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Abstract

In the past years, the application of neural networks
as an alternative to classical numerical methods to solve
Partial Differential Equations has emerged as a potential
paradigm shift in this century-old mathematical field. How-
ever, in terms of practical applicability, computational cost
remains a substantial bottleneck. Classical approaches try
to mitigate this challenge by limiting the spatial resolution
on which the PDEs are defined. For neural PDE solvers, we
can do better: Here, we investigate the potential of state-
of-the-art quantization methods on reducing computational
costs. We show that quantizing the network weights and
activations can successfully lower the computational cost
of inference while maintaining performance. Our results
on four standard PDE datasets and three network architec-
tures show that quantization-aware training works across
settings and three orders of FLOPs magnitudes. Finally, we
empirically demonstrate that Pareto-optimality of computa-
tional cost vs performance is almost always achieved only
by incorporating quantization.

1. Introduction

In many scientific fields, mathematical models of ob-
served phenomena are expressed in terms of Partial Differ-
ential Equations, with the solution commonly represented
by a function of a single time variable and one or more spa-
tial variables. While many PDEs can be described com-
pactly (e.g. the famous Schrödinger’s equation from quan-
tum physics, or Navier-Stokes’ equations from fluid dynam-
ics) it is usually impossible to write down explicitly the
formulas for their exact solutions. Rather, there is a vast
amount of scientific research on methods to numerically ap-
proximate solutions.

When it comes to practical applications, computational
cost and available resources play a significant role in this
field of research. For most methods a natural trade-off oc-
curs where one may use available resources to either speed
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up the computation, or increase the resolution on which the
PDE is defined, leading to a slower but more accurate result.
This latter strategy is of particular interest for PDEs that
are highly non-linear and potentially exhibit chaotic behav-
ior. Small eddies in a turbulent fluid may, for example, be
overlooked when the spatial resolution is too low, leading
to increasing errors in the solution function over time. One
of the most important fields where computational resources
form a bottleneck is climate prediction. The challenge of
determining how many degrees the planet will warm over
the next decades is a computational one, with supercomput-
ers running massive ensemble-type methods. Insufficient
resolution is quite often the main cause for sub-optimal
modeling accuracy [21, 1, 16]. Indeed, over time climate
models have become better for a large part simply because
the resolution of the grid that they are defined on was al-
lowed to increase, due to more efficient computation and
more available resources [24, 26, 11].

It is precisely in this context of the computational cost of
the traditional solvers that neural PDE solvers are becoming
an interesting alternative. A single forward pass in a neural
network is extremely fast compared to the iterative solving
procedure of classical methods, and most of the operations
are large matrix multiplications that can be easily handled
by GPUs. While a neural network does need training first,
possibly requiring data generated by classical solvers, its
efficiency benefit comes from “recycling”: After training
is complete, the neural network has learned to generalize
to different initial conditions, whereas conventional solvers
only solve the PDE for one specific configuration of initial
conditions at a time. In practice, a deep learning weather
model would have to be trained only once, but could then be
applied every day to predict the next day’s weather. Further-
more, when training data is sufficiently abundant in the real
world, using that data directly comes with the added advan-
tage that complex phenomena do not need to be first accu-
rately modeled. Indeed, neural PDE solvers trained on real
weather data alone have shown promising results [3, 7, 16].

Our goal is not to improve on state-of-the-art models in
the conventional sense. Rather, our starting point is to bor-
row from existing networks and architectures and focus on
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their reducing their inference cost. With neural PDE solvers
becoming mainstream for practical use, this measure be-
comes more important than test loss alone. Our contribu-
tion is in finding the optimal way to deal with the loss and
computational cost trade-off. There are several orthogonal
approaches to achieve lower computational costs. On the
one hand, as in classical PDE solvers, the foremost way
to make computation manageable is to reduce the resolu-
tion on which the PDE is defined. On the other hand, deep
learning researchers have developed a variety of different
techniques specifically for neural networks, most notably
quantization, the focus of this work. Overall, we make the
following contributions:

• We provide an evaluation of 3 neural network-based
PDE solvers [9, 17, 6] under 5 weight quantization sce-
narios. We use state-of-the-art quantization methods to
provide exemplary benchmarks on 4 of the most com-
mon datasets.

• We are the first to investigate both spatial resolu-
tion and model (weights and activations) resolution si-
multaneously as hyper-parameters in designing neural
PDE-solvers. We develop a hybrid approach of ap-
plying quantization and modifying spatial resolution
depending on the problem to achieve compute- and
accuracy-optimal results.

• We provide an extensive analysis of the trade-off be-
tween computational cost and errors for different quan-
tized models and demonstrate that a certain level of
quantization is almost always necessary to be Pareto-
optimal on the accuracy-cost curve.

2. Related Works

Neural PDE solvers. There are already many deep learn-
ing methods that aim to solve PDEs [6, 23, 9, 4, 5, 20, 10].
We base our research on the most common neural PDE
surrogate architectures, namely the Fourier Neural Opera-
tor [17], UNet [23, 9] and a type of Transformer [6]. In
terms of datasets, there are two recent larger-scale attempts
at proper benchmarking of the field, namely PDEArena [9]
and PDEBench [27]; from both of which we borrow our
training and evaluation datasets.

Quantization. With regards to quantization methods we
rely on AIMET [25]1, which provides state-of-the-art quan-
tization techniques. In particular, we utilize Quantization
Aware Training [12, 13], utilizing the straight-through esti-
mator [2] to approximate gradients of rounding operators.
We allow quantization ranges to be trainable parameters as
well, as in [8].

1AIMET is a product of Qualcomm Innovation Center, Inc. (BSD-3)

Low precision PDE solving. Recently, there has been in-
creasing interest in running classical methods for solving
climate models with lower precision as well. In [14] re-
duced precision of Float32 and Float16 has been used, as
opposed to the standard precision of Float64. However,
these solvers are based on traditional approaches, and not
on neural networks.

In contrast to previous PDE surrogates, i.e. (deep learn-
ing) functions that aim to approximate the original PDE so-
lution, we especially care for computational cost. While it
is generally investigated that quantization decreases the ac-
curacy of deep learning models as well as that standard PDE
solvers’ accuracy depends on their grid size, we explicitly
compare both techniques in terms of how much they reduce
computational costs. To make this possible we take a par-
ticular interest in the cost-loss trade-off of both techniques
separately as well as their combined effects. Also, while a
classification algorithm may exhibit a clear breaking point
at which it can no longer accurately predict the majority of
correct labels, the prediction of a PDE solution is measured
in terms of (mean squared) errors between functions. As
such there is no clear definition of what a “correct” pre-
diction is, and consequentially there is no clear measure of
when a PDE surrogate is successful. This means that a wide
regime of models of varying qualities becomes interesting
to investigate, both in the low-cost as well as the low-loss
regions of the cost-loss trade-off.

3. Method
3.1. Theoretic background and notations

As we work with synthetic data, we are given numeric
solutions to a given known PDE. Let X ⊂ Rd be a spa-
tial domain and [0, T ] be a time window on which u :
X × [0, T ] → Rn is the solution to the partial differential
equation

∂u

∂t
= F

(
x,u,

∂u

∂x
,
∂2u

∂x2
, . . .

)
, (1)

with initial condition u0(x) at time t = 0 and boundary
conditions defined by the operator B[u](t,x) = 0 when u
is on the boundary ∂X of the domain X . Here F can be
any function, though we specify the precise form for differ-
ent datasets in the Supplementary Information (SI). Assume
that at some time t, u(t,x), as well as prior values of u, are
known. Let τ > 0 be some step-size with t + τ < T . We
can then try to predict one time step into the future by

u(t+ τ,x) = u(t,x) +

∫ t+τ

t

∂u(t,x)

∂t
dt. (2)

∀t ∈ [0, T − τ ],x ∈ X

Given that theoretically the value of u(t,x) determines,
through its spatial derivates and the PDE, all future values, a



first attempt at defining a useful operator may be to replace
the right-hand side of the above equation by an operator Fτ

such that

u(t+ τ,x) = Fτ [u(t,x)] ∀t ∈ [0, T − τ ],x ∈ X, (3)

indeed ignoring values of u(t′,x) for t′ < t. We are then
interested in approximating this operator Fτ by a neural net-
work G. However, in practice the spatial and time domains
are discretized on regular grids X ⊂ X and T ⊂ [0, T ] with
|X | = Nx and |T | = Nt. Crucially, when u(t,x) is defined
on X rather than the full domain X , its spatial derivatives
are no longer determined, breaking the connection from
u(t,x) to ∂u

∂t through the PDE F . Consequentially, the full
future cannot be exactly determined from u(x, t) defined
on X alone. Note that even knowing the spatial derivatives
exactly on the grid X at time t is not enough, as they are
required at all later times as well if we are to solve the in-
tegral in equation 2. Now the values of u(x, t′) for t′ < t
may still provide helpful information, and we may want to
include those as inputs in our neural network approximation
of F . One can think for example that such values may al-
low the backward difference approximation of ∂u(t,x)/∂t
as an alternative to using the PDE F with the approximated
spatial derivatives.

Incorporating multiple past time steps, the neural net-
work approximation is given by the operator G, defined by

u(tn + τ,x) = Gτ [(u(ti,x))
n
i=1] (4)

for ti, tn + τ ∈ T ,x ∈ X .

In what follows we assume u to be defined on T × X .

3.2. Training setup

Let the true u(x, t) be defined everywhere on our grid
T × X . For each such trajectory u(x, t) in a mini-batch
we first randomly select a starting time, after which we take
a fixed set of subsequent input indices Tinput ⊂ T , and tar-
get indices, Ttarget ⊂ T . We have Nt − |Tinput| input steps
available, but we are only training on |Ttarget| time steps.
Therefore, to make full use of the available data we repeat
each epoch ⌈(Nt − |Tinput|)/|Ttarget|⌉ times, selecting new
random indices every time so that in expectation the full
dataset is used every epoch.

For |Ttarget| > 1 outputs we may use either temporal
bundling (letting G output multiple subsequent time steps
in one forward pass, see for instance [5]), or a recurrent ap-
proach, where the last outputs are fed to the network as new
inputs, or a combination of both. Similar to [5] we may ap-
ply pushforward, meaning that we only backpropagate the
loss through the last part of the target indices.

Let u(t,x) be the true targets and û(t,x) the corre-
sponding neural network predictions for (t,x) ∈ Ttarget×X .

The loss, assuming no pushforward is applied, is then de-
fined by∑

x∈X
∑

t∈Ttarget

∑Nfields
i=1 ∥ui(x, t)− ûi(x, t)∥22

|X ||Ttarget|Nfields
, (5)

where Nfields is the dimensionality of u(t,x).

3.3. Quantization

By default, the weights and activations of the neural net-
work G are defined as floating point numbers using 32-bit
precision. We can, however, store the weights and acti-
vations as integer values, to make (matrix) multiplications
much more efficient. A floating-point weight matrix W can
be expressed as a single scalar multiplied by a matrix of in-
teger values, and a remainder term ϵ.

W = sW ·Wint + ϵW

Similarly a vector of activations v may be expressed as

v = sv · (vint − zv) + ϵv,

where we have added a zero-point zv to allow assymetric
quantization of the activations. Matrix-vector multiplica-
tion now becomes:

Wv = (sW ·Wint + ϵW )(sv · (vint − zv) + ϵv) (6)
= sW svWintvint − sW svWintzv + error terms

As the second term depends only on the weight matrix W
and quantization parameters sW , sv and zv , it can be com-
puted beforehand. If we then ignore the error terms, only
the first term is remaining during inference: a matrix-vector
multiplication of integer values. For a given bitwidth b,
there are 2b possible integer values to choose from. Given a
zero-point z and scale factor s, the quantization grid limits
qmin and qmax are then determined by −sz and s(2b−1−z).
Any values lying outside this range will be clipped to its
limits, incurring a clipping error. The full quantization
function q(·) is given by

xint = q(x; sx, zx, b) = C
(⌊

x

sx

⌉
+ zx; 0, 2

b − 1

)
, (7)

where ⌊·⌉ is the round-to-nearest operator and C is a clamp-
ing function defined as:

C(x; a, c) =


a, x < a

x, a ≤ x ≤ c

c, x > c

(8)

To get a quantized network we start with a pre-trained
floating point network and then optimize for the values of



s and z that minimize the error terms that result from both
clipping and rounding errors. This happens independently
per layer, using arbitrary dummy data or training data in
the forward pass. Next, we also apply Quantization Aware
Training (QAT). This is a fine-tuning step, further training
the quantized network using stochastic gradient descent on
the original loss function. Training with quantized weights
and activations is possible using the straight-through esti-
mator [2].
Noting that the majority of the computational cost comes
from (matrix) multiplications, we only quantize the inputs
and weights of neural network layers that are based on ma-
trix multiplications, and let the outputs (together with the
biases) be accumulated in floating point format.

3.4. Changing resolutions

We change resolutions using bilinear interpolation for
the 2D datasets and linear interpolation for the 1D datasets.
We leave experimentation with learnable resolution opera-
tors for future research. However, we have chosen (bi)linear
interpolation deliberately for its speed, which is the prime
reason to change resolutions in the first place. If the net-
work is defined on a different resolution than the data, we
apply resolution-altering operators before and after it dur-
ing both validation and training, thus also backpropagating
losses through the resolution-altering operators.

3.5. Model cost computation

The proxy we use for model inference efficiency is
based on counting multiplication and addition operations
per layer. For a given quantized network module with
M multiplication and A addition operations, and integer
bitwidths of bw, ba for the weights and activations respec-
tively, the cost is defined as

M · bw · ba +A · ba,

where multiplications are considered between weights and
inputs, and addition operations only apply to outputs. (We
do not quantize bias vectors.) The full network cost is the
sum of the cost over all layers. If a network works on a
different resolution, we also take the costs of altering the
resolution before and after the forward pass into account.
Details on the number of multiplications and additions per
layer are provided in the code. We have observed no in-
creased losses from quantizing any parameter to bitwidth
16 under any circumstance, and therefore assume that all
floating point operations can be harmlessly replaced by their
Int16 counterpart. This enables us to measure the computa-
tional cost of non-quantized operations as if they were Int16
operations and to generally use fixed-point integer opera-
tions as a measure throughout all our comparisons of differ-
ent model inference costs. To find the number of multiplica-
tion and addition operations in a given module we use [22],

slightly adapted for our needs. The deepspeed model pro-
filer lets you choose either FLOPs or MACs as a measure
for module cost. We use the fact that one MAC operation
consists of a single addition and multiplication and assume
that the remaining operations are all addition-type in terms
of complexity. Hence, when deepspeed outputs X FLOPs
and Y MACs for a certain network module, we know that
there are Y multiplications and X − Y remaining FLOPs
that we consider additions. A few exceptions and special
cases, as well as deliberate deviations from deepspeed, can
be found in Appendix A.3.

4. Experiments
We use three popular neural-surrogate architectures:

FNO, UNet and Transformer, applied to datasets based on
4 PDEs: Diffusion-Sorption (1D), Burgers’ (1D), Navier-
Stokes (2D) and Darcy (2D). The datasets are described in
more detail in Appendix A.1. We show benchmark results
of the original networks, as well as the results of the net-
works after quantization and scaling. For each result, we
present the test loss as well as the computational cost of
inference. We first compare quantization and reduction of
spatial resolution as two orthogonal approaches to decrease
computational cost, showing their impacts separately. Fi-
nally, we apply both methods simultaneously on higher-
resolution versions of the datasets.

4.1. Implementation

For a given spatial resolution, we first train the floating
point network in a regular fashion, i.e., aiming for the low-
est possible loss. We use Adam [15] with weight decay and
a cosine annealing learning rate scheduler [18] with a linear
warmup. Next, we quantize the network, first finding the
best quantization parameters using AIMET’s built-in opti-
mization tool on 20% of the training data. Then we fine-
tune the quantized network, training again using Adam and
cosine annealing with linear warmup, but without weight
decay, with a smaller learning rate, and for fewer epochs.
Specific parameters for training and fine-tuning are pro-
vided in Appendix A.2, as well as the length of the input
and output trajectories, i.e., the number of time steps used.
If a model that operates on a different resolution than the
original data resolution is unrolled several times, i.e., when
training and testing on a longer output trajectory, the res-
olution is only altered after the first input, and after the
output just before the loss is computed: intermediate val-
ues that are fed back into the network are kept in the net-
work resolution. The quantization regimes used through-
out the experiments are: [w4a4, w4a8, w8a8, w8a16],
with wXaY refering to quantizing weights to bitwidth X
and activations to bitwidth Y.2. We do not quantize the

2We found it better to use a higher activation bitwidth than weight
bitwidth when using different bitwidths for weights and activations



Val. MSE loss FNO UNet Transformer

Diff-Sorp (1D) 4.12e-8 4.26e-8 4.33e-8
Burgers’ (1D) 5.62e-4 2.19e-3 1.40e-3
Navier-Stokes (2D) 2.85e-3 1.10e-3 5.36e-3
Darcy (2D) 1.52e-2 6.92e-3 8.47e-3

Table 1: Overview of unquantized model performances.
We report Mean Squared Error (MSE) loss for the unquan-
tized neural networks that we analyze in this paper.

FLOPS (in millions) FNO UNet Transformer

Diff-Sorp (1D) 15 7 4
Burgers’ (1D) 21 14 9
Darcy (2D) 150 34 69
Navier-Stokes (2D) 210 181 118

Table 2: Model FLOPS across different datasets. In this
paper, we evaluate how we can increase the efficiency of
models that span almost three orders of magnitude in FLOP
inference cost.

first and last layer of each model, having observed that this
improves performance with negligible impact on inference
cost. Unless mentioned otherwise, we use scaling regimes,
i.e., factors by which we scale input data resolution, of
[0.7, 0.5, 0.3, 0.2]. For 2D data, we scale both dimensions
by this factor, thus the actual number of spatial points de-
pends quadratically on the scaling factor.

4.2. Results

To briefly introduce the models and datasets3 used we
present an overview of the unquantized, standard-resolution
models’ loss and inference cost on all datasets in Tables 1
and 2. Here we use the number of floating point operations
(flops), as taken from deepspeed [22], directly as a measure
of model inference cost. We note that, as there is no clear
measure of when a PDE surrogate is successful (compared
to e.g. classification algorithms), a wide regime of varying
MSE losses and costs is interesting to investigate. In Ta-
bles 1 and 2 we can see that the PDEs have vastly different
possible solutions in terms of MSE and cost.

4.2.1 Quantization compared to reducing resolution

In what follows we refer to models being applied on reduced
resolution as “scaled” models, although it is actually their
input data that is scaled. Implicitly such models are smaller
as a result of them being applied on lower-resolution data,
but we do not change hyperparameters like layer width or
number of layers.

3Datasets were solely downloaded and evaluated by QUVA.
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Figure 1: Quantization for more robust cost-reduction.
We compare model quantization against scaling spatial res-
olution as ways to reduce compute costs. We show the cost
in FLOPS versus the Mean Squared Error (MSE) across 4
PDE datasets and three model types.

The results of our first set of experiments are presented
in Figure 1, where we compare quantization against spatial
scaling across models and architectures. The plots can be
interpreted as follows: If the triangles (quantized models)
lie below the circles (scaled models), quantization is a more
robust way to reduce inference costs. We observe this is



Figure 2: Spatial resolution reduction on Darcy PDE. Ex-
ample of a scaled FNO model on Darcy data. For clarity,
we represent the full forward pass of what we describe as a
“scaled model” by the red arrows. Note that for this PDE,
the true output, i.e. the target, is actually quite blurry to be-
gin with, making the substantial lowering of resolution that
is applied appear less problematic.

the case for all model and dataset combinations, except for
the U-Net on the Darcy dataset. The reason why scaling
is relatively more successful on the Darcy dataset can be
understood by looking at some examples. Comparing Fig-
ure 3 to Figure 2, the Darcy targets are already quite blurry.
Generally, the dataset appears less sensitive to details in the
input, making it potentially less likely that important infor-
mation is lost in the process of changing spatial resolution
in a forward pass.

4.2.2 Combining quantization and scaling

The datasets we use have been generated in a higher reso-
lution than is actually used in the experiments. Note that
this is common practice: the numerical solvers are applied
to a much finer grid to make sure that the data is a relatively
accurate representation of the underlying PDE [9, 27, 17].
However, we now consider the hypothetical situation where
one is indeed interested in minimizing loss on the higher
resolution. Results for these experiments are found in Fig-
ures 4.

Figure 3: Quantization retains details across time. Ex-
ample of two different UNet prediction unrollings on
Navier-Stokes data. The scaled version uses a scaling factor
of 0.3, the quantized version is based on w4a8 quantiza-
tion. The left column (t = 0) represents the last input time
step used by the models, the other columns are predictions.
Both models have similar inference costs, yet we see the
quantized model showing more detailed predictions.

First, we find that when the original resolution is rela-
tively high, reducing it may not affect performance very
much for some of these datasets (e.g., Figure 4a), and yields
a good reducing in compute cost. However, as more scal-
ing is applied, we note that switching to a lower-bitwidth
quantization regime quickly becomes better than scaling
alone. In particular, we find that across almost all PDEs and
neural PDE solvers, the cost vs error Pareto-optimal curve
is achieved by quantization. In other words, we find that
quantization is another “knob” that one can turn to reduce
costs, besides only changing resolution. Not only is this
“knob” available, but the results show that is essential for
optimal efficiency. Note that the particular choice of how
much quantization and how much scaling ought to be ap-
plied depends on the operating point, that can, for example,
be specified by a lower bound on the MSE.

5. Discussion and conclusion
We have shown that quantization can be an effective so-

lution to make neural PDE-solvers more cost-efficient. In
particular, it can achieve better results in terms of predic-
tion loss vs inference cost trade-off than the conventional
method of making computational cost manageable, which
is reducing spatial resolution. To some extent the results
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(c) 2D Navier-Stokes Equations.
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Figure 4: Optimal weight and activation quantization levels yield Pareto-optimal performances. We vary quantization
levels and spatial scaling factors and observe Pareto-optimal performances compared to non-quantized (gray) models. The
four points on each line correspond to different scaling levels; the right-most point is the original resolution.



Figure 5: Two differently quantized models unrolled for
more timesteps. Example of two different UNet prediction
unrollings on Navier-Stokes data.

depend on the type of data at hand: If the original data is of
extremely, and perhaps unnecessarily, high resolution, there
may be at first a clear benefit to be obtained by simply re-
ducing spatial resolution. However, we similarly find that
there is no increase in loss by quantizing network weights
and activations to Int16, with weights even quantized to
Int8 in some cases. We note that both cost-reducing meth-
ods, quantization and reducing spatial resolution, have a
certain breaking point, depending on the model and dataset
at hand, at which their effect on prediction loss increases
rapidly. Our results indicate that when one of these meth-
ods reaches its breaking point, one can further improve on
the loss vs inference trade-off by continuing with the other
method. To achieve Pareto-optimal solutions it is necessary
to apply both methods simultaneously.

In this paper, we have manually selected levels of quan-
tization and resolution scaling, showing empirically the im-

portance of quantization as a new knob that can be turned
to achieve better results for similar inference cost in exist-
ing models. However, in future research, we will investigate
how a neural PDE-solver network can automatically detect
the appropriate scaling or quantization levels to optimize
the prediction loss vs inference cost trade-off. Another di-
rection for future research is to experiment with real-world
weather and climate prediction data. Although our current
research is based on toy data, we actually expect the results
to be even more pronounced when working with real-world
data: The recurring theme (see for instance [21, 19, 1])
is that insufficient computational power inhibits the use of
higher data resolutions which would solve many modeling
problems and prediction inaccuracies. We propose quanti-
zation as a strategy to free up computational resources, al-
lowing models to be defined on these desired higher resolu-
tions.
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Mathias Niepert. Pdebench: An extensive benchmark for
scientific machine learning. Advances in Neural Information
Processing Systems, 35:1596–1611, 2022.



A. Appendix
A.1. PDEs and Data

We train our neural networks on datasets that contain so-
lutions u for different boundary and initial conditions so
that it is able to generalize across these conditions, without
the need for retraining. Datasets are obtained as follows:

• Generate a pair of initial conditions u0(x) and bound-
ary conditions B[u](t,x) = 0 and evaluate these val-
ues on the relevant subsets of our grid T × X .

• Use a conventional high-accuracy numerical solver to
obtain u(t,x) for all (x, t) ∈ T × X .

• Pick a series of input indices, and subsequent target
indices, from the time interval T , starting from a pos-
sibly randomly chosen location. The values of u(·,x)
at these indices will form the inputs and targets in our
training scheme.

Burger’s equation The Burger’s equation is a common
PDE that arises in fluid dynamics and nonlinear wave phe-
nomena. In 1D the PDE, given the domain that we use, is
given by

∂u

∂t
+ u

∂u

∂x
=

ν

π

∂2u

∂x2
, x ∈ (0, 1) t ∈ (0, 2] (9)

where u represents the speed of the fluid at a certain place
and time, and ν is the viscosity coefficient. The Burger’s
equation describes the conservation of mass and momentum
in a one-dimensional fluid flow, taking into account both
convection effects (u∂u

∂x ) and diffusion effects (ν ∂2u
∂x2 ).

We use the 1D Burger’s equation dataset from [27]. It
is defined with a spatial resolution of 1024, with periodic
boundary conditions, and temporal resolution of 200. The
dataset consists of 9000 train and 1000 test trajectories
started from samples of different initial conditions that
are formed using a superposition of randomly chosen
sinusoidal waves. A viscosity coefficient of ν = 0.001 is
used.

Darcy’s Law The steady state 2D Darcy flow equation is
a partial differential equation (PDE) that describes the flow
of fluid through a porous medium. We use the PDE and
domain expressed as

−∇ (a(x)∇u(x)) = f(x), x ∈ (0, 1)2, (10)

u(x) = 0, x ∈ ∂(0, 1)2,

where a(x) is a diffusion coefficient based on the per-
meability of the porous medium and the dynamic viscosity
of the fluid, u(x) represents the pressure of the fluid, and f

represents any external sources or sinks of fluid within the
domain. We set f to constant 1 and train an operator that
maps a(x) to the solution u(x).
We use the Darcy flow dataset from [17]. It is defined on
a spatial grid of 421 × 421. We use 1024 train elements
((a(x), u(x)) pairs) and 100 validation elements. Details
for how a(x) is randomly generated for each data element
can be found in [6].

Navier-Stokes equation The 2D Navier-Stokes Equation
and domain that we use for our experiments is given by

∂v(x, t)

∂t
= −v(x, t) · ∇v(x, t) + ν∇2v(x, t) (11)

− ∇p(x, t) + f(x), x ∈ (0, 32)2, t ∈ (0, 21].

It describes the flow of a fluid in terms of its velocity com-
ponents v, the viscosity ν, and a buoyancy term f . We as-
sume incompressibility, so ∇ · v = 0, and Dirichlet bound-
ary conditions (v = 0).
The dataset is taken from [9]. A viscosity of ν = 0.01 is
used, and a buoyancy factor of f = (0, 0.5)T . While gen-
erating the data, the pressure field p is solved first, before
subtracting its spatial gradients. In addition to the two ve-
locity field components a scalar field s(x) is introduced that
is being transported through the velocity field. Its evolution
is determined by

∂s

∂t
= −v(x, t)∇s, (12)

with Neumann boundaries ∂s
∂x = 0 on the edge of the do-

main. For more details, see [9, 4]. The full dataset consists
of 2080 train samples and 1088 test samples.

Diffusion-Sorption Equation The diffusion-sorption
equation models a diffusion process that is retarded by a
sorption process. The 1D PDE is given by:

∂u

∂t
= D/R(u)

∂2u

∂x2
x ∈ (0, 1) t ∈ (0, 500], (13)

where D = 0.0005 is the effective diffusion coefficient, and
R(u) = 1 + 2.16u−0.126 is the retardation factor hindering
the diffusion process. This equation is applicable to, for ex-
ample, groundwater contaminant transport.
The boundary conditions are u(t, 0) = 1 and u(t, 1) =
D ∂u

∂x (t, 1) The dataset, taken from [27], is discretized into
1024 spatial steps and 501 time steps. There are 9000 train
trajectories and 1000 test trajectories, each based on differ-
ent randomly generated initial conditions using u(0, x) ∼
U(0, 0.2) for x ∈ (0, 1).



Hyperparams DiffSorp Burgers’ N.S. Darcy

Epochs 200 200 100 400
QAT Epochs 100 50 50 100
Batch size 50 50 16 4
Learning rate 1e-3 1e-3 1e-3 5e-4
Weight decay 1e-6 1e-6 1e-6 1e-6
QAT learn. rate 1e-4 1e-4 1e-4 1e-4
Input steps 5 5 4 1
Output steps 5 5 1 1
Train steps 10 20 1 1
Test steps 10 20 1 1
Subsample t 2 5 1 1
Subsample x 32 16 2 8

Table 3: Dataset-related hyperparameters for all models per
experiment. The steps refer to consecutive time steps for the
time-dependent PDEs, while the Darcy PDE can optionally
be interpreted as having inputs at t = 0 and outputs at t = 1.

A.2. Hyperparameter specifications

We summarize the hyperparameters used per dataset in
Table 3.

In the second session of experiments we did not subsam-
ple the spatial grid, except for the Darcy dataset for which
we subsampled every 2 grid points. The first three scaling
levels applied in figure 4 correspond (from left to right) to
0.01, 0.02, 0.05 for the DiffSorp data, 0.02, 0.05, 0.1 for the
Burgers data, 0.1, 0.2, 0.5 for the Navier-Stokes data and
0.05, 0.1, 0.2 for the Darcy data. The loss measure used in
all datasets is the MSE as described in equation 5. How-
ever, for the Darcy dataset, we also normalize each element
in the sum by dividing by the squared targets, and take the
squared root of the resulting sum.

The UNet is taken from [9], but in order to make its size
comparable to the other models we use 16 hidden channels
for the Navier-Stokes dataset and 8 hidden channels for the
other datasets. The FNO model is taken from [17], using 4
layers, a width of 128, 32 modes for the 2D datasets, and 16
modes for the 1D datasets. The Transformer is taken from
[6]. It uses 6 encoder layers, 128 hidden channels and a
Galerkin attention type for the 2D datasets, and 4 encoder
layers, 32 hidden channels and Fourier attention type for the
1D datasets.

A.3. Inference Cost Calculation Details

We describe a few differences compared to the regular
deepspeed library [22]. Most standard deep learning opera-
tions rely on big matrix multiplications and as such deep-
speed outputs the number of MACs used in their corre-
sponding modules. On the other hand, there are some op-
erations that have no MACs, and deepspeed simply outputs

the number of FLOPs. However, because we care to differ-
entiate addition and multiplication operations for our proxy
measure of inference cost, we add some manual changes
to deepspeed so that multiplications are properly accounted
for.

• We assume bilinear interpolation to be three times the
cost of linear interpolation, and for linear interpolation
we assume 2 multiplications and 4 additions per output
point.

• The FNO model uses Fast Fourier Transforms, which
are not encountered for in deepspeed. To be able to
take these into account in our proxy for model in-
ference cost we assume a complexity of N⌈log2 N⌉
(additions and multiplications), which we divide by 2
when the real-valued FFT is used.

• In deepspeed no MACs are assigned to the einsum op-
erator. Although it can in theory represent various dif-
ferent types of computations, in our code we only use
it for basic matrix multiplications (in the FNO model).
We thus change the deepspeed output accordingly.


