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Abstract

Generative Adversarial Networks (GANs) have proven to
exhibit remarkable performance and are widely used across
many generative computer vision applications. However,
the unprecedented demand for the deployment of GANs on
resource-constrained edge devices still poses a challenge
due to huge number of parameters involved in the genera-
tion process. This has led to focused attention on the area of
compressing GANs. Most of the existing works use knowl-
edge distillation with the overhead of teacher dependency.
Moreover, there is no ability to control the degree of com-
pression in these methods. Hence, we propose CoroNet-
GAN for compressing GAN using the combined strength of
differentiable pruning method via hypernetworks. The pro-
posed method provides the advantage of performing con-
trollable compression while training along with reducing
training time by a substantial factor. Experiments have been
done on various conditional GAN architectures (Pix2Pix
and CycleGAN) to signify the effectiveness of our approach
on multiple benchmark datasets such as Edges → Shoes,
Horse ↔ Zebra and Summer → Winter. The results ob-
tained illustrate that our approach succeeds to outperform
the baselines on Zebra → Horse and Summer → Winter
achieving the best FID score of 32.3 and 72.3 respectively,
yielding high-fidelity images across all the datasets. Ad-
ditionally, our approach also outperforms the state-of-the-
art methods in achieving better inference time on various
smart-phone chipsets and data-types making it a feasible
solution for deployment on edge devices.

1. Introduction

Computer vision applications such as image-to-image
translation, image synthesis, image generation, super res-
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olution etc. have seen tremendous progress yielding high-
fidelity images with the advent of GANs[1]. The develop-
ment of image-based GAN applications have in-turn accel-
erated the demand for deployment of such models on edge
devices for the usage of the end consumers. However, the
complexity of training such parameter heavy models to gen-
erate visually pleasing images result in high computational
and memory overhead which acts as a bottleneck in de-
ployment of GANs on mobile devices. For instance, the
popular CycleGAN requires over 56.8G MACs (Multiply-
Accumulate Operations) for generating a single image of
resolution 256 × 256 pixels. On the other hand, Pix2Pix
requires 18.6G MACs which is 4X compared to traditional
Res-Net50 [2] architecture. This huge number of operations
is not desirable for the deployment on edge devices. Hence,
there is a need for compressing these networks by remov-
ing the redundant parameters and reducing the memory and
computational consumption.

Discriminative approaches such as image classification,
object detection and semantic segmentation have been at
the receiving end of undivided focus since these networks
have surpassed human imagination but still, for the learn-
ing to saturate, these networks take huge amount of train-
ing time. For instance, the popular image classification
model, Alexnet [3] has 60 million parameters and requires
about 240 MB of memory while VGG16 [4] has 130 mil-
lion parameters and has takes around 500 MB of memory.
The research community has given unmitigated attention on
the application of model compression techniques to acceler-
ate deployment of image classification and object detection
networks using techniques like weight quantization [5, 6],
pruning [7, 8] and knowledge distillation [9, 10]. How-
ever, these methods are not directly applicable to genera-
tive models such as GANs. A lot of the recently proposed
methods have tried to compress generative adversarial net-
works using the combined techniques of knowledge distil-
lation [11, 12] and channel pruning[13, 14]. However, these
approaches don’t allow controllable compression to happen
neither using a single technique nor through the combina-
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tion of multiple techniques.

To address the above-mentioned issues, we propose a
novel method for compressing the GAN using differentiable
pruning method using the concept of hypernetwork. The
compression is performed during the training regime. The
proposed hypernetwork takes latent vector as an input and
dynamically produces weights of a given layer of the gen-
erator network. This input latent vector decides the pruning
rate for different layers in the network. Sparsification of
latent vector is achieved via proximal gradient. Post spar-
sification, the latent vectors are passed through the hyper-
network that in turn generates the weight of the generator
network. Since the latent vector and the weights of the gen-
erator network are covariant with each other, the sparsifica-
tion of latent vectors leads to the pruning of the weights of
the concerned network. The proposed method also helps in
reducing the training time and inference time as compared
to that of conventional GAN training method. Through the
experiments on different conditional generative models on
various datasets, the potential of the proposed method is re-
vealed. The main contributions of the paper can be summa-
rized as follows:

1. We propose CoroNetGAN, an approach based on dif-
ferentiable pruning via hypernetworks for GAN com-
pression. To the best of our knowledge, this is the first
work that achieves model compression using control-
lable pruning via hypernetwork for conditional GANs.
Our proposed approach compresses the GAN network
in a controlled way by providing the compression rate
as an input to the algorithm.

2. Compression is achieved simultaneously alongside
training unlike the distillation based methods that in-
volve teacher dependency [15]. CoroNetGAN outper-
forms state-of-the-art compression technique [15] on
training time on all the datasets validating the effec-
tiveness of our technique both on training latency and
visual appearance of the generated images. This will
be of great advantage in reducing the training time
while maintaining the accuracy when training GANs
on bigger datasets containing billion of images.

3. Our proposed approach, CoroNetGAN outperforms
state-of-the-art conditional GAN compression meth-
ods on widely used Zebra → Horse and Summer →
Winter datasets. CoroNetGAN obtains reasonable
qualitative and quantitative results on other datasets.
CoroNetGAN also outperforms state-of-the-art com-
pression techniques [15] on inference time.

2. Related Work

2.1. Generative Adversarial Networks

GANs [1] have proven to generate realistic results on
a variety of tasks. For instance, Isola et al. [16] propose
Pix2Pix for paired image-to-image translation trained via
the combination of adversarial loss and pixel-wise regres-
sion loss in order to ensure the visual quality of generated
images. Later, [17] is proposed that helps to increase the
resolution of translated images with multi-scale neural net-
works and edge maps. GANs have also been proposed to
perform image deblurring [18], style transfer [19, 20], im-
age super resolution [21] along with text-to-image genera-
tion [22]. Zhu et al. [23] propose CycleGAN for unpaired
image-to-image translation. The algorithm trains generators
on different domains of data through a weakly supervised
setting using cycle consistency loss. The final objective is
to convert the data from one domain to other without using
any label information.

2.2. GAN Compression

The tremendous resource consumption by GANs has
garnered recent attention towards GAN compression. Wang
et al.[24] proposes a novel quantization method and multi-
precision quantization algorithm considering different sen-
sitivities of discriminator and generator. Aguinaldo et al.
[11] introduces the idea of knowledge distillation in GANs
between large over-parameterized network and small few
parameter networks optimized using joint and mean squared
error loss functions. However, the only focus here is to com-
press the generator keeping the discriminator intact. Most
usage of GANs in mobile devices is based on the appli-
cation of image-to-image translation task. [12] distills the
student discriminator to assist training of the student gen-
erator and also focused on image translation problem us-
ing Pix2Pix framework. Chang et al. in [25] focuses to
mimic the functionality of BigGAN with a smaller com-
pressed network and fewer parameters. Different devices
with varied computing power require generators of different
sizes. In order to accommodate this trade-off, Slimmable-
GAN[26] proposes flexible switching between the multi-
width configurations. Further, Ren et al.[15] overcomes the
complex multi-stage compression process and proposes a
single-stage GAN online distillation strategy to obtain the
compressed model. However, these approaches use images
from the teacher directly to distill knowledge. Zhang et
al.[27] proposes the idea of investigating GAN compres-
sion from frequency perspective and introduces the idea of
wavelet analysis. They decompose the image into frequency
bands and perform distillation only on bands with higher
frequency unlike naive methods that do not prioritize the
high frequency. [28] aims to find crucial regions in the im-
age using attention module. Considering the attention value



important to the region, features are distilled from teacher to
student. Recent works such as [29] introduce an Inception-
based Residual block replacing the original residual blocks
in CycleGAN and search for student generator from teacher
generator via pruning followed by Similarity based Knowl-
edge Distillation. Further, approaches integrating various
compression techniques are also proposed. [13] combines
model distillation, channel pruning and quantization and
generate a unified optimization form which achieves supe-
rior trade-off compared with standalone compression tech-
niques. Liu at al.[14] combines the idea of channel pruning
and knowledge distillation and mainly expands the focus on
accelerating unconditional GANs.

2.3. HyperNetworks

Hypernetworks are a group of smaller networks that
generates the weights for a larger network. These
smaller neural networks have been used historically for
vision[30], functional representation[31] and bayesian in-
ference tasks[32].

Albeit the word hypernetwork has been coined recently,
the concept of using dynamic parameter generation has
been used by researchers for a long time [33]. Von der Mals-
berg et al.[34] indicates a possibility of dynamic modelling
between a slow classical weight and a dynamic decaying
connection. The technique to model short term memory by
computing weight changes of another network was initiated
by Schmidhuber et al.[35]. Parameter prediction through
co-relation between different parameters of the neural net-
work was extensively studied in [36]. A weight matrix is
produced using a learnable lower dimensional matrix using
a linear operation.[37] uses weight matrices as a factored
representation and feed forward one-shot learners reduc-
ing the dimensionality of the hypernetwork.[38] proposes
an approach to calculate the parameters for image transfor-
mation using a weight generating network. [39] proposes
an approach for generating weights for visual question an-
swering task. The parameter prediction network takes input
the questions post which the network predicts weights of the
main network. In addition, they also use hashing of parame-
ters to reduce the size of the final matrix of parameters. The
concept of dynamic filters has been used for image super-
resolution [30]. These filters are computed based on input
using a similar concept to hypernetwork.

3. Methodology
GAN consist of a generator and a discriminator network

employed in a min-max game. The proposed method al-
lows compression of the generator network while training.
Compression is achieved using differentiable meta pruning
which is based on the idea of hypernetwork. Hypernetwork
is responsible for generating the weights of the generator
network for each of its layer. The input to the hypernetwork

is a latent vector and the output is a weight matrix of the
generator network.

During the forward pass, latent vector is given as an in-
put to hypernetwork to generate the weights of the genera-
tor. During back-propagation, the gradient flows in the hy-
pernetwork instead of the main network. It is designed in
a way such that its output is covariant with the input latent
vector. Proximal Gradient helps in pruning of output chan-
nels of the generator network by eliminating the redundant
parameters automatically.

3.1. HyperNetwork Design

The hypernetwork consists of three layers. The latent
layer takes as input the latent vectors and computes a latent
matrix. The embedding layer projects the elements of the
latent matrix to an embedding space. The final layer con-
verts the embedded vectors to the final output. The design
is taken from [40]. As an example, consider the generator to
be an L-layer convolutional neural network. Each layer of
the network has its own corresponding latent vector that is
responsible for generating the weights of the corresponding
layer. The size of the latent vector is equal to the number
of output channels in that layer. For instance, consider an
l-th convolutional layer having n ∗ c ∗ w ∗ h number of pa-
rameters, where n and c are the output and input channels
and w*h is the size of kernel respectively. Suppose that the
latent vector corresponding to that particular l − th layer
is vl ∈ Rc. Therefore, the previous layer has latent vector
vl−1 ∈ Rn. The hypernetwork takes latent vector of cur-
rent layer (vl) and its previous layer (vl−1) as input and will
output the weights matrix of the l-th layer of the generator
network. Initially, the first layer of the hypernetwork com-
putes a latent matrix using the two latent vectors:

Vl = vl.vl−1T + B0 (1)

where,
Vl,B0 ∈ Rn∗c

Here, [T] denotes transpose of the matrix while [.] denotes
matrix multiplication.

Subsequently, the second layer of the hypernetwork
projects every element of the latent matrix to a m-
dimensional embedding space as follows:

Sl
ij = Vl

ijwl
1 + b1

l i = 1..n, j = 1...c (2)

where,

Sl
ij ,wl

1,b1
l ∈ Rm

Here, we are considering wl
1 and b1

l as different for
different elements of the matrix. The subscript (i, j) has not
been used for easier interpretation of the above mentioned
equations. The vectors wl

1, b1
l and Sl

ij for all the elements



Figure 1. Illustration of the proposed algorithm designed for compressing GAN’s using controllable differentiable pruning. A latent vector
is attached to each of the convolution layer of the generator. The latent vector generates the weights for the generator via hypernetwork.
Sparsification of the latent vector leads to pruning of the corresponding weights of the generator network. The proposed design allows the
latent vector and its corresponding weight matrix to be covariant with each other. The generator generates visual results using the computed
weight matrix through the hypernetwork (Best viewed when zoomed).

of the matrix together forms a 3D tensor, i.e., Wl
1, Bl

1 and
Sl
1 ∈ Rn∗c∗m.

After the second step, the final layer of the hypernetwork
is responsible for converting the embedding vectors to the
output(Fl

ij) which can be used as weight matrix of the Gen-
erator network. This is done by multiplying the embedded
vectors Sl

ij by an explicit matrix as follows:

Fl
ij = wl

2.S
l
ij + b2

l i = 1..n, j = 1...c (3)

where,
Fl
ij ,bl

2 ∈ Rwh

and,
wl

2 ∈ Rwh∗m

wl
2 and b2

l are different and unique for each of the element
and subscript (i,j) has not been used for easier interpreta-
tions. Vectors wl

2, b2
l and Fl

ij for all the elements together
will be high-dimensional tensors i.e., Wl

2 ∈ Rn∗c∗wh∗m

and Bl
2 and Fl ∈ Rn∗c∗wh.

Combining 1, 2 and 3, the functionality of the proposed
approach can be collectively written as:

Fl = h(vl, vl−1;Wl,Bl), (4)

where, h(.) denotes the functionality of the above architec-
ture. The final output Fl will be used as the weight param-
eter of the l-th layer. The hypernetwork is designed in such
a way that the weight matrix of the generator is covariant
with it’s corresponding input latent vector as pruning an el-
ement in the latent vector automatically leads to removal of
corresponding slice in the final weight matrix( Fl). Figure 1
depicts the overall workflow of the proposed CoroNetGAN.

While designing the hypernetwork, we also execute
residual connections in the network. In case of residual or
skip connections, we take the input latent vector as the com-
bination of the latent vector of the previous layer and the
corresponding layer from which the skip connection origi-
nates. We concatenate both the input latent vectors to cre-
ate one single input latent vector. The resultant input latent
vector along with latent vector of the current layer is used
to create the latent matrix. The creation of latent matrix is
followed by execution of steps((2),(3)) for generating the
weights matrix of the convolution layer.

3.2. Vector Sparsity using Proximal Gradient

The differentiable property of the algorithm comes
through the use of proximal gradient. Proximal gradient
helps in sparsification of the latent vector by searching the
potential candidates. Since latent vector is covariant with
the weight matrix of the Generator network, it leads to
compression of the Generator network. During training
time, the parameters of the hypernetwork is updated using



Stochastic Gradient Descent (SGD) optimization algorithm.
During back-propagation, gradients flow from the Genera-
tor network to the hypernetwork. The latent vectors are up-
dated using the proximal gradient [40] which leads to spar-
sified input latent vectors as follows:

v[k + 1] = proxλµR(v[k]− λµ∇L(v[k])) (5)

The proximal gradient algorithm forces the potential ele-
ments of the latent vectors to approach zero quicker than the
others without any human effort and interference in this pro-
cess. Due to the fact that proximal operator has closed-form
solution and use of SGD, the whole solution is recognized
as approximately differentiable.

3.3. Network Pruning

Our proposed method allows the weight matrix to be co-
variant with the it’s corresponding latent vector. Hence,
sparsifictaion of latent vector leads to the pruning of the cor-
responding weights of the CNN layer in the generator net-
work. Our training regime consists of two stages, namely
searching stage and converging stage. During the searching
stage, proximal gradients helps in identifying the potential
candidates of the latent vector. Therefore, after the search-
ing stage, we get the sparsified latent vector (v̂l). Proxi-
mal gradient help in elements of the latent vector either be
zero or approaching towards zero. We use a mask(ml) on
the sparsified latent vector with a predefined threshold(τ ).
This is followed by masking operation that compares ev-
ery element of the latent vector with the threshold value. If
greater than threshold, the returned value is one else zero.
The sparsified latent vector, v̂l is pruned with the help of the
computed mask (ml).

Once the target compression ratio is achieved, the algo-
rithm shifts from searching to the converging stage. In the
converging stage, hypernetwork is discarded, and the train-
ing of the generator follows the conventional GAN train-
ing procedure. Upon extensive experimentation, it is ob-
served that the number of epochs in searching stage is much
smaller than the number of epochs in the converging stage.
The pseudo-code of the proposed algorithm is mentioned in
Algorithm 1.

4. Experiments

4.1. Experiment Setting

4.1.1 Models and Datasets

We evaluate our approach incorporating the following mod-
els to demonstrate the effectiveness of the proposed method:

1. Pix2Pix [16] for paired image-to-image translation
with original U-Net generator architecture.

Algorithm 1 CoroNetGAN Pseudo Code
total epochs← total number of epochs
targetflops← target compression ratio
latent vectors(v1, v2, .., vi)
converging ← False
epochs← 0

Compression via Differentiable Pruning
while converging ̸= True do
• Sample m{z1, z2, .., zi} images from given dataset
• Sample m{x1, x2, .., xi} ground-truths
• Update Hypernetwork using SGD

▽θh

1

m

∑m
i=1 log(1−D(G(zi)))

• Update Discriminator using SGD

▽θd

1

m

∑m
i=1{logD(xi) + log(1−D(G(zi)))}

• Compress latent vector using proximal gradient
v[k + 1] = proxλµR(v[k]− λµ∇L(v[k]))

• epochs← epochs+ 1
if flops− target flops ≤ threshold then

converging ← True
end if
if epochs ≤ total epochs then

break
end if

end while

Finetuning
while epochs ≤ total epochs do
• Sample m{z1, z2, .., zi} images from given dataset
• Sample m{x1, x2, .., xi} ground-truths
• Update Generator using SGD

▽θg

1

m

∑m
i=1 log(1−D(G(zi)))

• Update Discriminator using SGD

▽θd

1

m

∑m
i=1{logD(xi) + log(1−D(G(zi)))}

• epochs← epochs+ 1
end while

2. CycleGAN [23] for unpaired image-to-image transla-
tion using Res-Net architecture to perform transforma-
tion on an image belonging to source domain to desired
target domain.

3. Deep Convolutional Generative Adversarial Net-
work (DCGAN) [41] that uses convolutional and
convolutional-transpose layers in the discriminator and
generator, respectively.

For the purpose of quantitative and qualitative evalua-
tion, four datasets are utilised including Edges → Shoes,
Horse↔ Zebra, Summer→Winter and CIFAR10.

1. Edges → Shoes [16] is a paired image-to-image



Figure 2. Graphical representation of training time(in minutes) and FID for Pix2Pix(left) on Edges → Shoes and CycleGAN(middle,right)
on Horse → Zebra and Summer → Winter datasets respectively. From the graphs, it is evident that total training time for our proposed
approach is significantly lesser compared to OMGD [15]. For CycleGAN on Summer → Winter dataset, our algorithm outperforms
OMGD [15] on both training time and FID (Best viewed when zoomed).

Figure 3. Samples generated from our approach. First row con-
tains translated images from Zebra → Horse dataset. The second
row contains translated images from Horse → Zebra dataset (Best
viewed when zoomed).

translation dataset including images edges of shoes to
be mapped to their corresponding complete image of
shoes. The dataset consists of 49825 images.

2. Horse ↔ Zebra [23] dataset contains images origi-
nally from ImageNet [42]. It is an unpaired image-
to-image translation dataset used for translating horse
images to zebra and vice versa. In our experiments,
the training set includes 1067 horse images and 1334
zebra images.

3. Summer → Winter [23] is also unpaired image-to-
image translation dataset which translates summer im-
ages to winter. We have used 1231 summer images for
training purpose.

4. CIFAR10 dataset [43] consists of 50000 training im-
ages and 10000 test images across 10 different classes.

Our approach CoroNetGAN with Pix2Pix architecture is
bench-marked on Edges → Shoes dataset. On the other
hand, CoroNetGAN with CycleGAN has been bench-
marked on Horse ↔ Zebra and Summer → Winter
datasets.

Although our proposed approach focuses on the com-
pression for conditional GAN, we also made initial attempts
to perform compression using our proposed algorithm for
unconditional GAN (specifically DCGAN).

Figure 4. Qualitative comparison of CoroNetGAN with Cycle-
GAN architecture on Summer → Winter dataset compared with
original CycleGAN [23], GAN Compression [44] and OMGD [15]
algorithms. Our approach generates visually realistic images and
outperforms all the other algorithms on the FID metric (Best
viewed when zoomed).

4.1.2 Implementation Details

We train our proposed approach using single NVIDIA Tesla
V100 GPU on PyTorch deep learning framework. For the
algorithm to compress the network, a target compression ra-
tio needs to be selected. When the difference between the
actual compression and the target compression ratio falls
below 2%, pruning stops and model moves to fine-tuning
state from the compression state. The number of parameters
in the hypernetwork is proportional to the size of the em-
bedding space. For the experimentation, embedding space
is set to 8 across all the experiments. Learning rate is set
to 0.0002. Batch size has been set to 4 and 1 for Pix2Pix
and CycleGAN respectively on all the experiments across
different datasets. The sparsity regularization factor for the
proximal gradient is set to 0.5 across all the experiments.

4.1.3 Evaluation Setting

For the quantitative performance comparison, we adopt
Frechet Inception Distance (FID) [45] as common evalu-
ation metric. FID is specifically developed for assessing the
performance of GANs. It is used to evaluate the quality of
the images generated by generative models by comparing
the distribution of features corresponding to real and gen-



Figure 5. Qualitative comparison of CoroNetGAN with Pix2Pix
architecture on Edges → Shoes dataset compared with origi-
nal Pix2Pix [16], GAN Compression [44] and OMGD [15] algo-
rithms. Our approach generates visually plausible images com-
pared to state-of-the-art methods (Best viewed when zoomed in).

erated images using an InceptionV3 [46] network. A lower
FID score is an indicator of high similarity between both
the distributions and thus better quality of generated images.
We have evaluated FID for different architectures with our
approach on multiple datasets and compared it against ex-
isting methodologies.

4.2. Experimental Results

4.2.1 Quantitative Results

We evaluate our approach on different models and datasets
using evaluation setting mentioned in the previous section
and report quantitative results compared with the corre-
sponding state-of-the-art methods. The results can be sum-
marized as follows:

Pix2Pix: We incorporate Pix2Pix with its original U-Net
architecture in our proposed approach and report the exper-
imental results in Table 1. We observe that our approach is
able to achieve second best FID score on Edges → Shoes
dataset. We are also able to outperform the results of
[28, 27, 47] by achieving a better FID. Although, our FID
score is higher than [15] but our approach outperforms it in
terms of training time. Figure 2 illustrates that our approach
significantly improves training time however elevates FID
score compared to [15].

CycleGAN: Similar to previous works, we include Res-
Net style CycleGAN in our method and report the results in
Table 1. We observe that the results on Zebra → Horse
dataset outperform all the state-of-the-art approaches by
achieving the best FID score of 32.3 corresponding to 75%
compression. Additionally, our approach is also able to im-
prove over all the existing baselines by achieving FID score
of 72.3 on Summer → Winter dataset. As illustrated in
Figure 2 we also outperform [15] on both training time and
FID.

Furthermore, we also observe that our approach with Cy-
cleGAN is able to beat the results of [28, 27, 47, 44, 48] on
Horse → Zebra dataset. Even though, we achieve greater
FID score than [15, 29], CoroNetGAN outperforms [15] on

training time as illustrated in Figure 2. One thing to note
is that we compare CoroNetGAN quantitative results with
compression rates of 75% and 85 % using CycleGAN ar-
chitecture unlike 95% in Pix2Pix since it becomes difficult
to compress CycleGAN architecture beyond 85% due to its
huge model complexity.

DCGAN: We demonstrate the applicability of our ap-
proach on unconditional GAN. For the experimentation and
evaluating our approach, we adopt DCGAN [50] on CI-
FAR10 dataset [43] with original FID score of 45.8. As
per the results, we were able to achieve FID score of 56.3
with 50% compression ratio which outperforms the results
obtained with random pruning which achieves FID score of
68.8.
Inference Time Comparisons: Additionally, a compara-
tive analysis of the inference time is conducted between the
95% compressed model obtained from our approach and
OMGD [15]. Both the models are trained on Edges →
Shoes and evaluated using diverse smartphone chipsets and
data types. The inference results, as presented in Table 3,
demonstrate that our proposed model achieves superior in-
ference time performance compared to OMGD.

4.2.2 Qualitative Results

We further show visualization results of our proposed
method in comparison with state-of-the-art methodologies
in Figure 3, 4 and 5 demonstrating the effectiveness of
our approach. As illustrated, our method can generate
high-fidelity images comparable to other state-of-the-art ap-
proaches across multiple datasets. The reason we believe
our approach generates realistic images is that the compres-
sion state of our algorithm forces the generator to generate
visually plausible images while competing in the min-max
game.

4.2.3 Ablation Studies

Our proposed method for GAN compression shows promis-
ing results and outperform state-of-the-art methods on some
conditional GANs. We perform extensive ablation stud-
ies to further demonstrate the effectiveness of hypernet-
works on GAN compression on U-Net based architecture
for Pix2Pix.

We tried exhaustive hyperparamter search and fine-
tuning the learning rate. All the modifications result in a
very negligible change of overall FID score. We also en-
abled a learning rate scheduler to check the improvement in
model performance but quantitatively, no major change was
observed. We also tried increasing the layer structure of the
hypernetwork employed by increasing the dimension of the
embedding space. However, this led to an increase in the
training time with a small change in the overall FID score.



Model Dataset Paper Params(M) FLOPs(G) MACs(G) FID

Pix2Pix Edges→ Shoes

Original [16] 54.4 – 18.6 34.31
Region-Aware [28] 13.61 (4.00×) 1.56 – 77.69±3.14
Wavelet KD [27] 13.61 (4.00×) 1.56 – 80.13±2.18
DMAD [47] 2.13 (25.5×) – 2.99 (6.2×) 46.95
OMGD [15] 3.404 (16.0×) – 1.219 (15.3×) 25
CoroNetGAN(75%) 13.225 4.8879 – 39.1
CoroNetGAN(95%) 4.721 1.2551 – 54.3

CycleGAN

Horse→ Zebra

Original [23] 11.3 – 56.8 61.53
Region-Aware [28] 1.61 (7.08×) 7.29 – 60.01±5.22
Wavelet KD [27] 1.61 (7.08×) 7.29 – 61.65±4.73
DMAD [47] 0.42 (26.9×) – 3.97 (14.3×) 62.41
Teachers Do More Than Teach [29] – – 2.56 53.48
GAN Compression [44] 0.34 (33.3×) – 2.67 (21.2×) 64.95
Revisiting Discriminator in GAN Compression [48] – – 2.40 59.31
OMGD [15] 0.137 (82.5×) – 1.408 (40.3×) 51.92
CoroNetGAN(75%) 2.685 0.217 – 57.7
CoroNetGAN(85%) 1.670 0.1347 – 60.9

Zebra→ Horse

Original [23] 11.3 49.64 – 138.07±4.01
Region-Aware [28] 1.61 (7.08×) 7.29 (6.80×) – 137.03±3.03
Wavelet KD [27] 1.61 (7.08×) 7.29 (6.80×) – 138.84±1.47
DMAD [47] 0.30 (37.7×) – 3.50 139.3
CoroNetGAN (75%) 2.685 0.217 – 32.3

Summer→Winter

Original [23] 11.3 – 56.8 79.12
DMAD [47] 0.24 (47.1×) – 3.18 (17.9×) 78.24
OMGD [15] 0.137 (82.5×) – 1.408 (40.3×) 73.79
Auto-GAN [49] – 4.34 – 78.33
CoroNetGAN (75%) 2.685 0.217 – 72.3
CoroNetGAN (85%) 1.670 0.1347 – 74.7

Table 1. Performance comparison of CoroNetGAN with state-of-the-art algorithms on Pix2Pix and CycleGAN architectures. It can be
observed that our approach achieves best FID with CycleGAN on Zebra → Horse and Summer → Winter datasets. Our results also
outperform [28, 27, 47, 11, 48] and achieve competitive FID on Horse → Zebra dataset. We also achieve second best FID score on
Edges → Shoes dataset beating the results of [28, 27, 47].

Model Dataset Method Params(M) FLOPs(G) FID

Pix2Pix Edges→ Shoes

Original [16] 54.41 – 34.31
CoroNetGAN(75%) 13.225 (24.31%) 4.8879 (26.94%) 39.1

CoroNetGAN(G + D)(75%) Generator 13.321 (24.48%) Generator 4.8993 (27%) 38.6Discriminator 0.725 (26.23%) Discriminator 0.4767 (26.74%)

Table 2. Generator and Discriminator compression in CoroNetGAN in Pix2Pix architecture on Edges → Shoes dataset. It is evident that
compressing both generator and discriminator helps in improving the FID score.

Chipset d-type Model GPU Inference Time(CL)(ms)

Qualcomm Snapdragon SM8450

32-bit Ours 12.5419
OMGD [15] 15.3378

16-bit Ours 11.794
OMGD [15] 15.283

8-bit Ours 12.244
OMGD [15] 16.0191

Dimensity 1200-Max Octa

32-bit Ours 20.7268
OMGD [15] 21.1919

16-bit Ours 20.1961
OMGD [15] 20.9635

8-bit Ours 20.9972
OMGD [15] 21.541

Table 3. Shows inference time comparison between the model compressed by our methodology to 95% and the model compressed from
OMGD on different processors. Both the models are trained on Edges → Shoes dataset. The inference time is computed for the input
resolution of 256×256. The 8-bit quantization of the compressed model results in increased processing time due to the presence of a higher
number of quantization and de-quantization blocks compared to other data types.

Compression of both generator and discriminator:
To evaluate the significance of our approach, we design
a variant CoroNetGAN(G+D compression) which com-
presses both the generator and discriminator till 75% dur-
ing training. As mentioned in Table 2, this ablation results
in improving the FID score from 39.1 to 38.6 as the gener-
ator is able to generate better results while compression of
discriminator.

Generator finetuning through HyperNetwork: We also
tried to finetune the weights of the generator generated from
the compression state through the HyperNetwork itself, but
we did not find any significant improvements in the evalua-
tion metric.



5. Conclusion
In this work, we propose a novel method CoroNetGAN

for GAN compression based on differentiable pruning via
hypernetworks. Unlike other approaches having teacher de-
pendency overhead or post-hoc compression, the compres-
sion in our approach is done during the training time itself
giving us the benefit of reducing overall time. Experiments
conducted on conditional GANs (Pix2Pix, CycleGAN) sub-
stantiate the effectiveness of our proposed method where we
have been able to outperform various state-of-the-art tech-
niques on multiple datasets without compromising the vi-
sual quality of generated images. Our approach offers sig-
nificant improvement in training time and inference time as
compared to the existing methods. Additionally, we also
demonstrate the ability of our approach to be applicable for
unconditional GANs (specifically DCGAN). The applica-
bility on other unconditional GANs are open avenues for
future work.

References
[1] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron C. Courville,
and Yoshua Bengio. Generative adversarial nets. In NIPS,
2014. 1, 2

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 1

[3] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton.
Imagenet classification with deep convolutional neural net-
works. Communications of the ACM, 60:84 – 90, 2012. 1

[4] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. CoRR,
abs/1409.1556, 2015. 1

[5] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu,
Matthew Tang, Andrew G. Howard, Hartwig Adam, and
Dmitry Kalenichenko. Quantization and training of neu-
ral networks for efficient integer-arithmetic-only inference.
2018 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 2704–2713, 2018. 1

[6] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and
Hans Peter Graf. Pruning filters for efficient convnets. ArXiv,
abs/1608.08710, 2017. 1

[7] Zihao Xie, Li Zhu, Lin Zhao, Bo Tao, Liman Liu, and Wen-
bing Tao. Localization-aware channel pruning for object de-
tection. Neurocomputing, 403:400–408, 2020. 1

[8] Tianyun Zhang, Shaokai Ye, Kaiqi Zhang, Jian Tang, Wu-
jie Wen, Makan Fardad, and Yanzhi Wang. A systematic
dnn weight pruning framework using alternating direction
method of multipliers. In Proceedings of the European Con-
ference on Computer Vision (ECCV), pages 184–199, 2018.
1

[9] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou,
Antoine Chassang, Carlo Gatta, and Yoshua Bengio. Fitnets:
Hints for thin deep nets. arXiv preprint arXiv:1412.6550,
2014. 1

[10] Guobin Chen, Wongun Choi, Xiang Yu, Tony Han, and Man-
mohan Chandraker. Learning efficient object detection mod-
els with knowledge distillation. Advances in neural informa-
tion processing systems, 30, 2017. 1

[11] Angeline M. Aguinaldo, Ping-Yeh Chiang, Alex Gain,
Ameya D. Patil, Kolten Pearson, and Soheil Feizi.
Compressing gans using knowledge distillation. ArXiv,
abs/1902.00159, 2019. 1, 2, 8

[12] Hanting Chen, Yunhe Wang, Han Shu, Changyuan Wen,
Chunjing Xu, Boxin Shi, Chao Xu, and Chang Xu. Distilling
portable generative adversarial networks for image transla-
tion. In AAAI, 2020. 1, 2

[13] Haotao Wang, Shupeng Gui, Haichuan Yang, Ji Liu, and
Zhangyang Wang. Gan slimming: All-in-one gan com-
pression by a unified optimization framework. ArXiv,
abs/2008.11062, 2020. 1, 3

[14] Yuchen Liu, Zhixin Shu, Yijun Li, Zhe L. Lin, Federico
Perazzi, and S. Y. Kung. Content-aware gan compression.
2021 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 12151–12161, 2021. 1, 3

[15] Yuxi Ren, Jie Wu, Xuefeng Xiao, and Jianchao Yang. On-
line multi-granularity distillation for gan compression. 2021
IEEE/CVF International Conference on Computer Vision
(ICCV), pages 6773–6783, 2021. 2, 6, 7, 8

[16] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A.
Efros. Image-to-image translation with conditional adver-
sarial networks. 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 5967–5976, 2017.
2, 5, 7, 8

[17] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao,
Jan Kautz, and Bryan Catanzaro. High-resolution image syn-
thesis and semantic manipulation with conditional gans. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 8798–8807, 2018. 2

[18] Orest Kupyn, Volodymyr Budzan, Mykola Mykhailych,
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