
Accelerating Deep Neural Networks via Semi-Structured Activation Sparsity

Matteo Grimaldi Darshan C. Ganji Ivan Lazarevich Sudhakar Sah
Deeplite

matteo.grimaldi@deeplite.ai

Abstract

The demand for efficient processing of deep neural net-
works (DNNs) on embedded devices is a significant chal-
lenge limiting their deployment. Exploiting sparsity in the
network’s feature maps is one of the ways to reduce its infer-
ence latency. It is known that unstructured sparsity results in
lower accuracy degradation with respect to structured spar-
sity but the former needs extensive inference engine changes
to get latency benefits. To tackle this challenge, we propose
a solution to induce semi-structured activation sparsity ex-
ploitable through minor runtime modifications. To attain
high speedup levels at inference time, we design a sparse
training procedure with awareness of the final position of
the activations while computing the General Matrix Mul-
tiplication (GEMM). We extensively evaluate the proposed
solution across various models for image classification and
object detection tasks. Remarkably, our approach yields a
speed improvement of 1.25× with a minimal accuracy drop
of 1.1% for the ResNet18 model on the ImageNet dataset.
Furthermore, when combined with a state-of-the-art struc-
tured pruning method, the resulting models provide a good
latency-accuracy trade-off, outperforming models that solely
employ structured pruning techniques. The code is available
at https://github.com/Deeplite/activ-sparse .

1. Introduction
Deep neural networks (DNNs) have become the go-to

state-of-the-art solution in most domains of machine learn-
ing in recent years, like computer vision [32], natural lan-
guage understanding [53] and generative AI [30]. Oftentimes,
the computational footprint of DNN models limits their us-
age on low-resource embedded processors. Compression
and acceleration of such models is an active research area
aimed at bridging this gap [6] and could be generally catego-
rized into pruning [34, 39, 58], tensor decomposition [38],
quantization [10, 46], development of lightweight neural net-
works [25, 26, 42], and runtime optimizations [3, 19].

Pruning remains a prominent compression method, partic-
ularly evidenced by recent strides in structured weight prun-

ing, achieving state-of-the-art latency-accuracy trade-offs
across diverse computer vision tasks [12]. However, existing
research in pruning has predominantly focused on remov-
ing redundant model parameters, overlooking the potential
inherent sparsity within feature maps, commonly referred
to as activations. Activation sparsity is naturally intrinsic in
DNNs with ReLU-like activation functions to a certain ex-
tent [36,50]. Nevertheless, this sparsity, tied to the functional
form of the ReLU non-linearity, retains an unstructured na-
ture and lacks homogeneity across layers. Several methods
have emerged to artificially augment activation sparsity dur-
ing training, enhancing model generalization and robustness
through regularization techniques [14, 57]. However, such
methods selectively remove blocks of connected pixels solely
during model training, maintaining denseness at inference
time and consequently forfeiting opportunities for model
inference acceleration. In contrast, to achieve faster model
execution post-training, activation sparsity needs to extend
to inference time as well. A variety of works explored data-
dependent mechanisms to exploit activation sparsity at run-
time, dynamically selecting the pixels according to the com-
plexity of the input sample to process [8,49,52]. While these
approaches efficiently reduce computations with minimal
accuracy loss, effectively integrating them into low-power
embedded devices can be challenging due to the required
architectural modifications. In contrast, data-free strategies
employ custom regularization with proper hard-thresholding
to establish a fixed and constant sparsity pattern [13, 33].
Such a strategy guarantees consistent speedup across distinct
input samples. However, the absence of structured regular
patterns among zeroed elements confines these model accel-
eration benefits to dedicated sparse inference engines (e.g.,
DeepSparse [33]).

To tackle these challenges, we propose an efficient DNN
compression pipeline that consists of (i) a novel training
scheme that induces semi-structured sparsity in activation
feature maps and (ii) an easy-to-implement runtime modi-
fication that allows exploiting the semi-structured sparsity
of the network’s activations at inference time. The proposed
sparsity pattern for feature maps is structured in the channel
dimension, but unstructured in the spatial dimension. That is,

1

ar
X

iv
:2

30
9.

06
62

6v
2 

 [
cs

.C
V

] 
 2

7 
Se

p 
20

23

https://github.com/Deeplite/activ-sparse


a set of individual pixels are zeroed across all channels of the
feature map. We suggest an effective way to construct such
sparsity masks during training and demonstrate how these
sparse masks can be used by the runtime during inference.
With XNNPACK [17] as an example library, we implement
a runtime modification that transforms the semi-structured
sparsity of activations into effectively structured sparsity,
resulting in reduced computational load through the use of
lower ranks in General Matrix Multiplication (GEMM).

To summarize, the primary focus of this study could be
outlined as follows:

• We propose a novel training scheme inducing semi-
structured activation sparsity in deep neural networks
via the propagation of random spatial masks.

• We show that sampling of random masks during train-
ing followed by mask freezing improves the perfor-
mance of DNNs under the constraint of semi-structured
sparsity in activations.

• We demonstrate the effectiveness of the proposed train-
ing scheme on image classification and object detection
tasks and show how it can be combined with structured
pruning to get a competitive accuracy-latency trade-off.

• We provide an example of an easy-to-implement run-
time modification on top of XNNPACK [17] that allows
obtaining latency speedup of up to 2× with relatively
low sparsity rates (under 50%).

2. Related Work
Over the past few years, significant progress has been

made in the field of deep learning model compression and
acceleration, aimed at improving the efficiency of deep neu-
ral networks during inference by reducing their memory
and computational requirements. Pruning [39, 58] focuses
on removing redundant connections or units in the model
architecture based on heuristic importance criteria, resulting
in streamlined models with improved efficiency. Quantiza-
tion [28,42] tackles model size compression by reducing the
numerical precision of weights and activations from standard
32-bit floating-point representations to lower bit-widths such
as 8-bit, or in more extreme cases, 2-bit or 1-bit. Knowledge
distillation [22, 56] involves transferring knowledge from
a larger, more complex network to a smaller one, allowing
the compact model to attain comparable performance to its
larger counterpart. Hand-crafted models, exemplified by ar-
chitectures like MobileNetV3 [24], EfficientNetV2 [51] and
ShuffleNetV2 [41], are often designed with custom oper-
ations and blocks optimized for faster inference, thereby
enhancing overall efficiency. Furthermore, apart from direct
model modifications, there are other strategies aimed at im-
proving the efficiency of deep neural networks. Graph order

rewriting involves transforming the network’s computational
graph to optimize its execution flow, thus enhancing over-
all performance [1]. Custom runtime optimization [3, 19]
aims to maximize model performance at the operator level,
harnessing the target hardware’s potential. It becomes in-
dispensable in cases where existing operators or processing
units cannot directly execute certain model structures, such
as unstructured sparse or low-bit quantized models, requiring
specific adaptations for seamless and efficient execution.

2.1. Pruning

Pruning methods can be usually categorized according to
their granularity [23] or to their importance policy. In terms
of granularity, pruning can usually operate with unstruc-
tured or structured sparsity patterns. Unstructured pruning
involves removing single connections in the network based
on their importance [20, 43]. Targeting individual weights
offers flexibility in achieving high accuracy but may lead
to challenges in efficient inference due to irregular memory
access patterns. A custom runtime with specialized sparse
kernels is often necessary to achieve speedup in case of
unstructured sparsity (e.g., DeepSparse [27]). Conversely,
structured pruning [35, 45] involves the removal of entire
channels or filters from the network, which can pose chal-
lenges during model training due to its more substantial
impact on accuracy. However, pruning at this level of gran-
ularity can significantly enhance model efficiency in many
existing runtimes, resulting in notable reductions in storage
requirements and accelerated inference latency.

Pruning policies encompass various schemes and criteria
for efficient model compression. Magnitude-based criteria
rely on the absolute weight values to identify less impor-
tant parameters [20, 40], while first-order methods leverage
gradients for importance ranking [7, 44]. Some approaches
involve one-time pruning followed by retraining [21], while
others adopt iterative pruning techniques [34]. Recent re-
search has explored the efficacy of various pruning methods,
offering valuable insights to enhance model compression
techniques [54]. Notably, DepGraph [12] introduced a novel
method for general structural pruning of arbitrary architec-
tures, efficiently removing coupled parameters for model ac-
celeration. The results demonstrate its superior performance
compared to many other techniques.

2.2. Activation Sparsity

Another crucial sphere of inquiry revolves around ex-
ploiting the inherent sparsity present within neural network
feature maps, particularly in the context of computer vision
applications. The induction of activation sparsity stands out
as a pivotal technique for latency reduction, providing a syn-
ergistic complement to weight pruning strategies. Sparsity
is naturally present in feature maps due to the presence of
ReLU-like activation functions which force feature maps

2



=

Tensor Space

im2col Space

We
ig

ht
s

We
ig

ht
s

In
pu

t

In
pu

t

Ou
tp

ut

*

(n, c, k, k)

(n, k2c)

(k2c, z)

(n, z)

(x, y, n)

(h, w, c)

Ou
tp

ut

Figure 1. Illustration of the proposed activation sparsity pattern in both tensor and im2col spaces.

to become zero when their values fall below certain thresh-
olds [33, 36].

The majority of efforts in the literature have been di-
rected towards harnessing activation sparsity through data-
dependent mechanisms, tightly linked to input complexity.
This strategy entails an informed masking approach, where
the sparsity pattern is dynamically generated based on the
distribution of less informative pixels within the input sam-
ples. Consequently, a distinct sparsity pattern is generated
for each input. Some of these techniques necessitate archi-
tectural adjustments for on-the-fly pattern generation at run-
time [8, 49, 52]. Unfortunately, these requirements signifi-
cantly hamper their effectiveness when deployed on resource-
constrained devices. As a result of these constraints, many
of these works often lack real-world hardware validation or
predominantly demonstrate latency improvements on higher-
performance hardware configurations. For instance, the effi-
cacy of sparsity has been pronounced in GPU deployment
scenarios, yielding impressive latency enhancements such as
up to 1.88× acceleration on a ResNet50 architecture using a
Mali GPU [48]. Similarly, the work by Xu et. al [55] tailored
custom kernels for Nvidia GPUs, resulting in performance
acceleration of 3-4×.

In more recent investigations, novel regularization strate-
gies have emerged to induce activation sparsity featuring
a regular and consistent pattern, regardless of varying in-
put samples (data-free strategies). Georgiadis et. al [13]
proposed to combine sparsity, quantization, and entropy en-
coding of activation maps to achieve up to 1.6× inference
acceleration and up to 6× reduction of the memory footprint
for architectures like InceptionV3 and MobileNetV1. Kurtz
et al. [33] introduced a new regularization technique and
threshold-based sparsification based on a parameterized acti-

vation function to maximize sparsity with minimal accuracy
drop. While these works are the most similar to our approach,
they predominantly emphasize unstructured sparsity among
zeroed elements. As a consequence, these model accelera-
tion benefits remain confined to dedicated sparse inference
engines like DeepSparse [33].

2.3. Low-Rank GEMM

The widely adopted im2col-based General Matrix Mul-
tiply (GEMM) technique converts feature maps into column-
wise matrices. This transformation paves the way for stream-
lined matrix multiplication with weight matrices, thus fos-
tering parallel computations and refining the convolutional
operations. Moreover, the low-rank GEMM approach fo-
cuses on reducing the number of rows (or columns) in one of
the two matrices, aiming to decrease computational complex-
ity and memory demands. Dong et al. [8] devised a trainable
module learning collaborative kernels to selectively skip ac-
tivation pixels during computation, yielding a 1.2× speedup.
Their analysis focused on two models and relatively simple
datasets. In the context of video processing, the Skip-conv
network [18] leverages residual images, creating sparsity
exploited by low-rank GEMM. This approach suits moving
objects, producing notable sparsity. Liu et al. [37] applied
sparse adaptive inference for super-resolution, more similar
to our approach, but just tailored to low-rank GEMM for
specific patches crucial in super-resolution tasks.

3. Methodology
GEMM-based implementation of the convolution oper-

ation is typically favored over the direct one as GEMM
enables faster and more efficient matrix operations, making

3



it a preferred choice for deep learning inference engines.
Reducing the rank of the matrices in GEMM operations is
generally directly correlated with faster computation, espe-
cially on low-power CPUs. Our proposed technique aims
to reduce the rank of the input activation matrix (activation
feature map in the im2col space) to speed up model infer-
ence. This is pursued by inducing semi-structured sparsity in
the network at training time which will be exploited through
lower-rank GEMMs at inference time.

Figure 1 shows the convolution-as-GEMM implementa-
tion for convolutional layers, where both weights (green) and
activations (blue) are unfolded respectively from 4-D and
3-D tensors to 2-D matrices. The picture shows the standard
convolution operation both in the tensor space (i.e., the stan-
dard space before the reshaping) and in the im2col space.
Each of the n filters is reshaped into a row of k2c size, where
k is the kernel size and c is the number of channels. In the
same way, the input feature map is reshaped into a k2c× z
matrix, where each column is composed of all the pixels
of the input sliding window (k2c). The number of rows z
depends on the convolution parameters (e.g., stride, padding,
and dilation values). Then a standard matrix multiplication
of weights and activation matrices is computed to generate
an n× z output matrix.

In order to reduce the rank of the activation matrix, a sub-
set s < z of columns needs to be removed. These columns
correspond to elements covered by the sliding local tiles
(covering all channels) used during the convolution in the
tensor space. To remove the columns at compute time, during
each convolution, a subset s of the sliding local tiles needs
to be skipped: a binary mask with a im2col-based pattern
is used to apply hard thresholding to the activation tensors,
where the s sparse columns of the activation matrix will be
directly skipped during inference. In the two following sub-
sections, we show how to induce (at training time) and how
to exploit (at inference time) such semi-structured activation
sparsity.

3.1. Training

To induce activation sparsity with the im2col pattern,
we need to group activations in the tensor space according to
their final position after the im2col reshaping. We consider
this approach as semi-structured as it is unstructured in the
width × height space (spatial dimensions of the feature
map) but it is structured across the channel dimension.

Pruning activations with this pattern is a more delicate
procedure compared to standard unstructured weight prun-
ing, as the elements of the activation feature map cannot be
directly removed from the model. The sparsified elements in
the activations for one convolutional window/tile (i.e., one
im2col column) could be kept dense (unmasked) for the
next windows/tiles. Figure 2 demonstrates this concept for a
case when a single window (tile) is selected to be sparsified

A B C D
E F G H
I J K K
M N O P

A
B
E
F

B
C
F
G

…im2col

Figure 2. Example of the im2col procedure: input activations
(left) and the activation matrix after transformation (right). Note
that masking (highlighted in black) a sliding tile of the convolution
affects only a single column in the reshaped matrix. In the first
column, pixels B and F are masked, while they remain non-zero
in the second column.

(masked). In this case, the pixels {A,B,C,D} are dropped
from the computation (including all the pixels/elements with
the same (width, height) coordinates in the other channels).
This results in the first column of the im2col matrix be-
coming zero, which reduces the rank of the matrices to be
multiplied. However, dropping (masking) this block from
the feature map altogether should also affect the second col-
umn of the matrix, which is not selected to be pruned. For
this reason, the pixels B and F will be masked for the first
column but will be kept non-zero in the second one.

Introducing activation sparsity in deep neural networks
for computer vision is challenging due to the varying posi-
tions of the regions of interest in images. Uniformly enforc-
ing sparsity with a fixed pattern across data samples can lead
to information loss for some images and retention for others.
Achievable sparsity levels (while keeping accuracy degra-
dation low) are often limited compared to weight sparsity,
due to the dynamic and context-dependent nature of activa-
tion patterns in different input images. It has been shown
that inducing structured sparsity through sampling random
masks [14] can act as a regularizer that enhances the model’s
generalization and robustness. We found sampling random
masks during training can reduce the accuracy loss when the
sparsity rates are kept relatively low. The random ranking
mechanism ensures that the selection of pixels to be masked
is unbiased, contributing to the robustness of the training
process. We propose a novel custom random masking ap-
proach, which involves randomly selecting a percentage of
pixels from the input image to be masked. The resulting
input image mask is then propagated consistently across all
layers (employing pooling operations when downsampling
is necessary). By propagating this initial random sparse pat-
tern layer-to-layer, we ensure the preservation of the same

4



masking structure throughout the network. This guarantees
translation invariance across the feature maps of different
layers, even when they have varying resolutions. The pro-
posed custom random mask sampling is a crucial aspect of
our training procedure as it helps the model to prevent over-
fitting to specific patterns and encourage more generalized
learning, yet limiting accuracy loss. The generated binary
masks, specific to each sparsity level, enable the model to
adapt its weights during training, effectively promoting the
benefits of sparsity while maintaining crucial representa-
tional capacity. The training process comprises three key
stages: (i) initially, a few dense pretraining epochs are per-
formed; (ii) subsequently, our masking technique is applied
gradually according to a schedule, incrementing sparsity rate
until the desired target [58] is achieved; (iii) finally, the mask
freezing stage ensues, where binary masks for each layer are
fixed for the rest of the training process, allowing the model
to recover from accuracy loss through more precise updates.

Algorithm 1 outlines our sparse training pipeline. The
algorithm takes the fixed sparsity percentage s as an input
and returns the trained model with a binary constant mask
mask. The pruning scheduler (line 3) controls the switch
between dense (line 8) and sparse forward steps (line 6).
The updateMask (line 4) scheduler sets when to update
or freeze the masks through the getMask function (line
5). This mask is used by maskedForward to induce the
sparsity in the feature maps. At the end of the training, both
the model and the masks are returned (line 11). It needs to be
highlighted that model weights are kept fully dense, and no
weights are pruned. The getMask function plays a critical
role in our sparse training pipeline, as it is responsible for
generating a different binary mask for each forward step.
At first, a random 2-D score is generated according to the
input image resolution (line 13). This is propagated through
the layers, downscaling the resolution when needed (lines
15-16). At last, the function ranks the model’s score and
generates the binary mask (lines 17-19).

3.2. Inference

To accelerate the processing of the models with sparse
activation maps, we implemented custom modifications to
the XNNPACK [17] inference engine. We used TensorFlow
lite (TFLite) [16] built from source with XNNPACK [17] as
a delegate. Given a TFLite model, a binary mask, and layer-
wise sparsity levels as inputs, our inference engine computes
the convolution of sparse activations. Our modifications are
specific to convolutional layers only. The full pipeline con-
sists of three main stages: (i) custom im2col reshaping, (ii)
dense GEMM, and (iii) custom post-processing of the dense
GEMM output.

The first step consists of reshaping the tensors into a 2-D
matrix for activations, as shown in Fig. 1. Considering that
the XNNPACK [17] im2col routine is based on an indi-

Algorithm 1: Sparse Training

1 Function main(model, steps, s):
2 for t in steps do
3 if pruneStep (t) then
4 if updateMask (t) then
5 mask = getMask (model, s)
6 maskedForward (model, mask)
7 else
8 forward (model)
9 backward (model)

10 end
11 return model, mask

12 Function getMask(model, s):
13 score = randomScore2d (model.input res)
14 for layer in model do
15 ratio = input res // layer.res
16 layer score = avg pool2d (score, ratio)
17 idx = rankPixels (layer score)
18 mask = ones like (model)
19 mask[idx] = 0

20 end
21 return mask
22 return

rection buffer [9], we developed a custom transformation to
facilitate the skipping of rows of an indirection matrix. After
this is done, the compute range of the GEMM is downsized
to output size − (sparsity ∗ output size) to enable a
low-rank GEMM in the following step. In the second stage,
standard GEMM is employed, utilizing a low-rank matrix of
activations. However, the subsequent layer assumes dense
activation, necessitating an efficient post-processing stage.
In this implementation, zeroed elements are inserted into
the GEMM output based on the binary masks used in the
initial stage. These modifications follow a consistent pattern
across different inference engines, all designed to work with
commonly used general-purpose processors. For more de-
tailed information on the runtime modifications, please refer
to Appendix A.

4. Results
4.1. Training Setup

The proposed pipeline was validated on several image
classification and object detection datasets, including CI-
FAR100, Flowers102, Food101, and ImageNet for classifica-
tion and PASCAL VOC and Global Wheat for object detec-
tion (further details in Appendix B). We have performed
experiments on ResNet18, ResNet50, and MobileNetV2
architectures for the image classification task, and used
YOLOv5n [29] as a base architecture for the object detection
experiments. Note that a few of the base architectures we

5



Sparsity ResNet18 ResNet50 MobileNetV2

Fl
ow

er
s1

02 0% 92.02 92.50 92.57
10% 91.20 (-0.80) 91.80 (-0.70) 91.46 (-1.11)
20% 90.25 (-1.75) 91.02 (-1.48) 90.11 (-2.46)
30% 88.89 (-3.22) 90.13 (-2.37) 88.52 (-4.05)

Fo
od

10
1 0% 82.20 86.17 77.20

10% 81.07 (-1.13) 85.10 (-1.07) 82.35 (-1.77)
10% 80.27 (-1.93) 84.10 (-2.07) 81.04 (-1.32)
30% 78.59 (-3.61) 82.40 (-3.77) 79.32 (-4.80)

C
IF

A
R

10
0 0% 77.20 78.00 73.10

30% 76.37 (-0.83) 77.26 (-0.74) 71.30 (-1.80)
30% 75.30 (-1.90) 75.80 (-2.20) 70.57 (-2.53)
30% 74.11 (-3.09) 74.78 (-3.22) 68.60 (-4.50)

Table 1. Top-1 accuracy result (%) for different architectures on
Flowers102, Food101, and CIFAR100 datasets. The relative infer-
ence speedups are reported in Fig. 3.

Sparsity ResNet18 MobileNetV2
0% 70.53 72.19

10% 70.48 (-0.05) 70.43 (-1.76)
20% 69.42 (-1.11) 69.94 (-2.25)
30% 67.88 (-2.65) 67.92 (-4.27)

Table 2. Top-1 accuracy results for different architectures on Im-
agenet dataset. The relative inference speedups are reported in
Fig. 3.

Sparsity VOC Global Wheat
0% 80.20 96.38
10% 78.08 (-2.12) 96.00 (-0.38)
20% 76.63 (-3.57) 95.49 (-0.89)
30% 74.13 (-6.07) 94.80 (-1.58)

Table 3. mAP50 results for YOLOv5n on VOC and Globat Wheat
datasets. The relative inference speedups are reported in Fig. 3.

used (e.g., MobileNetV2, YOLOv5n) were initially designed
as lightweight efficient architectures, which makes it more
challenging to obtain competitive latency speedup with low
accuracy degradation.

For image classification, we used the training code pro-
vided by Ultralytics [29] with default values of hyperparame-
ters except for the number of epochs (Adam optimizer, initial
learning rate 10−4, 400 epochs, batch size 64). ImageNet
pre-trained weights were used for model initialization for
both the dense baseline as well as for sparse training. We
set the dense training stage to stop at 10% of the training
steps and the freezing stage to start at 90% of the steps. For
object detection experiments, the training code provided by
Ultralytics [29] was also used with default values of hyperpa-
rameters. COCO pre-trained weights were used to initialize
the models both for the dense baseline as well as for sparse

training.

4.2. Sparse Model Deployment

The latency speedup from using semi-structured activa-
tion sparsity was measured on a Raspberry Pi 4B [15] device,
featuring a quad-core ARM Cortex-A72 processor operat-
ing at 1.5GHz, with 4GB of RAM. We ran Ubuntu 18.04
64-bit OS on this platform and GNU gcc version 11.0 for
compilation. For deployment, we used TFLite [16] inference
engine built with XNNPACK [17] delegate with custom
modifications for sparse inference.

4.3. Sparse vs. Dense Model Performance

In this section, we evaluate the efficacy of the semi-
structured activation sparsity approach for enhancing DNN
speed, prioritizing high-speed improvements at the expense
of marginal accuracy degradation.

4.3.1 Low Accuracy Loss Regime

Using the same sparse training procedure, we in-
duced the activation sparsity at three different levels
S = {10%, 20%, 30%}. Table 1 shows that the accuracy
loss is low (under 2.5%) for the first two sparsity rate levels
in image classification tasks, while it is close to 3% for the
highest sparsity rate chosen (30%) depending on the archi-
tecture. ResNet models are found to be more resilient to
activation sparsity compared to MobileNetV2, in fact, they
have an average 1.82% of accuracy loss instead of 2.72% for
MobileNetV2. On the more challenging ImageNet dataset
(Table 2), ResNet18 at 10% sparsity rate provides almost
the same accuracy (−0.05%) as the dense counterpart. For
clarity, we included further details on the training procedure
in Appendix B. To evaluate the generalization capabilities
of our proposed compression pipeline, we carried out ex-
periments for the object detection task using the YOLOv5n
model. The obtained results on VOC and Global Wheat
datasets are summarized in Table 3, showcasing the impact
of compression on accuracy. Notably, results for object detec-
tion appear to be comparable to those of image classification,
with limited mAP50 degradation on a simpler dataset (Global
Wheat) and higher accuracy loss observed on a more large-
scale task (VOC). These findings highlight the effectiveness
of our compression techniques in preserving model accuracy
across different tasks.

4.3.2 High Speedup Regime

In our findings, we observe a consistent trend where ac-
tivation sparsity contributes to notable and reliable speed
improvements throughout the network layers, with the mag-
nitude of the speedup roughly proportional to the degree of
activation sparsity achieved. To visually depict and quantify

6



0 5 10 15 20 25 30 35 40 45 50
Sparsity [%]

1.0

1.2

1.4

1.6

1.8

2.0

Sp
ee

d 
up

 [×
]

Imagenet

ResNet18
ResNet50
MobileNetV2

0 5 10 15 20 25 30 35 40 45 50
Sparsity [%]

CIFAR100

ResNet18
ResNet50
MobileNetV2

0 5 10 15 20 25 30 35 40 45 50
Sparsity [%]

VOC

YOLOv5n

Figure 3. Speed-up vs. sparsity rate for ImageNet, CIFAR100, and VOC datasets on different architectures. Flowers102 and Food101
speed-up results are equal to those of ImageNet.

these results, we present Fig. 3, which illustrates the end-to-
end speedup outcomes for four distinct models: ResNet18,
ResNet50, MobileNetV2, and YOLOv5n.

ResNet18 exhibits a nearly linear relationship between
the sparsity percentage and the speedup for all the sparsity
levels. For, ResNet50, MobileNetV2, and YOLOv5n, due
to the larger amount of layers and complexity, experience a
slightly diminished speedup when compared to ResNet18.
This slight reduction in speedup can be attributed to the
presence of additional steps that involve custom im2col
and post-processing transformations, which offset the gains
obtained from reduced GEMM computations. For ResNet50,
the speedup achieved is approximately 1.75×, while Mo-
bileNetV2 and YOLOv5n attain speedups of around 1.44×
and 1.46×, respectively, all based on 50% sparsity.

In summary, our findings indicate that activation sparsity
within the network layers leads to consistent and significant
improvements in inference latency. The overall trend sug-
gests that activation sparsity offers a valuable approach to
enhancing the efficiency of deep learning models across a
variety of architectures.

4.4. Ablation Study

To comprehensively evaluate the efficacy of our proposed
sparse training scheme, we conducted two ablation studies
focusing on the custom features involved to reduce accuracy
loss: mask propagation and mask freezing. For both studies,
we trained ResNet18 on the Flowers102 dataset using the
same hyperparameters described in the Subsection 4.1.

Mask Propagation Figure 4 depicts the comparison of
accuracy and sparsity achieved by the ResNet18 model with
and without mask propagation. The plot clearly demonstrates
the advantages of employing the mask propagation method,
revealing a significant improvement in the model’s resilience
to sparsification. The use of mask propagation provides up to

88

90

92

To
p-

1 
[%

]
Propagation

Y
N

0 10 20
Sparsity [%]

88

90

92

To
p-

1 
[%

]

Freezing
Y
N

Figure 4. Ablation results for mask propagation and mask freezing
for ResNet18 on Flowers102 dataset.

1.28% of accuracy boost at 30% sparsity rate and an average
of 0.83% for the three tested sparsity levels.

Mask Freezing The mask freezing approach ensures that
the binary masks used for sparsity remain fixed during the
last training epochs, thereby allowing the model to recover
from accuracy loss more effectively with precise updates.
This mechanism, widely used in literature [58], is crucial for
our training scheme where the masks are randomly changed
after each step. Figure 4 shows the clear advantage of inte-
grating the mask freezing method into the training process:
the model trained with mask freezing showcases up to 0.96%
higher accuracy than the one without.

4.5. Weight Pruning vs. Activation Sparsity

In this section, we conduct a comprehensive compari-
son of our activation sparsity method with a state-of-the-art

7



1 2 3 4 5 6 7 8 9
Speedup [×]

70

75

80

85

90

To
p-

1 
[%

]
ResNet18 - Flowers102

Method
Structured Pruning
Structured Pruning + Activation Sparsity

Size [MB]
8
16
24
32
40

Figure 5. Latency-accuracy trade-off distribution for structured weight pruning with and without activation sparsity (ResNet18, Flowers102).
A detailed table with all the numerical values is available in Appendix B.

structured weight pruning technique represented by Dep-
Graph [12]. By utilizing DepGraph as a robust baseline, we
aim to thoroughly assess the effectiveness and potential of
our activation sparsity approach in comparison to leading
compression techniques. While the work by Kurtz et al. [33]
appears conceptually aligned with our approach, we refrain
from direct comparison due to the need for a custom sparse
kernel to achieve the desired latency boost. Moreover, their
research primarily focuses on higher-performance platforms,
such as AWS C5.12xlarge CPU and NVIDIA K80 GPUs,
rather than exploring embedded CPUs, limiting the scope of
direct comparison with our solution.

Since structured weight pruning and activation sparsity
can be applied independently, we decided to apply activation
sparsity on models pruned using DepGraph to see the impact
on performance. Figure 5 depicts the latency vs. accuracy
trade-off achievable by structured pruning with and without
our proposed activation sparsity technique. We performed
these experiments on ResNet18 with the Flowers102 dataset.
The pruned models were obtained using the original code-
base provided by DepGraph authors with different values of
the speedup proxy parameter (MACs count ratio) from 2.0×
to 10.0× [12]. Then, we induced activation sparsity in the
pruned models for four different sparsity levels (5%, 10%,
20%, 30%), using the Ultralytics training code for image
classification [29]. The same training code was also used to
further finetune the pruned models (without sparsity) for fair
comparison. The experimental results show that while the
solely structured pruning is Pareto optimal for lower speedup
rates, a combination of both techniques becomes more fa-
vorable for beyond 3.5× speedup. Furthermore, while struc-
tured pruning offers high scaling ability, activation sparsity
acts as a fine-grained control knob in the accuracy vs. latency
solution space. Latency measurement experiments carried

out on the Raspberry Pi 4B [15] showcase a significant dif-
ference between the real and theoretical speedup of pruned
models. A detailed table with all the different speedups is
available in Appendix B.

Activation sparsity applied to pruned models shows no-
table performance improvements, especially for high pruning
ratios. This behavior can be attributed to the understanding
that models pruned beyond a certain limit may experience
reduced capacity and subsequently degraded performance.
In such cases, activation sparsity proves to be an effective
approach by capitalizing on zeros in the activation maps,
which remain independent of the model’s capacity, leading
to optimal results.

5. Conclusion

This paper presents an efficient DNN compression
pipeline leveraging semi-structured activation sparsity to
reduce inference latency. The proposed training procedure
induces activation sparsity through the propagation and freez-
ing of random spatial masks, being cognizant of element
positions during GEMM-based convolutions. Additionally,
we provide an illustrative example of a practical runtime
modification integrated into XNNPACK to measure latency
speedup on a Raspberry Pi 4B device. Our experimental
results showcase the impact of activation sparsity on accu-
racy and speedup across diverse test cases encompassing
image classification and object detection tasks. Furthermore,
we demonstrate the potential to combine our compression
pipeline with other structured pruning algorithms, offering
enhanced accuracy-speed trade-offs, especially for high com-
pression ratios. In future work, we plan to explore advanced
regularization techniques to determine optimal sparsity lev-
els across layers.

8



References
[1] Byung Hoon Ahn, Jinwon Lee, Jamie Menjay Lin, Hsin-

Pai Cheng, Jilei Hou, and Hadi Esmaeilzadeh. Ordering
chaos: Memory-aware scheduling of irregularly wired neural
networks for edge devices. Proceedings of Machine Learning
and Systems, 2:44–57, 2020. 2

[2] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool.
Food-101–mining discriminative components with random
forests. In Computer Vision–ECCV 2014: 13th European
Conference, Zurich, Switzerland, September 6-12, 2014, Pro-
ceedings, Part VI 13, pages 446–461. Springer, 2014. 13

[3] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Haichen Shen,
Eddie Q Yan, Leyuan Wang, Yuwei Hu, Luis Ceze, Car-
los Guestrin, and Arvind Krishnamurthy. Tvm: end-to-
end optimization stack for deep learning. arXiv preprint
arXiv:1802.04799, 11(20), 2018. 1, 2

[4] Etienne David, Simon Madec, Pouria Sadeghi-Tehran, Helge
Aasen, Bangyou Zheng, Shouyang Liu, Norbert Kirchgess-
ner, Goro Ishikawa, Koichi Nagasawa, Minhajul A Badhon,
et al. Global wheat head detection (gwhd) dataset: a large
and diverse dataset of high-resolution rgb-labelled images to
develop and benchmark wheat head detection methods. Plant
Phenomics, 2020. 13

[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li
Fei-Fei. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009. 13

[6] Lei Deng, Guoqi Li, Song Han, Luping Shi, and Yuan Xie.
Model compression and hardware acceleration for neural
networks: A comprehensive survey. Proceedings of the IEEE,
108(4):485–532, 2020. 1

[7] Xin Dong, Shangyu Chen, and Sinno Pan. Learning to prune
deep neural networks via layer-wise optimal brain surgeon.
Advances in neural information processing systems, 30, 2017.
2

[8] Xuanyi Dong, Junshi Huang, Yi Yang, and Shuicheng Yan.
More is less: A more complicated network with less inference
complexity. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 5840–5848, 2017.
1, 3

[9] Marat Dukhan. The indirect convolution algorithm. arXiv
preprint arXiv:1907.02129, 2019. 5

[10] Steven K Esser, Jeffrey L McKinstry, Deepika Bablani, Rathi-
nakumar Appuswamy, and Dharmendra S Modha. Learned
step size quantization. In International Conference on Learn-
ing Representations, 2019. 1

[11] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I.
Williams, J. Winn, and A. Zisserman. The pascal visual object
classes challenge: A retrospective. International Journal of
Computer Vision, 111(1):98–136, Jan. 2015. 13

[12] Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and
Xinchao Wang. Depgraph: Towards any structural pruning.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 16091–16101, 2023. 1,
2, 8, 15

[13] Georgios Georgiadis. Accelerating convolutional neural net-
works via activation map compression. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7085–7095, 2019. 1, 3

[14] Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Dropblock: A
regularization method for convolutional networks. Advances
in neural information processing systems, 31, 2018. 1, 4

[15] Google. Raspberry pi. https://www.raspberrypi.
com / products / raspberry - pi - 4 - model - b/,
2023. 6, 8

[16] Google. Tflite. https://github.com/tensorflow/
tensorflow/tree/master/tensorflow/lite,
2023. 5, 6

[17] Google. Xnnpack. https://github.com/google/
XNNPACK, 2023. 2, 5, 6, 12

[18] Amirhossein Habibian, Davide Abati, Taco S Cohen, and
Babak Ehteshami Bejnordi. Skip-convolutions for efficient
video processing. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
2695–2704, 2021. 3

[19] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pe-
dram, Mark A Horowitz, and William J Dally. Eie: Effi-
cient inference engine on compressed deep neural network.
ACM SIGARCH Computer Architecture News, 44(3):243–254,
2016. 1, 2

[20] Song Han, Huizi Mao, and William J Dally. Deep com-
pression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015. 2

[21] Song Han, Jeff Pool, John Tran, and William Dally. Learning
both weights and connections for efficient neural network.
Advances in neural information processing systems, 28, 2015.
2

[22] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015. 2

[23] Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden,
and Alexandra Peste. Sparsity in deep learning: Pruning and
growth for efficient inference and training in neural networks.
The Journal of Machine Learning Research, 22(1):10882–
11005, 2021. 2

[24] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh
Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,
Ruoming Pang, Vijay Vasudevan, et al. Searching for mo-
bilenetv3. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 1314–1324, 2019. 2

[25] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017. 1

[26] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid
Ashraf, William J Dally, and Kurt Keutzer. Squeezenet:
Alexnet-level accuracy with 50x fewer parameters and¡ 0.5
mb model size. arXiv preprint arXiv:1602.07360, 2016. 1

[27] Eugenia Iofinova, Alexandra Peste, Mark Kurtz, and Dan
Alistarh. How well do sparse imagenet models transfer?
CoRR, abs/2111.13445, 2021. 2

9

https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite
https://github.com/google/XNNPACK
https://github.com/google/XNNPACK


[28] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu,
Matthew Tang, Andrew Howard, Hartwig Adam, and Dmitry
Kalenichenko. Quantization and training of neural networks
for efficient integer-arithmetic-only inference. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 2704–2713, 2018. 2

[29] Glenn Jocher, Ayush Chaurasia, and Jing Qiu. YOLO by
Ultralytics, Jan. 2023. 5, 6, 8, 15

[30] Anis Koubaa. Gpt-4 vs. gpt-3.5: A concise showdown. 2023.
1

[31] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 13

[32] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Im-
agenet classification with deep convolutional neural networks.
Advances in neural information processing systems, 25, 2012.
1

[33] Mark Kurtz, Justin Kopinsky, Rati Gelashvili, Alexander
Matveev, John Carr, Michael Goin, William Leiserson, Sage
Moore, Nir Shavit, and Dan Alistarh. Inducing and exploiting
activation sparsity for fast inference on deep neural networks.
In International Conference on Machine Learning, pages
5533–5543. PMLR, 2020. 1, 3, 8

[34] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and
Hans Peter Graf. Pruning filters for efficient convnets. arXiv
preprint arXiv:1608.08710, 2016. 1, 2

[35] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and
Hans Peter Graf. Pruning filters for efficient convnets. arXiv
preprint arXiv:1608.08710, 2016. 2

[36] Zonglin Li, Chong You, Srinadh Bhojanapalli, Daliang Li,
Ankit Singh Rawat, Sashank J Reddi, Ke Ye, Felix Chern,
Felix Yu, Ruiqi Guo, et al. The lazy neuron phenomenon:
On emergence of activation sparsity in transformers. In The
Eleventh International Conference on Learning Representa-
tions, 2022. 1, 3

[37] Ming Liu, Zhilu Zhang, Liya Hou, Wangmeng Zuo, and Lei
Zhang. Deep adaptive inference networks for single image
super-resolution. In Computer Vision–ECCV 2020 Work-
shops: Glasgow, UK, August 23–28, 2020, Proceedings, Part
IV 16, pages 131–148. Springer, 2020. 3

[38] Ye Liu and Michael K Ng. Deep neural network compression
by tucker decomposition with nonlinear response. Knowledge-
Based Systems, 241:108171, 2022. 1

[39] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang,
Shoumeng Yan, and Changshui Zhang. Learning efficient
convolutional networks through network slimming. In Pro-
ceedings of the IEEE international conference on computer
vision, pages 2736–2744, 2017. 1, 2

[40] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter
level pruning method for deep neural network compression.
In Proceedings of the IEEE international conference on com-
puter vision, pages 5058–5066, 2017. 2

[41] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.
Shufflenet v2: Practical guidelines for efficient cnn architec-
ture design. In Proceedings of the European conference on
computer vision (ECCV), pages 116–131, 2018. 2

[42] Asit Mishra, Eriko Nurvitadhi, Jeffrey J Cook, and Deb-
bie Marr. Wrpn: Wide reduced-precision networks. arXiv
preprint arXiv:1709.01134, 2017. 1, 2

[43] Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov.
Variational dropout sparsifies deep neural networks. In Inter-
national Conference on Machine Learning, pages 2498–2507.
PMLR, 2017. 2

[44] Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio,
and Jan Kautz. Importance estimation for neural network
pruning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 11264–11272,
2019. 2

[45] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila,
and Jan Kautz. Pruning convolutional neural networks for
resource efficient inference. arXiv preprint arXiv:1611.06440,
2016. 2

[46] Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei
Bondarenko, Mart Van Baalen, and Tijmen Blankevoort. A
white paper on neural network quantization. arXiv preprint
arXiv:2106.08295, 2021. 1

[47] Maria-Elena Nilsback and Andrew Zisserman. Automated
flower classification over a large number of classes. In 2008
Sixth Indian conference on computer vision, graphics & image
processing, pages 722–729. IEEE, 2008. 13

[48] Chanyoung Oh, Junhyuk So, Sumin Kim, and Youngmin Yi.
Exploiting activation sparsity for fast cnn inference on mobile
gpus. ACM Transactions on Embedded Computing Systems
(TECS), 20(5s):1–25, 2021. 3

[49] Mengye Ren, Andrei Pokrovsky, Bin Yang, and Raquel Ur-
tasun. Sbnet: Sparse blocks network for fast inference. In
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 8711–8720, 2018. 1, 3

[50] Minsoo Rhu, Mike O’Connor, Niladrish Chatterjee, Jeff Pool,
Youngeun Kwon, and Stephen W Keckler. Compressing dma
engine: Leveraging activation sparsity for training deep neural
networks. In 2018 IEEE International Symposium on High
Performance Computer Architecture (HPCA), pages 78–91.
IEEE, 2018. 1

[51] Mingxing Tan and Quoc Le. Efficientnetv2: Smaller models
and faster training. In International conference on machine
learning, pages 10096–10106. PMLR, 2021. 2

[52] Chen Tang, Wenyu Sun, Zhuqing Yuan, and Yongpan Liu.
Adaptive pixel-wise structured sparse network for efficient
cnns. arXiv preprint arXiv:2010.11083, 2020. 1, 3

[53] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 1

[54] Huan Wang, Can Qin, Yue Bai, and Yun Fu. Why is the
state of neural network pruning so confusing? on the fairness,
comparison setup, and trainability in network pruning. arXiv
preprint arXiv:2301.05219, 2023. 2

[55] Weizhi Xu, Yintai Sun, Shengyu Fan, Hui Yu, and Xin Fu.
Accelerating convolutional neural network by exploiting spar-
sity on gpus. ACM Transactions on Architecture and Code
Optimization, 2019. 3

[56] Xinchuan Zeng and Tony R. Martinez. Using a neural network
to approximate an ensemble of classifiers. Neural Processing
Letters, 12:225–237, 2000. 2

10



[57] Yiren Zhao, Oluwatomisin Dada, Xitong Gao, and Robert D
Mullins. Revisiting structured dropout. arXiv preprint
arXiv:2210.02570, 2022. 1

[58] Michael Zhu and Suyog Gupta. To prune, or not to prune:
exploring the efficacy of pruning for model compression.
arXiv preprint arXiv:1710.01878, 2017. 1, 2, 5, 7

11



Appendix
A. Inference Engine Modification

In the context of runtime modifications for activation
sparsity inference, we used XNNPACK [17] as our inference
engine and made minor adaptations to ensure robust sup-
port for inference. Algorithm 2 illustrates a simplified pseu-
docode representation of these crucial modifications. Addi-
tional information about these referenced functions is readily
available within the code repository [17]. The implementa-
tion comprises three stages: (i) a custom indirection-based
im2col, (ii) a standard dense GEMM, and (iii) custom
post-processing components.

Algorithm 2: Inference Engine Modification

1 Function xnn indirection init conv2d sparse:
2 indirection buffer← empty list;
3 for out y to output height do
4 for out x to output width do
5 if mask[out x][out y] == 1 then
6 indirection buffer[index]← (const void*)

((uintptr t) input + base address +
offset);

7 end
8 end
9 end

10 return indirection buffer;
11 end

12 Function post process conv2d sparse:
13 outch size = output channels * sizeof(float);
14 for out y→ output height - 1 to 0 do
15 for out x→ output width - 1 to 0 do
16 if mask[out x][out y] == 0 then
17 memset(op→ output[out y * op→

output height + out x], 0, outch size);
18 end
19 else
20 memcpy(output[out y * out-

put height + out x], output[id],
outch size);

21 id← id - 1;
22 end
23 end
24 end
25 return output;
26 end

At first, the xnn indirection init conv2d sparse

(lines 1-11) function illustrates our custom approach for effi-
ciently skipping rows within an indirection matrix. Within
the indirection-based im2col function, we deviate from
memory-intensive transformations and instead, store in-

put value pointers in the indirection buffer. This strat-
egy adheres to the loop structure commonly employed
in the standard im2col transformation. Diverging from
the original procedure, our implementation skips convert-
ing the entire convolution patch into a single row when
mask values equate to 0 (line 5). To accurately allocate
the appropriate input value pointer to a designated posi-
tion (index) within the indirection buffer, we em-
ployed the base address and offset variables. These
variables are computed according to the conv2d parame-
ters. Upon completing this initial step, the computation range
of the GEMM is reduced to output size − (sparsity ×
output size). The GEMM function operates as a subrou-
tine that efficiently conducts dense matrix multiplication
between weight and activation values. This function remains
unaltered, with no modifications made to the underlying
kernel.

Lastly, the post process conv2d sparse func-
tion (lines 12-26) manages the output for the subsequent
layer, incorporating a transformation that involves the inser-
tion of zeros based on the corresponding mask value. When
the mask value is 0 (lines 16-18), the function inserts zeros.
Alternatively, when the mask value is 1 (lines 19-21), data
is copied from one position to another within the same out-
put channel size, denoted as outch size in the algorithm.
This customized procedure is tailored for post-processing
the output subsequent to low-rank GEMM operations, and it
is invoked within the xnn run operator method [17].

B. Additional Details on Experiments
B.1. Visualization

Figure 6. Even with 30% sparsity induced in these three pictures,
the main content remains visible and comprehensible to human
eyes.

In Figure 6, we illustrate a visual comparison of three
standard 224 × 224 images, both before and after the ap-
plication of a 30% sparsity constraint. Notably, even when

12



subjected to a substantial level of induced sparsity, the core
content remains discernible and comprehensible to the hu-
man observer. While certain finer details may be sacrificed
due to the reduction in non-zero pixel values, the funda-
mental subject matter and distinctive characteristics of each
image endure. This observation suggests that when visual
content remains clear to the human eye, deep neural net-
works are likely to recognize the semantic content of the
images as well, particularly in scenarios with lower levels of
activation sparsity.

B.2. Datasets

CIFAR-100 [31] : It comprises 60, 000 RGB images,
each measuring 32 × 32 pixels, and annotated with 100
distinct labels with 45, 000 training, 5, 000 validation, and
10, 000 testing samples.

Flowers102 [47]: This dataset is a collection of 102 cat-
egories of flower species, with each category containing
a variable number of RGB images. Each image is of arbi-
trary size and comes with appropriate labels indicating the
corresponding flower species. We used 224 × 224 image
resolution.

Food101 [2]: It comprises a diverse set of food images
spanning 101 distinct classes, the dataset offers a valuable
resource for food recognition tasks. Each RGB image in the
dataset is associated with a specific food category. We used
224× 224 image resolution.

ImageNet [5]: This dataset comprises 1M of RGB im-
ages belonging to a vast array of classes, enabling in-depth
evaluation of image classification capabilities. The pipeline
leveraged subsets of the ImageNet dataset, ensuring a repre-
sentative and diverse range of images for training, validation,
and testing purposes.

PASCAL VOC [11]: The PASCAL VOC dataset, derived
from the PASCAL Visual Object Classes Challenge, encom-
passes 15, 870 RGB images with 37,813 object annotations
for 20 different categories. The pipeline adhered to the rec-
ommended approach outlined in, utilizing the VOC07 and
VOC12 trainval data for training, while the VOC07 dataset
was employed for testing purposes. We used 480×480 image
resolution.

Global Wheat [4]: The Global Wheat Head Dataset is a
collection of images designed to support the development
of accurate wheat head detection models for applications in
wheat phenotyping and crop management. The dataset con-
tains over 3000 images in the training set, and approximately
1000 images for validation taken in different regions. We
train and evaluate with 480 × 480 image resolution in our
experiments.

B.3. Training

For ResNet models, we did not induce activation sparsity
in the pointwise downsample layers (1 × 1 convolutional

kernels), as their overall contribution to the runtime is negli-
gible. Furthermore, this allows the model to recover a small
amount of accuracy (e.g., around 0.2% for ResNet18 on
Flowers102 dataset). Figures 7 and 8 report an example of
the training curves to offer comprehensive insights into the
proposed method’s learning behavior, providing a deeper
understanding of the training dynamics and overall training
performance.

13



62.5

65.0

67.5

70.0

To
p-

1 
[%

] 10%
30%

0 50 100 150 200 250 300 350 400
Epochs

0.0

10.0

20.0

30.0

Sp
ar

sit
y 

[%
] 10%

30%

Figure 7. Training curves for ResNet18 on the ImageNet dataset for two different sparsity levels. The two vertical lines split the training
curve according to the three different stages. From epoch 0 to epoch 40 (green line) the dense pretraining steps, from epoch 40 to epoch 360
(purple line) the sparse training steps with variable random masking, and, at last, from epoch 360 to the end the mask freezing stage.

62.5

65.0

67.5

70.0

To
p-

1 
[%

] 10%
30%

260 280 300 320 340 360 380 400
Epochs

0.0

10.0

20.0

30.0

Sp
ar

sit
y 

[%
] 10%

30%

Figure 8. Training curves for ResNet18 on the ImageNet dataset for two different sparsity levels. The same training curves of Fig. 7, here
zoomed in on the last epochs to better show the effects of the mask freezing stage (from epoch 360 to 400).

14



Structured Weight Pruning Structured Weight Pruning + Activation Sparsity
Depgraph [12] Fine-tuned [29] 5% 10% 20% 30%

S A S A OS A OS A OS A OS A
1.0 / 1.0 92.02 1.07 91.80 1.11 91.20 1.25 90.25 1.41 88.89
2.0 89.46 1.8 89.58 1.90 89.07 1.96 88.88 2.24 87.53 2.51 86.45
3.0 86.27 2.6 87.17 2.74 86.31 2.83 86.34 3.21 84.86 3.58 82.88
4.0 85.18 3.4 86.23 3.55 85.58 3.71 84.99 4.18 83.67 4.68 82.03
5.0 81.93 3.9 82.92 4.04 82.31 4.25 82.19 4.77 80.24 5.33 78.29
6.0 79.87 4.7 81.12 5.01 80.94 5.22 80.22 5.83 78.47 6.51 77.01
7.0 79.44 5.3 79.80 5.51 79.23 5.76 78.84 6.51 77.05 7.16 73.78
8.0 78.27 5.6 79.26 5.83 79.15 6.11 78.52 6.77 76.17 7.59 74.37
9.0 76.01 6.0 77.15 6.42 76.29 6.68 75.52 7.48 73.34 8.35 70.69

10.0 74.65 6.3 75.77 6.68 75.52 6.77 74.50 7.26 72.44 7.59 69.90

Table 4. Latency-accuracy results for structured pruning without (first four columns) and with activation sparsity (last eight columns) for
ResNet18 on the Flowers102 dataset. For each pair of structured pruning columns, we report speedup (S, ×) and top-1 accuracy (A, %). The
first group shows the results obtained using the original training code of Depgraph [12] with the estimated speedups, while the second one
shows the results obtained with further fine-tuning using Ultralytics training code [29] with the real speedups measured on the device. For
each pair of columns of structured pruning with activation sparsity, we report overall speedup (OS, ×) and top-1 accuracy (A, %) at different
levels of sparsity, trained using the same Ultralytics training code [29].

15


	. Introduction
	. Related Work
	. Pruning
	. Activation Sparsity
	. Low-Rank GEMM

	. Methodology
	. Training
	. Inference

	. Results
	. Training Setup
	. Sparse Model Deployment
	. Sparse vs. Dense Model Performance
	Low Accuracy Loss Regime
	High Speedup Regime

	. Ablation Study
	. Weight Pruning vs. Activation Sparsity

	. Conclusion
	. Inference Engine Modification
	. Additional Details on Experiments
	. Visualization
	. Datasets
	. Training


