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Abstract

In this work, we propose a new transformer-based reg-
ularization to better localize objects for Weakly supervised
semantic segmentation (WSSS). In image-level WSSS, Class
Activation Map (CAM) is adopted to generate object lo-
calization as pseudo segmentation labels. To address the
partial activation issue of the CAMs, consistency regular-
ization is employed to maintain activation intensity invari-
ance across various image augmentations. However, such
methods ignore pair-wise relations among regions within
each CAM, which capture context and should also be in-
variant across image views. To this end, we propose a new
all-pairs consistency regularization (ACR). Given a pair
of augmented views, our approach regularizes the activa-
tion intensities between a pair of augmented views, while
also ensuring that the affinity across regions within each
view remains consistent. We adopt vision transformers as
the self-attention mechanism naturally embeds pair-wise
affinity. This enables us to simply regularize the distance
between the attention matrices of augmented image pairs.
Additionally, we introduce a novel class-wise localization
method that leverages the gradients of the class token. Our
method can be seamlessly integrated into existing WSSS
methods using transformers without modifying the archi-
tectures. We evaluate our method on PASCAL VOC and
MS COCO datasets. Our method produces noticeably bet-
ter class localization maps (67.3% mIoU on PASCAL VOC
train), resulting in superior WSSS performances. https:
//github.com/OpenNLPLab/ACR_WSSS.

1. Introduction
Weakly supervised semantic segmentation (WSSS) aims

to relieve the laborious and expensive process of pixel-
wise labeling with different types of weak labels including
image-level labels [23, 2, 19, 69, 54], points [4], scribbles
[59, 36, 56] and bounding boxes [13, 41, 31, 40, 53]. Image-
level WSSS is particularly challenging as it uses only class
labels to supervise pixel-wise predictions without any loca-
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Figure 1. Top: conceptual illustration of the proposed ACR. Given
two views of the same image by e.g., resizing & flipping, we reg-
ularize the consistency between the corresponding positions of the
two self-attention matrices, employing two types of invariant con-
sistencies, i.e. Region affinity consistency and Region activation
consistency. Bottom: object localization and their corresponding
attention matrices, all results are obtained based on vision trans-
former with only class labels. Baseline: the model is trained with
only classification loss. Other WSSS models, e.g., SEAM [63],
only perform learning with activation consistency. SEAM*, a
transformer variant of SEAM. Ours: trained with our ACR shows
the benefit of including affinity consistency. Our approach can ef-
fectively localize targeted objects.

tion prior. An essential step of image-level WSSS is to ob-
tain class-wise localization maps, i.e., seeds, which provide
object localization to generate pseudo segmentation labels.
Previous WSSS methods[62, 63, 7, 27, 2, 48, 50, 1] gen-
erally rely on Class Activation Maps (CAMs) [77] based
on the Convolutional Neural Networks. Although signifi-
cant research has been undertaken to improve CAMs, it still
suffers from incomplete and inaccurate activation. These
issues are caused by the supervision gap between the im-
age tags and pixel-wise segmentation supervision since the
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classification network is indifferent to pixel-wise activation
and only requires a sufficient average pooled value.

Existing work [63, 75, 15] uses augmentation invariant
consistency to refine CAMs, where they consider region
activation consistency which forces the absolute class ac-
tivation values to be consistent between augmented views.
Although such regularization has been demonstrated to be
effective such as [63, 75, 15], activation consistency can
only discover activation in novel views but non-activated
regions and background noise cannot be solved through
contextual relations. Thus, we propose to also maintain
pair-wise consistency across the views, termed region affin-
ity consistency. Specifically, we look at the relations be-
tween regions within each image and compare these rela-
tions across views. In Fig. 1, this implies that the rela-
tion intensities, e.g. between the person and sky, should
stay invariant to augmentations between two views. Our
motivation is that affinity is a manner of context encod-
ing and context has been demonstrated to be essential for
pixel-wise predictions [75, 71, 63]. Thus, every region in
an image is encouraged to have the same relationships with
all other regions as the augmented view, rather than simply
the same value (such as SEAM [63]). So both targeted and
non-targeted objects are reinforced by affinity consistency.
Samples in Fig. 1 validate our motivations. The attention
matrices of baseline and SEAM are distracted by specific
tokens (bright columns) which are not desired since an re-
gion is either targeted or non-targeted, while our method
captures better object shapes (Diagonal grid patterns show
that the targeted and non-targeted image regions are clearly
distinguished).

Our method, named All-pairs Consistency Regulariza-
tion (ACR), uses a vision transformer to simultaneously en-
force region activation consistency and region affinity con-
sistency. Transformer-based models have achieved great
success in various tasks [14, 66, 44, 78, 43, 64, 60, 38]. As
the core of the transformer, we find that the self-attention
matrices can be naturally used to regularize our two con-
sistencies without requiring additional affinity computation.
Specifically, given an image that is split into h × w = n
patch tokens, an attention matrix A ∈ R(n+1)×(n+1) is gen-
erated in the self-attention module. Its first row encodes re-
lations between the class token and the patch tokens, such a
class-to-patch attention can be reshaped to an h × w map
showing potential object activation [5, 69, 9, 52] for the
region activation consistency. Additionally, the patch-to-
patch attention A[1:,1:]∈ Rn×n encodes pair-wise rela-
tions among all pairs of patch tokens that can be used for the
region affinity consistency. During classification training,
we input the image and its augmented view into a Siamese
vision transformer to obtain attention matrices for the two
views respectively. For the augmented attention matrix, we
introduce a novel approach to restore the original spatial or-

der inverting the transformation. Therefore we can directly
regularize the corresponding positions of the attention ma-
trices across two views to enforce the two consistencies.

The attention-based consistency is class agnostic, there-
fore, we cannot directly obtain a class-wise localization
for the downstream WSSS task. Further, simply trans-
planting the CNN-based CAM [77] to transformers relies
on the output features (i.e. patch tokens), but extensive
noise is observed [69, 46, 55]. To this end, we propose a
new class localization generation method for vision trans-
formers with a single class token. Thanks to our con-
sistency regularization during training, the attention ma-
trices encode rich class-wise object information. We find
that the class-wise gradients of the class-to-patch attention
▽A[0,1:] ∈ Rn already provide decent class-wise ob-
ject localization. We additionally leverage the patch-to-
patch attention A[1:,1:] ∈ Rn×n to refine our class-
wise localization maps and generate segmentation seeds.
We note that our training regularization and seed generation
method can be seamlessly integrated into the vision trans-
former networks.

To summarize, our main contributions are:

• We propose All-pairs Consistency Regularization
(ACR) for wsss. It ensures affinity consistency as
well as activation consistency during the classification
training, which leads to better initial seeds for wsss.

• We propose to leverage the self-attention structure of
the vision transformer to regularize the two types of
consistencies, which can be directly used on vision
transformers without modifications. To enforce the
regularization, we propose a technique to re-align the
spatial orders of the two views’ self-attention matrices
that inverts the effects of a broad range of image trans-
formations.

• We propose to use the gradients to generate accurate
class-wise localization maps from a single class token,
and further refine it with the learned region affinity.

The proposed method generates significantly improved
class-wise localization maps compared to all previous
WSSS methods and leads to state-of-the-art performance on
PASCAL VOC and MS COCO.

2. Related Work
Various WSSS methods are proposed to avoid labori-

ous pixel-wise annotation. The adopted weak labels in-
clude image-level labels [2, 41, 63, 7, 73, 72, 32, 75, 51],
scribbles [36], points [4], and bounding boxes [13, 31, 40].
We mainly focus on image-level methods in this review.
Existing image-level WSSS methods generally rely on
CAMs [77] as initial seeds to generate pseudo segmentation
labels. Various solutions are proposed to refine the CAMs.
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Figure 2. An overview of ACR. An image is augmented to a novel view then the augmented pair is input into a Siamese vision transformer
(two branches share weights), consisting of L successive transformer blocks. The class token (green) is used to make classification
predictions. In each self-attention matrix, class-to-patch attention (green) encodes region activation and patch-to-patch attention (pink)
encodes region affinity. We propose regularizing the distance between two views’ self-attention matrices to enforce ACR. Our class
localization map is generated using the self-attention matrix as shown in the bottom dashed orange box detailed in Fig. 3.

Consistency Regularization. Different types of con-
sistencies are proposed to refine the initial seeds for
WSSS. [75] studies CAMs consistency from complemen-
tary patches of the same image. [76] explores the con-
sistency between two parallel classifiers which tries to in-
crease the distinction between the CAMs and merge the
two-branch outputs to obtain complete CAMs. Further,
foreground-background contrastive [11, 67] and intra-class
contrastive [50] are proposed to refine the localization accu-
racy. [49, 17] introduce feature consistency across paired
images from the same class to mine more regions. Finally,
[15] proposes a prototype-based metric learning methodol-
ogy, that enforces feature-level consistencies in both inter-
view and intra-view regularizations. A similar method to
ACR is SEAM proposed in [63]. However, it only en-
forces CAM invariant consistency across augmentations but
does not consider affinity consistency, i.e., the CAM val-
ues should be the same across different augmented image
views.

Learning Affinity Refinement. Pair-wise affinity is of-
ten adopted in WSSS to refine the initial seeds. [68] uses
an auxiliary saliency detection task to learn the affinity.
[63, 75] adopts the low-level feature maps from a CNN net-
work to generate affinity that preserves detailed context in-
formation. [2, 1] propose to learn a network to discrimi-
nate paired pixels from the reliable seeds of CAMs. Then
they use the learned network to guide random walk prop-
agation to refine CAMs. In the transformer era, affinity is
inherently encoded in the self-attention module. [46] adopts
reliable seeds of CAMs to directly supervise the affinity of

the self-attention to capture object shapes. [69] adopts mul-
tiple class tokens to generate class-wise localization maps
and also uses the affinity from the self-attention to refine
the maps.

In summary, existing WSSS methods disregard the con-
sistency of the affinity across views, i.e., In this work, we
explore leveraging the self-attention mechanism to enforce
such consistency.

3. Method
In this section, we first outline the key design choices for

the proposed regularization, then present our ACR training
framework. Fig. 2 outlines our framework. Our two forms
of regularization are applied to a vision transformer [14]
without modifying the network structure. In Section 3.3,
we detail our approach in obtaining the class localization
maps from the network gradients.

3.1. Overview

We base our design on the vision transformer [14, 52,
64, 60, 38], as existing work [69, 46, 55] has demon-
strated that better activation is obtained. Compared to
CNNs [63, 75, 6, 49, 11, 54], transformers explicitly encode
region dependencies among all tokens with self-attention
layers. Such characteristics naturally suit our need for mod-
eling the two forms of consistencies without introducing
extra modules. Specifically, we use class-to-patch atten-
tion to achieve region activation consistency, which sets
our method apart from existing CNN-based work [63, 75].
Moreover, although previous work [63, 75] involves extra
dedicated modules that model the affinity within each im-



age, they do not use such a concept for regularizing the con-
sistency across multiple views. We instead directly leverage
the patch-to-patch attention to achieve region affinity con-
sistency.

3.2. Attention Consistency Regularization

Here, we present the design of ACR, with notation fol-
lowing [14]. We split the input image into n = h × w,
(height by width) non-overlapping patches and flatten them
to a sequence of n tokens. A class token is inserted to form
the input sequence T ∈ R(n+1)×d where d is the embedding
dimension. The class token attends to all patch tokens and is
used for classification prediction. Within each transformer
block, we obtain attention matrix A ∈ R(n+1)×(n+1) by
softmax(QKT /

√
d) [58], where Q,K ∈ R(n+1)×d are the

query and key matrices projected from T .
During classification training, we augment the input im-

age I directly to a novel view I ′ by a randomly selected
transformation. Then we input the two views into a Siamese
vision transformer to obtain two attention matrices A and
A′. As discussed, self-attention encodes region activation
and region affinity simultaneously, we calculate the distance
between the two matrices to enforce our attention consis-
tency regularization. To handle matrices that are not spa-
tially equivalent after augmentations, we propose a method
that rearranges the order of the tokens accordingly. We in-
troduce the two proposed regularization terms, as well as
the token-rearranging method in detail below.

Region Activation Consistency encourages the network
to generate object localization that is invariant to transfor-
mations. Consider the first row of the attention matrix A, we
can extract the class-to-patch attention A[0,1:] ∈ R1×n.
As discussed in [20, 8, 55, 69, 5], A[0,1:] can be re-
shaped and normalized to a class-agnostic objectness map
M ∈ Rh×w as the class token is used for classification.
Thus, given the attention matrix A and its augmented view’s
attention matrix A′, we regularize the activation across two
views by comparing the class-to-patch attention:

Lact = ∥A[0,1:]− f−1(A′[0,1:])∥1, (1)

where f−1 is an inverse transformation to restore the spa-
tial ordering of the tokens after the image has undergone an
augmentation such as flip. So f−1A′ and A have the same
spatial ordering of tokens, but different values, since the im-
age transformation also alters pixel ordering within each of
the patches themselves, leading to altered features. In other
words, we do not invert the embeddings of the tokens but
only their relative positions. The inversion ensures that we
can regularize the corresponding positions of the two atten-
tion matrices. The class token attends to all patches, so n
image patch tokens correspond to A[0,1:] ∈ R1×n. In

training, we calculate the ℓ1 loss between corresponding ar-
eas of the two attention matrices to enforce region activation
regularization.

Region Affinity Consistency encourages pair-wise rela-
tions between image regions to be invariant to transforma-
tions. Given attention matrix A and its augmented view
attention A′, and considering that A[1:,1:] ∈ Rn×n,
encodes the affinity between all patch tokens, the affinity
consistency regularization is formulated as:

Laff = ∥A[1:,1:]− f−1(A′[1:,1:])∥1. (2)

During training, we measure ℓ1 loss between the corre-
sponding pair-wise patch tokens of the two attention ma-
trices to enforce region affinity regularization.

Transformation Inverse and Optimization Objective.
Image augmentation changes the appearance and the rela-
tive positions of the patch tokens . Thus, the attention matri-
ces from two views may not be spatially equivalent, which
prohibits direct distance calculation. To address this, we in-
troduce a transformation to invert the image augmentation
of the attention matrix in terms of token ordering. Note that
we only consider token ordering in this section and omit the
transformation that is applied inside each image patch as we
only aim to restore the original spatial information, not the
embedding. This operation is shown in the dashed blue box
in Fig. 2 and denoted as f−1 in equation 1, 2,

we present the details of the inversion in this section.
In practice, we use spatial transformations including re-

size, flip, and rotation. Resize does not affect token order-
ing so we can simply resize the attention matrix back to the
original size. Image flip and rotation can be performed and
inverted by general matrix operations. Given a patched in-
put image X ∈ Rh×w without considering the transforma-
tion inside each patch, flip is a permutation operation and
rotation can be considered as a transpose followed by a flip.
So the augmented image can be formulated:

flip: X ′ = PhXPw, (3)
rotation: X ′ = PhX

TPw, (4)

where Ph ∈ Rh×h and Pw ∈ Rw×w are permutation matri-
ces in x and y directions respectively. Let A′ be the attention
matrix of X ′, then the inversion of A′ can be written as:

f−1(A′) = CT (Pw ⊗ PT
h )A′(Pw ⊗ PT

h )
T
C, (5)

where ⊗ is Kronecker product. C ∈ Rn×n is a commu-
tation matrix for rotation and an identity matrix when flip-
ping. Here, we omit the class token for simplicity. Note
that such a formulation enables inversion of a wide range
of possible image transformations that can be described by
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Figure 3. An overview of our class-wise localization map genera-
tion framework. We use the gradients of the class-to-patch atten-
tion (the blue vector) to generate a class localization map*. Fur-
ther, we use the learned region affinity (the pink block) to refine
the class localization map. Sample visualizations of the learned
region affinity are shown in Fig. 12.

permutation matrices, though many may not be helpful aug-
mentations. Please refer to the supplementary material for
detailed derivations and discussions.

In summary, A and f−1(A′) have the same token or-
dering according to equation 20. Hence, we can directly
calculate the distance between the two attention matrices to
apply ACR. Our optimization objective is the combination
of the two-view classification and the consistency losses:

L = Lcls + αLact + βLaff. (6)

where α, β are hyperparameters.

3.3. Gradient-based Transformer Class Localiza-
tion Map

At test time, the object activation provided by the class-
to-patch attention A[0,1:] ∈ R1×n is class-agnostic [5,
69]. To obtain class-wise localizations for the downstream
WSSS task, a naive solution is to directly transplant the
CAM [77] method into the transformer, by using the av-
erage pooled patch tokens instead of the class token to pro-
duce classification predictions. However, in line with exist-
ing works [55, 46, 69], we find that this achieves poor re-
sults (Table 5). Another approach [69] uses multiple class-
specific tokens to generate class-wise seeds. However, this
requires modifying the transformer architecture and compu-
tational complexity grows with the number of classes. In-
spired by recent transformer interpretability work [8, 9], we
introduce a gradient-based approach. Different from [8, 9]
which incorporate gradients with the attention values or the
network relevances [3], we empirically find that the gradi-
ents can directly provide accurate localization information
and construct our gradient-based transformer class localiza-
tion methods.

In Fig. 3, given the class-to-patch attention ma-
trix A[0,1:] ∈ R1×n (the green vector) and
target class c, we calculate gradients by back-

propagating the classification score yc, formulated as
▽Ac[0,1:] := ∂yc/(∂A[0,1:]) (the blue vector).
Intuitively, ▽Ac[0,1:], i.e. class-wise gradients of the
class-to-patch attention, represent patch tokens’ contribu-
tions to the final classification scores. Then we remove
negative values and reshape it to h × w to obtain the class
localization map* shown in Fig. 3. We empirically find that
averaging the multi-layer gradients performs well. Given a
transformer with l successive layers, the localization map
for class c is defined as:

M c =
1

l

l∑
i

▽Ac
i[0,1:]. (7)

Affinity Refinement. Inspired by [63, 69], we further
adopt the learned patch-wise affinity A[1:,1:] ∈ Rn×n

(the pink matrix) to refine the activation maps as shown in
Fig 3. Thanks to our Region affinity consistency, better
context is encoded in self-attention modules. We visual-
ize the patch-wise affinity in Fig. 12. Note that the baseline
model is trained with only classification loss without our
regularization, the generated affinity (the third column) is
distracted by specific patch tokens, leading to noisy seeds
(the second column). Our affinity (the fifth column) can
capture better object contexts and generate integral local-
ization. Formally, our class localization map for class c is
defined as:

M c =

(
1

l

l∑
i

▽Ac
i[0,1:]

)
×

(
1

l

l∑
i

Ai[1:,1:]

)
. (8)

Then, M c ∈ R1×n can be reshaped to h×w and normalized
to obtain our final class localization maps, i.e., initial seeds.

Our class-wise localization maps provide accurate and
dense object coverage. The reasons are two-fold. First, the
region activation consistency encourages the class token to
attend to accurate object localization as shown in row 4 of
Fig. 5. Second, affinity consistency regularization encour-
ages the network to capture precise pair-wise affinity, such
affinity propagates the localized pixels to cover comprehen-
sive object regions, as shown in row 5 of Fig. 5.

4. Experiments
4.1. Experimental Settings

Datasets. We evaluate our method on the PASCAL
VOC [16] and MS COCO [37] datasets. The official PAS-
CAL VOC has 20 objects classes and one background class,
with 1,446 training, 1,449 validation, and 1,456 testing im-
ages. Following common practice in WSSS, we use an aug-
mented training set consisting of 10,582 images with anno-
tations from [21]. MS COCO 2014 is much more challeng-
ing than PASCAL VOC. It contains 81 classes including
background with 80k training and 40k validation images.
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Figure 4. Class localization maps (Loc map) and pair-wise affin-
ity of patch tokens (Aff). Our method can capture better context
encoding and generate accurate localization maps. Baseline: the
model is trained with only classification loss. The attention matri-
ces are down-sampled for readability.
Table 1. Performance comparison of WSSS methods on MS
COCO. w/ saliency: the method adopts extra saliency informa-
tion. Best number is in bold.

Methods Venue w/ saliency Val
AuxSegNet [68] ICCV2021 ✓ 33.9
EPS [18] CVPR2022 ✓ 35.7
L2G [24] CVPR2022 ✓ 44.2
Wang et al. [62] IJCV2020 27.7
Ru et al. [46] CVPR2022 38.9
SEAM [63] CVPR2020 31.9
CONTA [74] NeurIPS2020 32.8
CDA [48] ICCV2021 33.2
Ru et al. [45] IJCV2022 36.2
URN [34] AAAI2022 41.5
MCTformer [69] CVPR2022 42.0
ESOL [33] NeurIPS2022 42.6
SIPE [11] CVPR2022 43.6
RIB [28] NeurIPS2020 43.8
ACR 45.0

Implementation Details. We adopt ViT-hybrid-B [14].
Training images are resized and cropped to 384× 384. For
semantic segmentation, following previous WSSS meth-
ods [69, 2, 1, 27], we use DeepLabV2 [10] with a
ResNet101 [22] backbone as the segmentation model. Dur-
ing segmentation inference, we use multi-scale testing and
adopt CRFs [26] for post-processing. Detailed implementa-
tion details are presented in the supplementary material.

4.2. Comparison with State-of-the-art

4.2.1 MS COCO

Table 1 shows segmentation results on MS COCO. We
achieve a segmentation mIoU of 45%, which surpasses ex-
isting methods with a clear margin. Notably, this result
does not rely on any extra saliency information but outper-
forms all previous WSSS methods including the ones with
saliency. MS COCO is a bigger dataset with more seman-
tic classes and complex images that include multiple ob-

Table 2. Performances of the initial Seeds and pseudo segmen-
tation labels on PASCAL VOC train set. (s): methods that rely
on saliency to generate seeds. ACR*: our localization maps with-
out affinity refinement. Our seeds outperform previous non-salient
methods by a significant margin.

Methods Seed w/ saliency Pseudo
EDAM (CVPR2021) [65] 52.8 ✓ 68.1
ReCAM (CVPR2022) [12] 54.8 ✓ 70.9
L2G (CVPR2022) [24] 56.2 ✓ 71.9
EPS (ECCV2020) [18] 69.4 (s) ✓ 71.6
Du et al.(CVPR2022) [15] 70.5 (s) ✓ 73.3
PSA (CVPR2018) [2] 48.0 61.0
SEAM (CVPR2020) [63] 55.4 63.6
CDA (ICCV2021) [48] 55.4 67.7
AdvCAM (CVPR2021) [29] 55.6 68.0
CPN (ICCV2021) [75] 57.4 67.8
Ru et al. (CVPR2022) [46] – 68.7
SIPE (CVPR2022) [11] 58.6 –
Du et al.(CVPR2022) [15] 61.5 69.2
MCTformer (CVPR2022) [69] 61.7 69.1
ACR* 59.4 –
ACR 67.3 70.8

jects. This result indicates that saliency may hinder WSSS
approaches’ ability to scale to complex scenes, hence we
do not incorporate saliency into our approach. Our result
demonstrates that ACR is able to generate reliable class lo-
calization maps in challenging scenes. We report per-class
results of MS COCO in the supplementary material.

4.2.2 PASCAL VOC

Seed Performance. We report mIoU for the class lo-
calization maps in Table 2, including the performances
with and without affinity refinement. As shown, without
affinity refinement, ACR* still outperforms most existing
non-salient methods (59.4% mIoU). Our ACR achieves sig-
nificantly improved initial seeds, which shows the efficacy
of the proposed ACR. Without the assistance of saliency,
previous best [69] also adopts transformer affinity to refine
the seed, ACR outperforms it by 5.2%. We show qualitative
results in Fig. 5. Further, Fig. 6 shows seeds on complex
scenes with multiple objects, ACR learns precise affinity
to facilitate complete object shapes with precise boundaries.

Pseudo Label Performance. The last column of Table 2
shows the pseudo segmentation label performances. Fol-
lowing common practice, we adopt PSA [2] to process the
activation maps (seed) into pixel-wise pseudo segmentation
labels. We empirically find that PSA is easily affected
by false positive samples, i.e., over-activation. To avoid
over-activation, we use ACR* to train the PSA network.
Then, the trained PSA network will refine the ACR seeds
(67.3%) into pseudo labels. As shown, our method achieves
notably improved pseudo labels.
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Figure 6. Visualization samples of our class localization maps with
multiple classes. ACR can discriminate accurate boundaries be-
tween connected objects and localize complete shapes.

Semantic Segmentation Performance. Table 3 shows
semantic segmentation results on PASCAL VOC. ACR
achieves competitive results of 71.2% and 70.9% on val
and test sets respectively, which outperform previous non-
salient methods. Fig. 7 shows that the segmentation model
trained with our pseudo labels can produce accurate and
complete predictions. We report per-class results of PAS-
CAL VOC in the supplementary material.

1Xu et al. [69] report 71.9 (val) and 71.7(test), but we are unable to
reproduce these results with their provided code and seeds. We instead
report our reproduced performances using their official implementation at
https://github.com/xulianuwa/MCTformer.

Table 3. Performance comparison of WSSS methods on PASCAL
VOC 2012 val and test sets. w/ saliency: the method adopts extra
saliency information. Best numbers are in bold.

Methods Venue w/ saliency Val Test
NSRM [70] CVPR2021 ✓ 70.4 70.2
EDAM [65] CVPR2021 ✓ 70.9 70.6
EPS [32] CVPR2021 ✓ 71.0 71.8
DRS [25] AAAI2021 ✓ 71.2 71.4
L2G [24] CVPR2022 ✓ 72.1 71.7
Du et al. [15] CVPR2022 ✓ 72.6 73.6
PSA [2] CVPR2018 61.7 63.7
SEAM [63] CVPR2020 64.5 65.7
CDA [48] ICCV2021 66.1 66.8
ECS-Net [50] ICCV2021 66.6 67.6
Du et al. [15] CVPR2022 67.7 67.4
CPN [75] ICCV2021 67.8 68.5
AdvCAM [29] CVPR2021 68.1 68.0
Kweon et al. [27] ICCV2021 68.4 68.2
ReCAM [12] CVPR2022 68.5 68.4
SIPE [11] CVPR2022 68.8 69.7
URN [34] AAAI2022 69.5 69.7
ESOL [33] NeurIPS2022 69.9 69.3
PMM [35] ICCV2021 70.0 70.5
MCTformer1 [69] CVPR2022 70.6 70.3
VWL-L [45] IJCV2022 70.6 70.7
Lee et al. [30] CVPR2022 70.7 70.1
ACR 71.2 70.9

4.3. Ablation Studies

Effectiveness of ACR. We propose to simultaneously
regularize region activation and region affinity during the
classification training. We ablate the two regularization
terms in Table 4. First, we observe that region affinity
can significantly improve seed quality even in the baseline,
which validates the contextual encoding ability of the vision
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Figure 7. Segmentation results on the PASCAL VOC val set.

Table 4. Ablation analysis of the two proposed consistency regu-
larization. Act Regu: region activation consistency regularization.
Aff Regu: region affinity consistency regularization. aff: whether
to use affinity refinement during seed generation.

Act Regu Aff Regu w/o aff w/ aff
51.1 57.7

✓ 54.8 63.5
✓ 55.4 64.9

✓ ✓ 59.4 67.3

Table 5. Analysis of different seeds generation methods.
Methods Seed
CAM [77] 44.0
TS-CAM [20] 40.1
Grad-CAM [47] 50.5
Generic [8] 52.5
Generic [8] + aff 59.6
ACR 67.3

transformer. By introducing the two regularization terms,
we observe that they contribute noticeable improvements
to the performance respectively. We achieve superior re-
sults with both regularization terms, leading to an overall
15.8% mIoU increase over the vanilla transformer baseline
(51.1%) , which demonstrates the effectiveness of ACR.

Different Seeds Generation Methods. To fully utilize
the structure of the vision transformer, we integrate the
class-to-patch gradients with region affinity to generate
class localization maps as seeds. In Table 5, we ablate dif-
ferent seeds generation methods with models trained using
our ACR. We first integrate the conventional CAM [77]
method into the vision transformer, which achieves only
44%, potentially because the context aggregated in the
class token is not used, and the global receptive field may
spread noise. We further test various network visualization
methods including TS-CAM [20], Grad-CAM [47], and
Generic [8]. Notably, we refine the outputs of Generic [8]
and observe a performance boost, which shows that the re-
gion affinity refinement can also be integrated with other
methods for a performance increase. Ultimately, ACR
achieves the best result, demonstrating the effectiveness of
our seed generation method.

64
65
66
67
68

0 2 4 6 8 10 12

12
14
16
18
20
22

0 2 4 6 8 10 12

mIoU

FP

FN

The start layer

Pe
rf
or
m
an
ce
s(
%
)

Figure 8. Performance in mIoU (%), false positive (FP), and false
negative (FN) of the initial seeds generated by averaging over
transformer layers. The horizontal axis represents which layer we
start to obtain seeds.

Different Vision Transformer Backbones. in Table 6,
we compare ACR with the previous best localization maps
generated by MCTformer [69] using the same vision trans-
former backbone, i.e., Deit-S [57], which has substantially
fewer parameters and lower complexity compared to ViT-
hybrid-B. Compared to ACR, MCTformer produces better
localization maps without affinity refinement (58.2 vs 56.8)
since it uses multiple class tokens which require more com-
plexity, while we only rely on a single one. However, our
model is more benefited with the affinity refinement (61.7
vs 63.4). This is because our ACR learns better pair-wise
affinity which leads to more integral object localization.
Moreover, we integrate our ACR during the MCTformer
training (Table 6: MCTformer + ACR). As shown, ACR
improves MCTformer by 2.2 mIoU without affinity and 0.7
mIoU with affinity. In summary, it demonstrates that ACR
can work with different transformer backbones and existing
transformer-based WSSS methods as well.

Different Layers of CAM generation. We obtain the
class localization maps by averaging the outputs of succes-
sive transformer layers. Following [63], we report mIoU,
false positive (FP) and false negative (FN) of the localiza-
tion maps when we fuse from different layers. FP indi-
cates over-activation and FN indicates under-activation. As
shown in Fig. 8, the mIoU tends to increase and FN tends
to decrease when reducing the number of layers used, and
both values are saturate when only the last two layers are
involved. This indicates that early layers may contain un-
helpful low-level noise, and with only the last two layers,
we can obtain the best object completeness. Further, our
seeds are generally over-activated as the FP is consistently
higher than the FN. It indicates that the incompleteness
issue is effectively mitigated by ACR. However, current
pseudo generation methods [2, 1] are designed for under-



Table 6. Evaluation of class localization maps on Deit-S back-
bones. aff: whether to use affinity refinement.

Method Backbone w/o aff w/ aff
MCTformer [69] Deit-S 58.2 61.7
MCTformer + ACR Deit-S 60.4 (↑ 2.2) 62.4 (↑ 0.7)
ACR Deit-S 56.8 63.4

activated seeds, which might be the reason that our pseudo
label improvement is not as significant as our class local-
ization maps. A compatible solution for over-activation is
expected in the future and it would potentially improve the
segmentation results of ACR even further.

5. Conclusion
In this paper, we propose a simple yet effective training

framework to generate better class localization maps from
transformer named ACR. We exploit two types of consis-
tencies during the classification training, i.e., region-wise
activation consistency and region affinity consistency. The
self-attention mechanism of the transformers is leveraged to
simultaneously regularize two consistencies. We show that
ACR can learn precise object localization by only one sin-
gle class token as well as accurate pair-wise affinity to ex-
tract object extent. Our class localization maps significantly
outperform previous methods and lead to state-of-the-art
performances. ACR can be seamlessly integrated with the
vision transformer network without any extra modification,
which can further facilitate other transformer-based tasks.
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data-efficient image transformers & distillation through at-
tention. In International Conference on Machine Learning
(ICML), pages 10347–10357. PMLR, 2021. 8

[58] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 4, 13

[59] Paul Vernaza and Manmohan Chandraker. Learning random-
walk label propagation for weakly-supervised semantic seg-
mentation. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 7158–7166. Computer
Vision Foundation / IEEE, 2017. 1

[60] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao
Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao.
Pvtv2: Improved baselines with pyramid vision transformer,
2021. 2, 3

[61] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-
ing He. Non-local neural networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR). Computer Vision Foundation / IEEE, June
2018. 14

[62] Xiang Wang, Shaodi You, Xi Li, and Huimin Ma. Weakly-
supervised semantic segmentation by iteratively mining
common object features. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1354–1362.
Computer Vision Foundation / IEEE, 2018. 1, 6

[63] Yude Wang, Jie Zhang, Meina Kan, Shiguang Shan, and
Xilin Chen. Self-supervised equivariant attention mecha-
nism for weakly supervised semantic segmentation. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 12275–12284. Computer Vision Foundation
/ IEEE, 2020. 1, 2, 3, 5, 6, 7, 8

[64] Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu,
Xiyang Dai, Lu Yuan, and Lei Zhang. Cvt: Introducing
convolutions to vision transformers. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 22–31, 2021. 2, 3

[65] Tong Wu, Junshi Huang, Guangyu Gao, Xiaoming Wei, Xi-
aolin Wei, Xuan Luo, and Chi Harold Liu. Embedded dis-
criminative attention mechanism for weakly supervised se-
mantic segmentation. In IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 16765–16774.
Computer Vision Foundation / IEEE, 2021. 6, 7

[66] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar,
Jose M Alvarez, and Ping Luo. Segformer: Simple and
efficient design for semantic segmentation with transform-
ers. Advances in Neural Information Processing Systems,
34, 2021. 2



[67] Jinheng Xie, Jianfeng Xiang, Junliang Chen, Xianxu Hou,
Xiaodong Zhao, and Linlin Shen. C2am: Contrastive learn-
ing of class-agnostic activation map for weakly supervised
object localization and semantic segmentation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 989–998, June 2022. 3

[68] Lian Xu, Wanli Ouyang, Mohammed Bennamoun, Farid
Boussaid, Ferdous Sohel, and Dan Xu. Leveraging auxil-
iary tasks with affinity learning for weakly supervised se-
mantic segmentation. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), pages
6984–6993, October 2021. 3, 6

[69] Lian Xu, Wanli Ouyang, Mohammed Bennamoun, Farid
Boussaid, and Dan Xu. Multi-class token transformer for
weakly supervised semantic segmentation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 4310–4319, 2022. 1, 2, 3, 4, 5, 6, 7,
8, 9, 14, 15, 18, 21

[70] Yazhou Yao, Tao Chen, Guo-Sen Xie, Chuanyi Zhang,
Fumin Shen, Qi Wu, Zhenmin Tang, and Jian Zhang. Non-
salient region object mining for weakly supervised semantic
segmentation. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 2623–2632. Computer
Vision Foundation / IEEE, 2021. 7

[71] Yuhui Yuan and Jingdong Wang. Ocnet: Object context net-
work for scene parsing. ArXiv e-prints, 2018. 2

[72] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk
Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix: Regu-
larization strategy to train strong classifiers with localizable
features. In IEEE International Conference on Computer Vi-
sion (ICCV), pages 6023–6032, 2019. 2

[73] Bingfeng Zhang, Jimin Xiao, Yunchao Wei, Mingjie Sun,
and Kaizhu Huang. Reliability does matter: An end-to-
end weakly supervised semantic segmentation approach. In
AAAI Conference on Artificial Intelligence (AAAI), pages
12765–12772, 2020. 2

[74] Dong Zhang, Hanwang Zhang, Jinhui Tang, Xiansheng Hua,
and Qianru Sun. Causal intervention for weakly-supervised
semantic segmentation. arXiv preprint arXiv:2009.12547,
2020. 6

[75] Fei Zhang, Chaochen Gu, Chenyue Zhang, and Yuchao Dai.
Complementary patch for weakly supervised semantic seg-
mentation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), pages 7242–7251,
October 2021. 2, 3, 6, 7, 21

[76] Tianyi Zhang, Guosheng Lin, Weide Liu, Jianfei Cai, and
Alex Kot. Splitting vs. merging: Mining object regions with
discrepancy and intersection loss for weakly supervised se-
mantic segmentation. In European Conference on Computer
Vision (ECCV), 2020. 3

[77] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva,
and Antonio Torralba. Learning deep features for discrimi-
native localization. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 2921–2929. Com-
puter Vision Foundation / IEEE, 2016. 1, 2, 5, 7, 8, 15

[78] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang
Wang, and Jifeng Dai. Deformable detr: Deformable trans-

formers for end-to-end object detection. arXiv preprint
arXiv:2010.04159, 2020. 2

A. Implementation Details
Our code is implemented in PyTorch on four NVIDIA

RTX2080Ti GPUs. During classification training, we use
ViT-hybrid-B [14] as the backbone. The training images are
randomly resized and cropped to 384 × 384 and we use a
batch size of 4. The model is trained for 15 epochs using the
SGD optimizer with an initial learning rate of 0.01, weight
decay of 5e − 4, and Polynomial Learning Rate Policy. In
Equation 6, we set α = β = 100.

Evaluation Metric and Protocol For class localization
maps, we report the best mean Intersection-over-Union
(mIoU), i.e., the best match between the activation maps
and the segmentation ground truth under all background
thresholds. For semantic segmentation (in mIoU), we ob-
tain the PASCAL VOC val and MS COCO results by com-
paring the predictions with their ground truth, while we ob-
tain the PASCAL VOC test results from the PASCAL VOC
online evaluation server.

B. Spatial Transformation and Inversion
As discussed in the main paper Section 3.2, our consis-

tency regularization requires an inverse transformation f−1,
which restores the spatial ordering of the tokens within the
transformer. This is needed as the augmentation changes
the pixel orderings in the spatial domain, which in turn al-
ters the orderings of the patches, hence, tokens within the
transformer (Fig. 9). Restoring the order is therefore neces-
sary for us to match the corresponding patches before and
after the augmentation, so that we can compute losses.

Here, we present a toy example to demonstrate such an
effect. As shown in Fig. 9 (top), we have an input image
of resolution 4 × 4 with unique number for each pixel. We
then process it with a patch size of 2 × 2, with each patch
in a different color. Then, we flatten the patches into a 1-d
sequence of tokens as the input of the vision transformer. In
Fig. 9 (bottom), we horizontally flip the image. Likewise,
the augmented view is converted into patches that are flat-
tened as a 1-d sequence of tokens. By comparing the col-
ored blocks, a token-wise correspondence is easily drawn
and order is restored. We point out that internally, the em-
bedding of a token is still different than its corresponding
counterpart due to the augmentation applied in the pixel do-
main. But still, they shall share a similar activation signal as
they are obtained from the same entity — albeit flipped or
rotated — and our aim is to regularize such signals through
losses.

To compute the losses for regularization, we require
comparing elements inside the self-attention matrices of the
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Figure 9. Concept illustration of spatial transformation. The spa-
tial augmentation not only transforms patch orders but also the
content inside each patch. We propose transformation inversion to
invert the patches to the original order.

transformer, which means we need to restore the orderings
of the said elements in a similar philosophy as what shown
in Fig. 9. Though, this is far less trivial, as self-attention is
calculated among all tokens. Below, we provide detailed
derivations on how we obtain the inverse transformation
f−1 that restores such orderings.

B.1. Derivation of the Transformation Inversion

We consider the transformation inversion of the token
ordering in this section. By transformation inversion, we
ensure the augmented attention matrix has an equal spa-
tial ordering to the original attention matrix. Note that we
only consider the token ordering in this section and omit
the transformation that has been applied inside each patch
of the image as we only aim to restore the original spatial
information, not the embedding.

Notations and Lemmas First, we define a general opera-
tion vec(·) which converts an arbitrary 2-d vector (i.e., fea-
ture map) into a 1-d sequence

vec : Rl×m → Rlm×1, (9)

where l, m denote any shape. For an arbitrary H = [hij ] ∈
Rl×m, vec(·) yields its 1-d patched format, as

vec(H) =



h11

...
hl1

...
h1m

...
hlm


(10)

In our setting, hij represents the embedding derived from
an image patch.

Second, we define a commutation matrix Clm ∈
Rlm×lm, which fulfills

Clmvec(H) = vec
(
HT
)
. (11)

We can easily validate that CT
lm = C−1

lm = Clm [42].
Therefore, Clm is an orthogonal matrix.

Finally, according to [39], we have that for matrices
An×p, Bp×q , and Cq×m, the theorem holds that

vec(ABC) =
(
CT ⊗A

)
vec(B), (12)

where ⊗ is Kronecker product.

Spatial Transformation Operation Given an input im-
age I ∈ RH×W (channel dimension omitted for simplicity),
we consider a spatial transformation operation (i.e., flipping
or rotation) as a mapping of each individual pixel (i, j) ∈ I .
Specifically, for flipping, we have three cases

horizontal flip: (i, j) → (i,W − j),

vertical flip: (i, j) → (H − i, j),

horizontal & vertical flip: (i, j) → (H − i,W − j),

which can be represented by permutation operations.
Likewise, for rotation, we have

90◦rotate: (i, j) → (W − j,H − i),

180◦rotate: (i, j) → (j,H − i),

270◦rotate: (i, j) → (W − j, I),

while each case can be further considered as a matrix trans-
pose followed by a flipping operation.

As such, we unify the above operations into matrix trans-
formations. Given the feature map X ∈ Rh×w of the said
image I obtained from e.g., ViT, where h × w = n (n
patches inside the transformer), we have

flip: X → PhXPw, (13)
rotation: X → PhX

TPw, (14)

where Ph ∈ Rh×h and Pw ∈ Rw×w are permutation matri-
ces in the x and y directions respectively.

Self-attention Matrices Here, we ask the question —
how will the self-attention matrices in the transformer
change according to a spatial transformation operation on
the image?

We assume Qs,Ks as the two projected feature maps
of the input image, but in the 2-d shapes before flatten-
ing. Per the transformer attention design [58], we denote
Qs = XWQ and Ks = XWK , where Qs,Ks are of di-
mension Rh×w×d with d being the feature dimension. Here,
WQ and WK project the embedded input image into two la-
tent spaces, then we use vec(·) to flatten Qs and Ks. The
self-attention matrix of the original image before transfor-
mation is then defined as

A = vec(Qs)(vec(Ks))T ∈ Rn×n, (15)



Table 7. Ablation of different image augmentation methods. We
report mIoU of seeds on PASCAL VOC train set.

Augmentation mIoU
Baseline (no aug) 57.7
Resize 59.2
Rotation 61.1
Horizontal flip + resize 61.6
Horizontal flip + vertical flip 63.6
Horizontal flip + patch hiding 65.8
Horizontal flip + gray scale 63.8
Horizontal flip 67.3

where we omit the class token for simplicity. Then, we write
out the matrix after the transformation. For flipping, the
augmented self-attention matrix is formulated as

A′ = (vec(PhQ
sPw))(vec(PhK

sPw))
T ∈ Rn×n, (16)

which, per Equation 12, can be further derived as

A′ = (vec(PhQ
sPw))(vec(PhK

sPw))
T

= (PT
w ⊗ Ph)vec(Q

s)((PT
w ⊗ Ph)vec(K

s))T

= (PT
w ⊗ Ph)vec(Q

s)vec(Ks)T (PT
w ⊗ Ph)

T

= (PT
w ⊗ Ph)A(PT

w ⊗ Ph)
T . (17)

For rotation, the augmented self-attention is formulated
as

A′ = (vec(Ph(Q
s)TPw))(vec(Ph(K

s)TPw))
T ∈ Rn×n.

(18)
Following the axiom of 11 where C ∈ Rn×n is an commu-
tation matrix, Equation 18 can be rewritten as

A′ = (vec(Ph(Q
s)TPw))(vec(Ph(K

s)TPw))
T

= (PT
w ⊗ Ph)Cvec(Qs)((PT

w ⊗ Ph)Cvec(Ks))T

= (PT
w ⊗ Ph)Cvec(Qs)vec(Ks)TCT (PT

w ⊗ Ph)
T

= (PT
w ⊗ Ph)CACT (PT

w ⊗ Ph)
T . (19)

Transformation Inversion At last, we obtain the formu-
lation to invert the transformation on the attention matrices.
Following Equation 17 and Equation 19, the transformation
inversion is in a unified form

f−1(A′) = CT (Pw ⊗ PT
h )A′(Pw ⊗ PT

h )
T
C, (20)

where f−1 is the inversion transformation. C ∈ Rn×n is
a commutation matrix for rotation and an identity matrix
when flipping. Note that such a formulation enables inver-
sion of a wide range of possible image transformations that
can be described with permutation matrices, though few
may be helpful augmentations. To this end, f−1(A′) and
A are spatially equivalent and we can directly calculate the
distance between the two attention matrices to apply ACR.

Table 8. Ablation of different distance metrics for regularization
loss. We report mIoU of seeds on PASCAL VOC train set.

Loss mIoU
L2 62.5
Smooth L1 62.5
L1 67.3

Table 9. Computational comparison. The training memory and test
FPS are tested on an RTX2080Ti GPU with a batch size of 1.

Method Backbone Resolution Train memory(MB) Test FPS
PSA [2] ResNet38 384 3082 0.98
MCTformer [69] Deit-S 224 1500 7.10
Ours Deit-S 224 1580 3.61
Ours Vitb-hybrid-B 384 5260 2.33

C. Analysis of different image augmentation

Several image augmentations are adopted in ACR to
transform the second view, we report the performance of
them in Table 7. As shown, we ablate several combina-
tions of image augmentations. It is observed that all image
augmentations achieve performance improvements over the
baseline, which validates the effectiveness of ACR. Second,
we found that horizontal flip on its own achieves the best
result (67.3% mIoU). In future work, we will further inves-
tigate how different augmentations affect the performances.

D. More qualitative results

We show more qualitative results of the class localiza-
tion maps provided by ACR. In Fig. 10, we show class lo-
calization maps of images with simple scenes. In Fig. 11,
we show that ACR also generates high-quality class local-
ization maps with multiple classes. In the bottom row of
Fig. 11, we show a failure case of an image containing a
horse and a rider. Competitive relationships between the
class activation are not investigated in this paper, so when
we have multiple connected objects that have similar ap-
pearances or belong to the co-occurring classes, the affinity
refinement may lead to over-activation. We will investigate
this issue in future work.

Pair-wise relationships, or affinity, between image re-
gions are inherently encoded in the attention matrix of the
vision transformer. The model is encouraged to capture
consistent pair-wise affinity by our region affinity regular-
ization. We display the class localization maps and learned
affinity matrices. in Fig. 12. The baseline model with clas-
sification loss only produces noisy localization maps, which
is consistent with other methods, such as [69, 55, 46],
Further, if we only apply activation consistency regulariza-
tion such as (ACT regu), model can correctly localize tar-
geted objects but fails to capture precise object shapes. As
shown, some particular tokens are still causing the affin-
ity matrices to become disorganized, which indicates that
simple activation consistency such SEAM [61] is not ad-



Image CAM MCTformer Ours* Ours

Figure 10. Qualitative examples of class localization maps of ACR. CAM: [77]. MCTformer: [69]. Ours*: our maps without affinity
refinement. Ours: our final class localization maps.
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Failure cases

Figure 11. Qualitative examples of our class localization maps with multiple classes. We show the results without and with affinity
refinement. In the bottom, we present a failure case.

equate and further affinity consistency is necessary. Fi-
nally, our ACR can generate high-quality object localiza-

tion maps as the affinity regularization plays a key role in
ensuring consistent appearance of object features, which in



Image Baseline Act regu ACR

Horse

Dining 
table

Plane

Train

Sofa

Figure 12. Qualitative examples of the class localization maps and the learned affinity matrices. Baseline: the model is trained with only
classification. Act regu: the model is trained with only activation consistency regularization. ACR: the model is trained with our ACR
that contains both consistency regularization. The baseline model with classification loss only generates noisy localization. With our
activation regularization (Act regu), the model can correctly localize targeted objects but fails to capture precise boundaries. Finally, our
ACR can generate high-quality object localization maps, showing clearly the performance increase that arises from affinity consistency
regularization.. The affinity matrices are down-sampled for readability.

turn enhances segmentation performance In addition, We
show qualitative examples of the learned affinity in Fig. 13.

We select three positions of the image which are marked as
red crosses and show their related affinity. As shown, the



Figure 13. Qualitative examples of the learned affinity of ACR. Three source pixels are marked as red crosses. The region affinity related
to these three source pixels is demonstrated respectively. Each source pixel is highly correlated with its semantically matched regions.

learned affinity highly corresponds to semantic entities and
shows accurate boundaries. For example, the background
(wall, sky, ground) and foreground objects are clearly sep-
arated. Such results indicate that our vision-transformer-
based ACR learns high-quality affinity and can effectively
refine the class localization maps by propagating related
pixels.

Finally, we show qualitative examples of segmentation
predictions in Fig. 14.

E. Analysis of Regularization Loss

Given two spatially equal attention matrices, we measure
the distance between them. In Table 8, we ablate different
types of distance evaluation methods and report the mIoU of

the class localization maps on the PASCAL VOC train set.
As shown, we empirically found that L1 distance achieves
the best result.

F. Analysis of Efficiency

In Table. 9, we compare our method with CNN-based
PSA [2] and Transformer based MCTformer [69]. During
training, our memory usages are similar under the same
network and image size. Our inference speed is signif-
icantly faster than that of PSA. However, our inference
speed is slower than MCTformer due to the fact that MCT-
former adopts multiple class tokens, whereas we maintain
the model structure with a single class token and calculate
gradients to generate class-wise localization.



Image GT Ours Image GT Ours

Figure 14. Qualitative examples of the segmentation predictions



G. Limitations and Future Research
We discuss the limitations and future research possibil-

ities of our method in this section. First, competitive re-
lationships between class activation are not investigated in
this paper, instead, our regularization is directly applied to
class-indifferent attention matrices. Thus, affinity refine-
ment may lead to over-activation when multiple connected
objects share similar appearances or belong to co-occurring
classes. In future work, we will investigate how to connect
the self-attention mechanism with the semantic relations be-
tween the classes so we can generate more class discrimina-
tive localization maps. Second, as discussed in the main pa-
per, our class localization maps are generally over-activated
as the FP is consistently higher than the FN. It indicates that
the incompleteness issue is effectively mitigated by ACR.
However, current pseudo generation methods [2, 1]are de-
signed for under-activated seeds, i.e., they require the seeds
to have a high precision rather than recall. It might be the
reason that our pseudo label improvement is not as signifi-
cant as our class localization maps. A compatible solution
for over-activation is expected in the future and it would
potentially improve the segmentation results of ACR even
further.

H. Per class results of PASCAL VOC and MS
COCO

We report the per class IoU of PASCAL VOC val set and
MS COCO val set in Table 10 and Table 11.



Table 10. Per-class results on PASCAL VOC val set.
Class bkg plane bike bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv mIoU
CPN [75] 89.9 75.1 32.9 87.8 60.9 69.5 87.7 79.5 89.0 28.0 80.9 34.8 83.4 79.7 74.7 66.9 56.5 82.7 44.9 73.1 45.7 67.8
Kweon et al. [27] 90.2 82.9 35.1 86.8 59.4 70.6 82.5 78.1 87.4 30.1 79.4 45.9 83.1 83.4 75.7 73.4 48.1 89.3 42.7 60.4 52.3 68.4
Ours 91.5 85.2 39.7 85.8 60.4 77.0 87.4 80.1 87.9 30.3 84.2 50.7 83.5 85.8 74.1 73.5 59.7 83.8 45.1 72.5 55.5 71.2

Table 11. Per-class results on MS COCO val set.
Class MCTformer [69] RIB [28] ours Class MCTformer [69] RIB [28] ours
background 82.4 82.0 82.7 wine glass 27.0 27.5 48.2
person 62.6 56.1 47.0 cup 29.0 27.4 42.6
bicycle 47.4 52.1 50.4 fork 13.9 15.9 12.6
car 47.2 43.6 44.6 knife 12.0 14.3 16.1
motorcycle 63.7 67.6 68.4 spoon 6.6 8.2 9.5
airplane 64.7 61.3 70.2 bowl 22.4 20.7 26.5
bus 64.5 68.5 71.1 banana 63.2 59.8 64.3
train 64.5 51.3 56.4 apple 44.4 48.5 48.5
truck 44.8 38.1 37.6 sandwich 39.7 36.9 51.0
boat 42.3 42.3 37.1 orange 63.0 62.5 63.1
traffic light 49.9 47.8 37.4 broccoli 51.2 45.4 53.8
fire hydrant 73.2 73.4 74.9 carrot 40.0 34.6 44.3
stop sign 76.6 76.3 65.2 hot dog 53.0 49.7 52.1
parking meter 64.4 68.3 50.8 pizza 62.2 58.9 79.3
bench 32.8 39.7 43.1 donut 55.7 53.1 65.5
bird 62.6 57.5 60.2 cake 47.9 40.7 52.6
cat 78.2 72.4 78.4 chair 22.8 20.6 18.7
dog 68.2 63.5 72.0 couch 35.0 36.8 39.9
horse 65.8 63.6 67.5 potted plant 13.5 17.0 22.5
sheep 70.1 69.1 70.4 bed 48.6 46.2 51.0
cow 68.3 68.3 71.4 dining table 12.9 11.6 19.6
elephant 81.6 79.5 81.2 toilet 63.1 63.9 65.7
bear 80.1 76.7 82.7 tv 47.9 39.7 50.7
zebra 83.0 80.2 82.1 laptop 49.5 48.2 54.6
giraffe 76.9 74.1 76.2 mouse 13.4 22.4 11.8
backpack 14.6 18.1 13.3 remote 41.9 38.0 37.4
umbrella 61.7 60.1 64.4 keyboard 49.8 50.9 53.5
handbag 4.5 8.6 8.2 cellphone 54.1 54.1 53.2
tie 25.2 28.6 27.1 microwave 38.0 45.2 46.7
suitcase 46.8 49.2 48.3 oven 29.9 35.9 32.7
frisbee 43.8 53.6 57.0 toaster 0.0 17.8 0.0
skis 12.8 9.7 14.1 sink 28.0 33.0 30.4
snowboard 31.4 29.4 23.7 refrigerator 40.1 46.0 32.9
sports ball 9.2 38.0 21.5 book 32.2 31.1 33.2
kite 26.3 37.1 47.1 clock 43.2 41.9 52.6
baseball bat 0.9 15.3 11.0 vase 22.6 27.5 31.4
baseball glove 0.7 8.1 7.1 scissors 32.9 41.0 42.4
skateboard 7.8 31.8 26.0 teddy bear 61.9 62.0 60.3
surfboard 46.5 29.2 38.6 hair drier 0.0 16.7 0.0
tennis racket 1.4 48.9 21.0 toothbrush 11.1 21.0 31.0
bottle 31.1 33.1 38.5 mIoU 42.0 43.8 45.0


