (in equal size)
from the online dataset previously described in Table 1.

4.2. Training details

Similarly to whole image detection, we study gener-
alization using a standard Fully Convolutional Network
(FCN) [30] with a ResNet-50 [21] architecture, utilizing
weighted Dice loss [51] to address data imbalance. At train-
ing, we test schemes with the assumption that an inpaint-
ing API is or is not available. When not available, we test
whether whole images can be leveraged for pixel-wise la-



Original SDv2 Inpaint GT Mask

SDv1 Inpaint + 
SDv2 Cutmix 

Detector
SDv2 Inpaint 

Detector
SDv1+SDv2 Inpaint 
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Figure 4: Inpainting detection and generalization (SDv2). We can clearly see the progression in accuracy on SDv2
inpainted LAION images as higher quality data and an additional model source is introduced in pixel detector training.

(a) Original (b) Firefly Inpainted Result (c) Ground Truth Mask (d) Detection

Figure 5: Generative AI pixel detection test. A detector model trained on inpainted images successfully captures the
generated pixels from Adobe Firefly’s inpainting model.

bels. We test CutMix blending [61], a naive approach of
simply cutting and pasting blocks of one image into an-
other [61]. When an inpainting API is available, we test
with synthetically-generated inpainted images with random
masks, described in the section above. We also test if adding

whole images with CutMix can help in this situation.

4.3. Results

Can we create a pixel detector? Table 3 shows results
on training and detecting SDv1. When only using whole



Training Data SDv1 Inpainting Whole image

accuracy f1 accuracy f1
SDv1 whole image 0.7755 0.1807 0.9979 0.9968
SDv1 cutmix 0.8359 0.4882 0.9960 0.9941
SDv1 inpaint 0.9902 0.9795 0.9918 0.9878
SDv1 inpaint + cutmix 0.9920 0.9832 0.9996 0.9994

Table 3: SDv1 inpainting detection. Compared to using
whole images only, we observe improvement when training
with CutMix augmentation, and another jump when trained
on inpainted images, with the best model using both. Ad-
ditionally, we see these methods retain accuracy on whole
image detection in a test set comprising both LAION and
pure SDv1 images.

Training Data accuracy precision recall f1
SDv1 inpaint 0.9288 0.9776 0.7173 0.8275
SDv1 inpaint + SDv2 cutmix 0.9600 0.9781 0.8509 0.9101
SDv2 inpaint 0.9872 0.9766 0.9693 0.9730
SDv1 inpaint + SDv2 inpaint 0.9892 0.9811 0.9733 0.9772

Table 4: SDv2 inpainting generalization. A pixel de-
tector trained on SDv1 inpainting images generalizes well
to SDv2 inpainted images (1st row). When SDv2 whole
images are added in training via CutMix, performance
rises (2nd row), approaching the performance of a detector
trained directly on SDv2 inpainted images (3rd row).

Training Data accuracy precision recall f1
Firefly cutmix 0.8250 0.9376 0.2870 0.4395
SDv1 + SDv2 inpaint + Firefly cutmix 0.9511 0.9749 0.8163 0.8886
Firefly inpaint 0.9811 0.9734 0.9469 0.9600
SDv1 + SDv2 + Firefly inpaint 0.9891 0.9805 0.9740 0.9772

Table 5: Firefly inpaint generalization. We see an in-
crease in pixel accuracy when SDv1 and SDv2-inpainted
images are added to Firefly CutMix detector training (1st to
2nd row), with performance relatively close to that achieved
by directly training on Firefly inpainted images (3rd row).

images, we show that using CutMix improves performance
(77.6% → 83.6% accuracy). In Figure 3, we see that Cut-
Mix can catch some inpainted regions, though far from per-
fect. When an inpainting API is available, we show that
synthetically generated samples can greatly improve ac-
curacy (99.0%), with small improvements adding CutMix
(99.2%). In Figure 5, we show a qualitative example a Fire-
fly inpainting detector, trained on synthetically-generated
Firefly samples.

Can a pixel detector be used in conjunction with a
whole image detector? Note that performance on detect-
ing whole images is nearly perfect >99.0% across all cases,
indicating the model is not simply relying on boundary ar-
tifacts.

Does a pixel detector generalize across models? In Ta-
ble 4, we measure performance on SDv2-generated in-

painted images on detector methods, and if SDv1 can be
leveraged to improve performance. We follow a progression
from highly limited training data to most abundant. We see
in the most limited case, where the detector model only has
access to images from the previous version of SDv1, a high-
performance accuracy of 92.9%, showing generalization at
least in the case of closely related model sources. Leverag-
ing SDv2, even with just whole images using CutMix, im-
proves performance (96%). This is approaching the perfor-
mance of a stand-alone detector model trained directly on
SDv2 inpainted images (98.7%). Using the previous ver-
sion of SDv1 further improves performance (98.9%). In
Figure 4, we show qualitative examples of this progressive
improvement.

While SDv1→SDv2 studies generalization across
closely related models, in Table 5, we study generaliza-
tion across unrelated models, (SDv1+SDv2) →Firefly. We
see that leveraging inpainted SDv1+SDv2 images improves
performance, both compared to training only with Fire-
fly whole images using CutMix (82.5→95.1) and with in-
painted Firefly images available (98.1→98.9). Our results
indicate that generated images contain sufficient cues even
at a local level that can be detected. Furthermore, incorpo-
rating previously seen models can improve accuracy.

5. Conclusions and Limitations

We conduct experiments to investigate how well classi-
fiers can detect AI-generated images in a simulated online
framework. We see that classifiers do generalize to un-
seen models, although when there are major architectural
changes, performance drops substantially. These experi-
ments suggest that a vigilant classifier, regularly retrained
on new generators, has the opportunity to detect future, un-
released models, as long as they are architecturally similar.

While our dataset highlights some key advancements in
generative methods, it does not comprise of all models in
this time period. Methods such as Imagen [41], Parti [60],
Muse [13], and GigaGAN [24] offer high-quality genera-
tions with alternative architectures but do not have public
APIs or source code released. Exploring detection for such
methods is an interesting direction if the models become
available. In addition, we study online generalization with
simple architectures (ResNet [21] and FCN [30]), following
best training practices [57]. Further improving generaliza-
tion in an online setting is an important future area of work.
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