
Semantic RGB-D Image Synthesis

Shijie Li
University of Bonn

Bonn, Germany
lishijie@iai.uni-bonn.de

Rong Li
HKUST (Guangzhou)

Guangzhou, China
rongli@hkust-gz.edu.cn

Juergen Gall
University of Bonn

Bonn, Germany
gall@iai.uni-bonn.de

Abstract

Collecting diverse sets of training images for RGB-D se-
mantic image segmentation is not always possible. In par-
ticular, when robots need to operate in privacy-sensitive ar-
eas like homes, the collection is often limited to a small
set of locations. As a consequence, the annotated images
lack diversity in appearance and approaches for RGB-D
semantic image segmentation tend to overfit the training
data. In this paper, we thus introduce semantic RGB-D
image synthesis to address this problem. It requires syn-
thesising a realistic-looking RGB-D image for a given se-
mantic label map. Current approaches, however, are uni-
modal and cannot cope with multi-modal data. Indeed, we
show that extending uni-modal approaches to multi-modal
data does not perform well. In this paper, we therefore
propose a generator for multi-modal data that separates
modal-independent information of the semantic layout from
the modal-dependent information that is needed to gener-
ate an RGB and a depth image, respectively. Furthermore,
we propose a discriminator that ensures semantic consis-
tency between the label maps and the generated images and
perceptual similarity between the real and generated im-
ages. Our comprehensive experiments demonstrate that the
proposed method outperforms previous uni-modal methods
by a large margin and that the accuracy of an approach
for RGB-D semantic segmentation can be significantly im-
proved by mixing real and generated images during train-
ing.

1. Introduction
RGB-D semantic segmentation is essential for mobile

agents as it enables gaining a precise perception of the en-
vironment. While there are fast methods like ESANet [25]
that are suitable for robotics applications, the collection of
annotated RGB-D training data remains a bottleneck. This
is in particular an issue for robots in homes since the data
collection is restricted due to privacy concerns, but it is also
an issue for UAVs or delivery robots that need to enter pri-

(a) Real (b) RGB-D OASIS (c) SCMIS (Ours)

Figure 1. Comparison of images that are generated for a given la-
bel mask. The left column shows the real RGB-D image that cor-
responds to the label mask. The middle column shows RGB-D
images generated by OASIS extended to RGB-D. The proposed
approach (right column) generates more realistic RGB-D images
than OASIS. While the depth maps of OASIS are inaccurate and
noisy and the edges of the tables are not straight, our approach
generates images where the RGB and depth image are consistent.

vate property.
An interesting direction to increase the diversity of train-

ing data is thus to generate training data from label maps
as shown in Fig. 4. This task is also known as semantic
image synthesis [18, 24, 28] where a semantic label map is
provided and the aim is to generate realistic images that are
consistent with the label map. While this also requires train-
ing data, it allows the generation of each annotated training
image variant where the appearance of the present objects,
walls, and floor differs from the original image as shown
in Fig. 4. While previous works focused on uni-modal se-
mantic image synthesis, i.e., only generating RGB images,
we propose a multi-modal approach that generates realistic-
looking RGB-D images from semantic label maps. We thus
call the task semantic RGB-D image synthesis. In contrast
to previous works, we not only evaluate the quality of the
generated images but also demonstrate that we can signif-
icantly improve the accuracy of an RGB-D semantic seg-
mentation approach [25] by mixing real and generated im-
ages during training as shown in Fig. 6.

Although approaches for uni-modal semantic image syn-
thesis like OASIS [24] can also be applied to RGB-D im-

ar
X

iv
:2

30
8.

11
35

6v
2 

 [
cs

.C
V

] 
 1

9 
Se

p 
20

23



ages by treating RGB and depth as a single modality, they
do not perform well as shown in Fig. 1. We therefore pro-
pose an approach that explicitly considers RGB and depth
as two different modalities. However, since appearance and
geometry are highly correlated, we aim to disentangle the
modal-independent information that is encoded in the se-
mantic label map and the modal-dependent information that
is needed to generate images for both modalities, namely
depth and color.

To this end, the generator uses an encoder that is modal-
independent and two modal-dependent decoders for both
modalities as illustrated in Fig. 2. The decoding is done
gradually from the down-sampled label map with spatially-
adaptive normalization, which is conditioned on the modal-
independent information for each scale. To train the model,
we ensure that the generated depth maps correspond to the
real depth maps. Furthermore, we propose a discrimina-
tor that ensures semantic consistency between the generated
image and the semantic label map. We call the approach
thus Semantic Consistent Multi-Modal Image Synthesis
(SCMIS).

Since we also aim that the RGB images to look as real-
istic as possible, we enforce that the features of generated
and real images are similar. While this can be theoretically
achieved by the perceptual loss [13], we show that the per-
ceptual loss impedes learning and has a negative impact on
the results. This is due to the commonly used VGG features
that do not necessarily separate the semantic classes. We,
therefore, integrate the perceptual loss into the discrimina-
tor such that the VGG features are adapted and separate the
classes better.

We evaluate our approach for multi-modal semantic im-
age synthesis on standard RGB-D datasets where it outper-
forms uni-modal approaches by a large margin. Further-
more, we show that the generation of depth also improves
the quality of the generated RGB images. The contribu-
tions of this work can be summarized as: 1) We propose a
novel semantic consistent multi-modal generator that gen-
erates realistic RGB-D images by disentangling the modal-
independent and modal-dependent information. 2) We pro-
pose an adaptive alignment discriminator which performs
well for uni-modal (RGB) and multi-modal (RGB-D) se-
mantic image synthesis. 3) We conduct comprehensive ex-
periments and the results demonstrate that the proposed
method outperforms previous methods by a large margin.
4) We demonstrate that the accuracy of an RGB-D semantic
segmentation approach can be improved by mixing the real
training images with the generated images.

2. Related Work
Generative Adversarial Networks. GAN [7] are com-

monly used for semantic image synthesis and many im-
provements have been proposed over the years. One main

issue is the instability in adversarial training. [20] improved
the training stability by designing a robust architecture and
providing some design guidelines. Different from [20],
some methods [1, 15, 23] made the training more stable by
using some tricks like adding regularizers or proposing bet-
ter loss functions. In addition, one can easily improve the
efficiency of networks by existing model compression tech-
niques [35, 36].

Semantic Image Synthesis. Pix2Pix [11] was one of
the first approaches for semantic image synthesis and used
a general image-to-image translation framework with a con-
ditional GAN architecture [16]. Since Pix2Pix [11] can
only handle images of the small resolution, Pix2PixHD
[33] proposed a multi-resolution approach to generate high-
resolution images. SPADE [18] removed the common nor-
malization layers like instance normalization [31] and in-
stead modulates the image content spatially by a learned
affine transformation. Inspired by SPADE [18], many se-
mantic image synthesis methods have been proposed [12,
24,29,30]. Among these methods, OASIS [24] showed that
a segmentation-based discriminator provides much more
precise supervision and improves the results substantially.

Geometric Image Synthesis. Recently, some works ex-
plore 3D data generation given 2D supervision. Most of
them focus on specific shapes like faces [5, 6, 19]. Some
works go further [10, 17] and reconstruct some simple 3D
models from a single image. Apart from reconstructing 3D
models, some methods generate geometric-consistent im-
ages. For instance, [39] generates a bird view from a frontal
view in the context of a driving car. [4, 34] utilize geomet-
ric information to improve the quality of generated images.
While these works generate geometry or utilize geometry
for generating images, none of them generates multi-modal
data. We will also show that uni-modal approaches for se-
mantic image synthesis do not perform well for semantic
RGB-D image synthesis.

3. Semantic Consistent Multi-Modal Image
Synthesis

While previous works for semantic image synthesis gen-
erate only one modality, namely an RGB image, for a given
label map, we address multi-modal semantic image syn-
thesis. Instead of generating only an RGB image from a
given label map, our approach generates an RGB-D im-
age where color and depth are treated as two modalities as
shown in Fig. 2. An important aspect of the architecture is
that modal-independent information of the semantic layout
and modal-dependent information that is needed to generate
an RGB and a depth image are separated.

3.1. Semantic Consistent Multi-Modal Generator

Previous methods for semantic image synthesis consid-
ered only one modality and naively extending these meth-
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Figure 2. Overview of the proposed Semantic Consistent Multi-Modal Image Synthesis (SCMIS) approach. The generator takes a label
map as input and generates an RGB image (blue) and depth image (green) that are semantically consistent with the input label map. For
training, we use for each modality a different loss term. While LGD measures the quality of the generated depth map, the proposed
Adaptive Alignment Discriminator (A2Dis) measures the quality of the generated RGB image and consistency with the input label map.

(a) VGG-19 pretrained on ImageNet [14] (b) Adaptative VGG-19

Figure 3. (a) Visualization of the features that are used for the perceptual loss, i.e., VGG-19 pre-trained on ImageNet [14]. The features are
projected by t-SNE [32]. The left plot shows the features for real images and the right plot for generated images. The colors correspond to
different semantic classes. (b) Visualization of the features that are learned for adaptive perceptual loss.

ods to multi-modal data does not result in good results as
shown in Fig. 1. Indeed, we will demonstrate in the ex-
periments that generating RGB-D images from semantic la-
bel maps in the same way as generating RGB images is
even slightly worse than generating both modalities RGB
and depth independently. However, depth and color are
highly correlated and should not be treated independently.
We therefore address the research question of how RGB-D
images can be better generated from semantic label maps.

Our proposed multi-modal generator shown in Fig. 2
takes into account that both modalities share the same scene
properties like layout or object locations, which are inde-
pendent of the modality. The modal-independent encoder
(red) thus encodes the common properties that are shared
by both modalities. The decoders, however, are modal-
dependent and we use one appearance decoder (blue) and
one geometry decoder (green), which generate the RGB im-

age and the depth image, respectively. We now describe the
encoder and both decoders more in detail.

As shown in Fig. 2, the modal-independent encoder takes
as input a channel-wise concatenation of a semantic label
map and a 3D noise tensor. The noise tensor allows to
generate various plausible images from the same label map.
The encoder consists of blocks with a convolution layer, a
batch normalization layer, and a ReLU. The resolution de-
creases after each block.

The modal-dependent decoders have the same architec-
ture and generate from a downsampled version of the se-
mantic map concatenated with the 3D noise tensor the RGB
image or depth map, respectively, at the resolution of the
original input label map. Each decoder consists of ResNet
blocks [8] with spatially-adaptive normalization (SPADE)



[18]:

γi
x,y,c(e

i)
hi
x,y,c,n − µi

c

σi
c

+ βi
x,y,c(e

i) (1)

where n is the batch size, c is the channel, (x, y) is a pixel at
layer i. hi

x,y,c,n is the input to the normalization layer, and
µi
c and σi

c are the mean and standard deviation of hi
x,y,c,n

for channel c, i.e., computed over n, x, and y. The spatially-
adaptive normalization can be conditioned on a tensor e.

We use the tensor e to inject the modal-independent in-
formation at each scale for the decoders. ei is thus the ten-
sor of the encoder at layer i. In this way, both decoders
share the same semantic and modal-independent informa-
tion and gradually generate from the downsampled input
map the two different modalities.

3.2. Adaptive Alignment Discriminator

Before we describe the full loss to train the generator, we
first discuss the second contribution, which is denoted by
Adaptive Alignment Discriminator (A2Dis) in Fig. 2. The
discriminator serves two purposes. It aims to ensure the se-
mantic consistency of the generated image with the label
map and aims to ensure that the generated images look re-
alistic.

To this end, we use a discriminator that predicts per-pixel
probabilities of N + 1 classes which correspond to N se-
mantic classes and one additional ‘fake’ class as in [24]. For
the discriminator, we will evaluate different types in our ex-
periments as shown in Fig. 7. The network is trained by us-
ing the ground-truth label map for a real image and labelling
all pixels as ‘fake’ for a generated image. To deal with im-
balanced classes, a weighted N+1-class cross-entropy loss
is used:

LGAadv
= −E(x,l)

[
N∑
c=1

αc

H×W∑
x,y

lx,y,c logD(x)x,y,c

]

−E(z,l)

[
H×W∑
x,y

logD(G(z, l))x,y,c=N+1

]
(2)

where l is the semantic label map, x is a real image, and
(z, l) is the concatenation of the 3D noise tensor and the se-
mantic label map. The weight αc is computed as the inverse
of the per-pixel class frequency to give rare classes higher
weights:

αc = El

[
H ×W∑H×W
x,y lx,y,c

]
. (3)

By this design, the semantic consistency among generated
images are enforced.

Although this discriminator can train a good generator,
it does not ensure that the generator produces images that
follow the real data distribution as no constraint between

generated images and real images exists. To solve this is-
sue, we can complement our discriminator with the percep-
tual loss [13], which is widely used for training generative
networks [18]. But this will introduce two issues. First, an
additional pre-trained VGG-19 model is required which is
inefficient. Second, the used VGG-19 model is pre-trained
on another dataset and might not be suitable for our task.
This domain gap leads to semantic inseparable features as
can be seen in Fig. 3 (a). As consequence, the perceptual
loss works against the loss (2) since it pushes the generated
features towards a feature space where the classes are not
separable and difficult to classify.

The proposed adaptive alignment discriminator solves
these issues by unifying the semantic consistency among
generated images and the alignment between real and gen-
erated images in the same framework. It is designed as a
segmentation-based discriminator with a learnable VGG-19
as the backbone. In this way, the learned features fit better to
the task and separate the semantic classes better as shown
in Fig. 3 (b). To maintain feature alignment between real
and generated images, the perceptual loss is applied to the
learned features, and thus named adaptive perceptual loss:

LGAap =
1

N

N∑
i=1

||ri − fi||1 (4)

where i denotes the layer number, N is the total number of
layers, and ri and fi denote the features from the real and
generated image, respectively.

As mentioned at the beginning of this section, we in-
vestigated three architectures for the discriminator with the
adaptive VGG-19 backbone (AVGG). As shown in Fig. 7,
it includes a simple architecture with upsampling, pyra-
mid pooling [38], and a U-Net architecture [22]. As we
will show in the experiments, the architecture with pyramid
pooling performs best. Hence, the total loss for the appear-
ance decoder is given by:

LGA = LGAadv
+ LGAap

. (5)

To recover the geometric structure, we apply the L1 loss
on the output of the geometry decoder:

LGD =
1

N

N∑
i=1

||di − d̂i||1 (6)

where N is the number of pixels, d̂i is the generated depth
value, and di is the ground truth depth value for pixel i. In
addition, we also include the LabelMix regularization [24]:

LLM =||Dlogits(LabelMix(x, x̂,M))

− LabelMix(Dlogits(x), Dlogits(x̂),M)||22
(7)

where Dlogits are the logits before the last softmax and M is
a binary mask for mixing real and generated images (x, x̂)



Methods NYU SUNRGBD
FID ↓ mIoUD ↑ FID ↓ mIoUD ↑

SPADE [18] 122.1 47.2 246.6 27.8
TSIT [12] 125.4 51.8 130.8 40.5
DAGAN [29] 99.2 51.4 57.4 51.2
OASIS [24] 77.5 58.3 26.4 62.2
RGB-D OASIS 89.1 54.7 25.1 57.8
SCMIS 55.2 59.8 19.9 60.7

Table 1. Comparison on multi-modal image synthesis.

by

LabelMix(x; x̂;M) = M ⊙ x+ (1−M)⊙ x̂. (8)

The entire loss is thus given by

L = LGA + LGD + LLM . (9)

4. Experiment
We evaluate our method on the two challenging datasets:

SUN RGB-D [27] and NYU [26]. The NYU [26] dataset in-
cludes 1449 RGB-D images with 40 classes while the SUN
RGB-D [27] dataset contains 10355 RGB-D images with
37 classes. We also evaluate our approach for uni-modal se-
mantic image synthesis on the Cityscapes [2] dataset which
includes 2975 training images and 500 validation images
with 35 classes. All experiments have been performed on a
single TITAN RTX with a fixed random seed. The source
code will be released upon acceptance.

We will first evaluate the quality of the generated im-
ages in Section 4.1 and compare our multi-modal approach
to uni-modal approaches for semantic image synthesis. In
Section 4.2, we will demonstrate that our approach can be
used to augment the training data of an approach for RGB-
D semantic segmentation by mixing real and generated im-
ages. Finally, we evaluate the impact of the loss terms and
architecture design in Section 4.3.

4.1. Semantic RGB-D Image Synthesis

We use the common Fréchet Inception Distance (FID)
[9] to evaluate the quality of the generated images using the
implementation from [24]. Lower FID means better image
quality. To measure the semantic alignment between the
generated image and the semantic label map (semantic con-
sistency), we use mean Intersection-over-Union (mIoU). To
this end, we use the RGB-D semantic segmentation frame-
work ESANet [25] with pre-trained weights. For the evalu-
ation, the generated images with real-depth images are used
as input. For uni-modal semantic image synthesis, we use
DRN [37] to maintain consistency with previous works. As
we use two networks for computing mean Intersection-over-
Union, ‘mIoUD’ in the tables denotes that ESANet [25]

for RGB-D images has been used and ‘mIoU’ denotes that
DRN [37] for RGB images has been used.

We compare our method to other methods for uni-modal
semantic image synthesis on two RGB-D datasets. The re-
sults are shown in Table 4.1. We observe that our method
produces more realistic images and achieves a lower FID
score. Adapting uni-modal semantic image synthesis meth-
ods to semantic RGB-D image synthesis leads to worse per-
formance (RGB-D OASIS). This means that these archi-
tectures cannot handle multi-modal information well. The
qualitative results in Fig. 4 also show that our method gen-
erates more realistic images compared to previous methods.

We also qualitatively compare the depth images that are
generated by our method from the label maps with the depth
images that are estimated by the mono depth estimation
method [21] from the real color images in Fig. 5. The
results show that our approach can infer reasonable depth
maps only from semantic information. A quantitative com-
parison is given in Table 4.3.

4.2. Generating Training Data for RGB-D Semantic
Segmentation

In Table 4.2, we validate that an RGB-D semantic seg-
mentation method can benefit from our generated data sig-
nificantly. This is in particular relevant for robotics applica-
tions where annotated training data is limited. In this case,
our approach can generate more variants for each annotated
training image. Specifically, we train our method on the
NYUv2 [26] training set and generate new RGB-D images
for each semantic layout in the training set. We then mix the
generated and original image by randomly picking some se-
mantic classes and replacing the pixels for these classes in
the original image with the pixels of the generated image
as shown in Fig. 6. This generates the same dataset. Fi-
nally, we train the RGB-D semantic segmentation method
ESANet [25] on the mixed images and evaluate the mIoU
on the real images of the test set.

Table 4.2 shows the results for different percentages of
randomly replaced classes. We furthermore evaluate if only
depth, RGB values, or RGB-D values are replaced. The
results show that all settings boost the performance signifi-
cantly (4.89 - 6.16 mIoU), which demonstrates that the gen-
erated data increases the diversity of the dataset and im-
proves the training of the baseline. The best results are
achieved by replacing only RGB values, which is expected
since appearance has more diversity than depth. Never-
theless, even replacing only depth values significantly im-
proves the segmentation accuracy.

Since the best performance is achieved by only replacing
RGB values, we also compare the results when we generate
the data with a uni-modal generator. For this experiment,
we use the setting where we replace 70% of the classes.
The results in Table 4.2 show the benefit of multi-modal



(a) Label (b) Real (c) DAGAN [29] (d) OASIS [24] (e) SCMIS (Ours)

Figure 4. Qualitative results of generated RGB images on the NYU dataset. The two most left columns show the input label map (a) and
the corresponding real image (b). Compared to DAGAN and OASIS, our method can generate more realistic images. Besides better details
and fewer artefacts, the illumination also looks more realistic due to the estimated geometry.

(a) Real (b) Estimation [21] (c) Generation (Ours)

Figure 5. Comparison of the real depth image (a) with the depth
map that is estimated by [21] from the real color image (b) and the
depth image that is generated by our method from the label map
(c).

Modality Ratio mIoU ↑
- 0.0 42.08

Depth
0.3 47.40 (+5.32)
0.5 47.57 (+5.49)
0.7 47.77 (+5.69)

RGB
0.3 47.77 (+5.69)
0.5 47.71 (+5.63)
0.7 48.24 (+6.16)

RGB-D
0.3 46.97 (+4.89)
0.5 47.85 (+5.77)
0.7 47.84 (+5.76)

Table 2. Impact of mixing generated and real images on the
NYUv2 dataset with image resolution 256x512. ‘-’ denotes the
baseline trained without generated images.

(a) Label (b) Real (c) Mixed

Figure 6. Visualization of the semantic segmentation label (a) with
the real color image (b) and the real and generated mixed color
image (c), we highlight the generated pixels with red contour.

Methods OASIS [24] SCMIS (Only RGB) SCMIS
mIoU ↑ 47.56 47.67 48.24

Table 3. Impact of different generation methods on the NYUv2
dataset. SCMIS (Only RGB) denotes SCMIS without geometry
decoder.

image generation. When we use the uni-modal method
OASIS [24] or train SCMIS in a uni-modal setting, i.e.,
without the geometry decoder, the segmentation accuracy is
lower. This is consistent with Table 4.3, which shows that
the multi-modal approach generates more realistic images,
i.e., lower FID score.

4.3. Ablation Study

In this section, we analyse different design choices of
the proposed approach. The experiments include RGB-D



Up

AVGG

(a) Upsample

Conv

Conv

Conv

Down Up

AVGG

(b) Pyramid Pooling

AVGG

(c) U-Net

Figure 7. Three architectures that are investigated for the discriminator. Each network uses an adaptive VGG-19 backbone (AVGG).

Methods NYU Cityscapes Size
FID ↓ mIoUD ↑ FID ↓ mIoU ↑ (MB)

OASIS [24] 77.5 58.3 47.7 69.3 22.2
Upsample 63.7 58.0 51.1 71.9 4.1
UNet 59.6 59.6 48.2 73.1 5.1
PP 55.7 59.2 43.2 72.2 6.5
RGB-D PP 77.3 55.9 N/A N/A 6.5

Table 4. Impact of different discriminator architectures. PP de-
notes Pyramid Pooling and RGB-D PP is a discriminator with
Pyramid Pooling but takes RGB-D images as input.

image synthesis (NYU dataset) and RGB image synthesis
(Cityscapes dataset). For RGB image synthesis, we use the
uni-modal generator OASIS [24] in combination with our
discriminator.

Architectures of Discriminator. In Table 4.3, we show
the impact of different architectures on the discriminator.
The architectures Upsample, U-Net, and Pyramid Pooling
(PP) are shown in Fig. 7. For this experiment, we do not
use adaptive perceptual loss. Without multi-scale ability
(Upsample), the quality of the generated images is rela-
tively low (high FID). Using multi-scale architectures for
the discriminator clearly improves the results (U-Net and
PP). Compared to U-Net, Pyramid Pooling improves the
quality of the generated images by nearly 4-5 FID at the cost
of a slightly lower semantic consistency (less than 1 mIoU).
We thus use Pyramid Pooling (PP) for our discriminator. So
far, the discriminator has only taken the RGB image as in-
put, but not the depth map. We, therefore, evaluate what
happens if we provide the RGB-D images as input to the
discriminator. We denote this setting by RGBD-PP. We can
see that both image quality and semantic consistency drop
drastically. This shows that considering depth and color as
the same modality for the discriminator does not work well.
Compared to the discriminator of OASIS, our discrimina-
tor is much more compact (nearly 4× smaller) and it results
in more realistic images for both RGB-D image synthesis
(FID is reduced more than 20) and RGB image synthesis
(FID is reduced more than 4).

Adaptive Perceptual Loss. So far, we have not used the
adaptive perceptual loss (4). We evaluate its impact for se-
mantic RGB image synthesis in Table 4.3. The adaptive per-

Methods Cityscapes
FID ↓ mIoU ↑

PP 43.2 72.2
PP + LAp

(IN) 43.4 72.1
PP + LAp

(CS) 42.1 72.1
PP + LAap 41.7 72.1

Table 5. Impact of perceptual loss. LAp : perceptual loss with
features pre-trained on ImageNet (IN) or Cityscapes (CS); LAap :
adaptive perceptual loss.

Methods Modality NYU
FID ↓ mIoUD ↑ AbsRel ↓ RMSE ↓ SqRel ↓

SCMIS Depth N/A N/A 0.172 0.613 0.142
SCMIS RGB 59.2 N/A N/A N/A N/A
RGB-D OASIS RGB-D 89.1 54.7 0.221 0.737 0.204
SCMIS RGB-D 55.7 59.2 0.166 0.599 0.133
4D Gen + LAap

RGB-D 65.8 60.0 0.197 0.662 0.170
SCMIS + LAap

RGB-D 55.2 59.8 0.167 0.599 0.134

Table 6. Comparison of uni-modal and multi-modal generators.

ceptual loss (LAap
) improves the image quality and reduces

FID by 1.5, while mIoU remains the same. This is expected
since the loss does not measure the semantic consistency
with the label map, but the perceptual similarity to the real
image. If we use the standard perceptual loss (LAp (IN)),
the FID score even slightly increases. This is consistent
with our observation that it pushes the generated features
towards a feature space where the classes are not separable
and difficult to classify as it is illustrated in Fig. 3. This can
be also addressed by training the VGG-19 features on the
training set before training the generator (LAp (CS)). While
this reduces the FID score, it does not perform as well as
the adaptive perceptual loss. Furthermore, it requires train-
ing two separate networks, which is not very practical.

Multi-Modality. In Table 4.3, we compare our multi-modal
approach (row 4) to the uni-modal variants where we es-
timate the depth maps (row 1) and the RGB images (row
2) by separately trained networks. We use Absolute Rela-
tive Error (AbsRel), Root Mean Square Error (RMSE), and
Square Relative Error (SqRel) [3] to measure the accuracy
of the depth maps. Both the image quality and the accuracy
of the depth maps are higher if our network is trained for
both modalities. This shows that depth improves the image



quality and that appearance improves the generated depth
maps.

Architectures of Generator. Furthermore, we compare
our approach to an extension of the uni-modal method OA-
SIS [24] to RGB-D images (RGB-D OASIS). We use the
generator from OASIS but modify it such that it generates
RGB-D images. For a fair comparison, we use the dis-
criminator and loss functions from our approach since an
RGB-D discriminator does not perform well as we showed
in Table 4.3. Note that we do not use the adaptive percep-
tual loss for these experiments. Compared to our method,
RGBD-OASIS (row 3 in Table 4.3) performs much worse
both in terms of image quality and depth accuracy. A few
qualitative results are shown in Fig. 1.

Finally, we compare our generator with two modal-
dependent decoders for appearance and geometry to a vari-
ant with a single decoder for appearance and geometry (4D
Gen) in Table 4.3 (row 5). While the semantic consistency
(mIoU) is the same, the quality of the generated RGB and
depth images is lower compared to our approach.

5. Conclusion

In this paper, we proposed an approach to increase the
appearance diversity of an annotated dataset for RGB-D se-
mantic segmentation. To this end, we addressed the new
task of semantic RGB-D image synthesis and proposed a se-
mantic consistent multi-modal generator, which comprises
a modal-independent encoder and two modal-dependent de-
coders. It fully utilizes multi-modal information and pro-
duces semantic consistent and realistic RGB-D images. We
have demonstrated that the proposed approach performs by
a large margin better than uni-modal approaches and that it
can be used to improve the accuracy of an RGB-D seman-
tic segmentation method. While the experimental evalua-
tion focused on semantic segmentation, we expect that the
approach can also be used for other robotics-related tasks
where the number of training images is limited.
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