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Abstract

Generative priors have been shown to be highly suc-
cessful in solving inverse problems. In this paper, we con-
sider quantized generative models i.e., the generator net-
work weights come from a learnt finite alphabet. Quantized
neural networks are efficient in terms of memory and com-
putation. They are ideally suited for deployment in a practi-
cal setting involving low-precision hardware. In this paper,
we solve non-linear inverse problems using quantized gen-
erative models. We introduce a new meta-learning frame-
work that makes use of proximal operators and jointly op-
timizes the quantized weights of the generative model, pa-
rameters of the sensing network, and the latent-space rep-
resentation. Experimental validation is carried out using
standard datasets – MNIST, CIFAR10, SVHN, and STL10.
The results show that the performance of 32-bit networks
can be achieved using 4-bit networks. The performance of
1-bit networks is about 0.7 to 2 dB inferior, while saving
significantly (32×) on the model size.

1. Introduction

Consider x ∈ R
n compressed to measurement y ∈ R

m,

m � n, through a linear or nonlinear measurement opera-

tor A. The problem is ill-posed since m � n, and infinite

solutions exist. Stated formally,

y = A(x), (1)

where A is the sensing operator. In compressed sensing, the

sensing operator is linear and involves a matrix multiplica-

tion: A(x) = Ax, whereas in compressed phase retrieval:

A(x) = |Ax|2. In neural network based sensing, A = Aφ

is a network with parameters φ.

The reconstruction of x from measurement y involves

two steps — enforcing measurement consistency and struc-

tural constraints. Let x̂ be the reconstructed signal, then first

step is to ensure the measurement consistency, i.e. Aφ(x̂)
has to be close to y in minimum �2-norm sense. The second

step imposes the constraint that x̂ has the desired structure,

which in our case, x̂ must be an image. We rely on quan-

tized generative models as an image prior to satisfy the con-

ditions from the second step.

Generative models for solving inverse problems: Gener-

ative models have been used to solve inverse problems [2,4,

6, 12–16, 33] and are shown to outperform the traditional

optimization methods using a small number of measure-

ments. Bora et al. enforced the constraint that the signal

x lies in the range-space of the pre-trained generator net-

work Gθ [4]. Yan et al. introduced meta-learning in the

context of compressed sensing to jointly optimize the gen-

erator weights and latent space [33]. Killedar et al. en-

forced sparsity in the latent space to obtain superior per-

formance over the state-of-the-art methods [14–16]. In a

survey paper, Zhao et al. discusses the use of generative

models for solving inverse problems [36] ranging from X-

ray computed tomography to synthetic aperture radar. Song

et al. used pre-trained diffusion models to solve the non-

linear inverse problems [28].

Quantization in neural networks: The downside with

neural networks is the large model size, and significant

computational requirement. Quantization of weights is a

promising strategy to reduce the overall model footprint and

to simplify arithmetic operations. Neural networks with

binary parameters and/or activations (BNNs) have been

shown to be promising for solving classification problems

[10, 11, 26, 35, 37], continual learning [21], language mod-

eling [9, 24], semantic segmentation [32], video processing

[23], compressed image recovery [27], etc. In the context of

generative modeling, Dong and Yang [7] use binary neurons

at the output layer of the generator network for modeling

discrete distributions. Using linear combinations of 2k bi-

nary values, Wan et al. were able to compress the generative

models effectively [29]. Wang et al. developed a variant of

the expectation-maximization (EM) algorithm for training

the quantized GANs [31]. By utilizing multiple compres-

sion techniques such as model distillation, channel pruning,

and quantization, GAN slimming method achieved 47× re-

duction in model size [30]. Andreev [1] experimented with

various quantization methods specific to StyleGAN, Self-

Attention GAN, and CycleGAN for efficient inference.
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Figure 1. The first row shows the distribution of quantized weights taken from a fully connected network used as the generator for

MNIST dataset. The second row shows the distribution of quantized weights from DCGAN generator employed in CIFAR10, SVHN, and

STL10 datasets. The presence of a few large weights in 4-bit networks resulted in their superior performance over the 1-bit counterparts.

2. Quantized Generative models as an Image
Prior for Solving Inverse Problems

In this paper, we use quantized generative models

(GθQ
) as an image prior. We investigate the performance-

quantization trade-off when the generator weights are quan-

tized to a low precision: 1, 2, 3, and 4 bits. We refer to the

quantized generative model as Q-GEN. The sensing opera-

tor Aφ is a neural network with parameters φ. We pursue

the following optimization objective:

min
z,θQ,φ

‖z‖0 s.t. y = Aφ(x), x = GθQ
(z). (2)

Solving for the optimal network parameters φ,θQ requires

minimizing an appropriate loss function. We define a joint

loss function that captures measurement inconsistency, iso-

metric properties in sensing network, and image gradient

loss. Consider the following optimization problem

min
z,θQ,φ

L = LG + LAφ
+ LGDL, s.t. ‖z‖0 ≤ s, (3)

where

LG = E
z
{‖y −Aφ(GθQ

(z))‖22},
LAφ

= E
x1,x2

{‖Aφ(x1)−Aφ(x2)‖2 + δ − γ‖x1 − x2‖2},

LGDL =
∑

i,j

‖∇ix−∇iGθQ
(z)‖22 + ‖∇jx−∇jGθQ

(z)‖22,

with δ and γ being the parameters in set-restricted eigen-

value condition (S-REC) loss LAφ
[33]. The objective func-

tion is a sum of three terms: LG ensures measurement con-

sistency; LAφ
, the S-REC loss, restricts the isometry in

the sensing operator Aφ; and the gradient difference loss

LGDL promotes reconstructions that are sharp [20]. We

explain the importance of S-REC loss next. The signals

x1 and x2 are sampled from the true data distribution and

Algorithm 1: Training a quantized generative

model (Q-GEN) and nonlinear sensing network.

Input: Training data {xi,yi}Ni=1, sensing operator Aφ,

learning rate α, number of iterations T , and sparsity s
Initialization: Full-precision generator network

parameters θ
repeat

θQ ← Q(θ) as per LinearQuantize method [11]

for i = 1 to N do
Initialize z
for t = 1 to T do

Compute z ← Ps (z − β∇zf(y, z))
end for

end for
Compute L per Eq. (3)

Update θ per Eq. (6)

Update φ ← ADAM(φ, ∇φLAφ
)

until iteration limit

generator network GθQ , respectively. When x1 is differ-

ent from x2, we prefer that the corresponding measure-

ments are also different. LAφ
ensures that this property

holds by penalizing the difference between ‖x1−x2‖2 and

‖Aφ(x1)−Aφ(x2)‖2. This loss is inspired by the restricted

isometry condition from compressed sensing.

The sparsity constraint in the latent representation z re-

sults in the range-space of the generator network GθQ
to

be composed of a union-of-manifolds [15, 16]. The opti-

mization of z involves minimizing LG while satisfying the

feasibility condition ‖z‖0 ≤ s. This approach is referred

to as sparsity-driven latent-space sampling (SDLSS). An

analysis of the distribution of the learned quantized weights

from different quantized models is provided in Fig. 1. These

weights are obtained after training the quantized generated

models on MNIST and CIFAR-10 datasets.
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Figure 2. The flow diagram for updating the latent space variable z through proximal GD method.

3. Meta-Learning for Quantized Generative
Image Prior

Inspired by [33], we use the meta-learning framework

to jointly optimize the parameters φ of the full-precision

sensing network, θQ of the coarsely quantized generative

model, and the latent space variable z. Meta-learning, or

learning to learn is a training strategy used to improve the

performance of models that involve multiple tasks [8].

The sparse code z is learned via proximal gradient-

descent, whereas the sensing network parameters φ are

updated using the ADAM optimizer [17]. The quantized

weights of the generator θQ are updated using the straight-

through-estimation method (STE) [3].

The optimization problem for obtaining the sparse code

is given by

min
z

f(y, z) = ‖y −Aφ(GθQ
(z))‖22 s.t. ‖z‖0 ≤ s.

(4)

The solution to the above problem can be obtained using the

proximal gradient method, and the update equation is given

by

z ← Ps (z − β∇zf(y, z)) , (5)

where Ps(·) is the hard-thresholding operator that sets all

entries in the vector to zero apart from the s-largest entries

in magnitude, and β > 0 is the step-size parameter.

The optimization of the quantized parameters of the gen-

erator network follows a standard STE procedure [3]. The

full-precision weights are also stored and used for comput-

ing the quantized weights at the beginning of every forward

pass. We use the LinearQuantize method [11] to obtain

the low-precision weights from the full-precision weights.

In the forward pass, a generator with coarsely quantized

weights is used for reconstructing the image. The optimiza-

tion cost contains the measurement loss LG, S-REC loss

LAφ
and image gradient difference loss LGDL. The gra-

dients ∇θL|θ=θQ
are computed at the quantized weights

and are used for updating the full-precision weights θ. The

weight updates are performed using ADAM [17] optimizer:

θ ← ADAM(θ,∇θL|θ=θQ
, α, β1, β2), (6)

where α is the learning rate and β1, β2 are the ADAM op-

timization variables (default values of 0.9, 0.999, respec-

tively). The procedure for updating the sparse latent repre-

sentation, training the quantized generative model and sens-

ing network is given in Algorithm 1.
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Figure 3. Performance trends of quantized versus full-precision

models on MNIST dataset. The first row corresponds to m = 25,

and the second row corresponds to m = 100

4. Experimental Results

We perform experimental validation on standard datasets

MNIST [19], CIFAR10 [18], SVHN [22], and STL10 [5].

The generator network and sensing network in the case of

MNIST are constructed using a two-layered feed-forward

neural network with 500 neurons in each hidden layer and

leaky ReLU as the activation. In contrast, a standard DC-

GAN [25] generator is used for CIFAR10, SVHN, and

STL10 datasets, while a convolutional network with eight

layers is used for sensing. Two objective metrics namely,

peak signal-to-noise ratio (PSNR = −10 log(‖x−Gθ(z)‖22)
dB), with peak value considered to be unity, and the struc-

tural similarity index metric (SSIM) [34] are used for com-

paring the performance of different models.

Figure 3 shows the variability in the performance of

different models with sparsity in latent space for two differ-

ent compression scenarios. The sparsity level in the latent

space is denoted by s, i.e. ‖z‖0 ≤ s. The quantized models

exhibit a close performance with 32-bit models, while the

4-bit quantized models having a superior performance over

the 1-bit quantized models in both PSNR and SSIM metrics.

One-bit quantization reduces the model size by 32×, while

trading-off ∼ 2 dB PSNR and ∼ 0.07 SSIM. The two-bit

network has a superior performance over the one-bit coun-

terpart. The performance of the 3-bit and 4-bit models is

comparable to that of the 32-bit model for s < 100.
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Table 1. Performance comparison of quantized versus full-precision models. The 4-bit models perform close to 32-bit SDLSS models

across the datasets. The 32-bit DCS model outperforms the 32-bit SDLSS and its quantized counterparts in STL10 and SVHN datasets.

The 32-bit SDLSS model has a superior performance over 32-bit DCS model on CIFAR10 dataset. The 4-bit SDLSS model performs

on-par with the 32-bit DCS model on the CIFAR10 dataset.

PROPOSED METHODS LITERATURE

1-BIT 2-BIT 3-BIT 4-BIT 32-BIT 32-BIT

SDLSS SDLSS SDLSS SDLSS SDLSS DCS

DATASET (PSNR, SSIM) (PSNR, SSIM) (PSNR, SSIM) (PSNR, SSIM) (PSNR, SSIM) (PSNR, SSIM)

CIFAR10 22.07, 0.6787 22.29, 0.6961 22.51, 0.7036 22.57, 0.7060 22.84, 0.7259 22.60, 0.7094

SVHN 31.71, 0.9213 32.06, 0.9201 33.26, 0.9370 33.65, 0.9414 34.01, 0.9549 34.63, 0.9501

STL10 20.65, 0.5543 21.24, 0.5996 21.45, 0.6051 21.63, 0.6279 22.04, 0.6723 23.16, 0.7136

Illustrative reconstructions from MNIST and SVHN are

shown in Fig 4 and Fig 5, respectively. The performance

of the full precision models (32-bit DCS, 32-bit SDLSS)

is superior to that of the quantized models. However,

visually, the results generated by the coarsely quantized

models are comparable to the images generated from full-

precision models. In some cases the quantized models per-

form slightly superior to the full-precision models, for in-

stance, the generated digit ‘0’ highlighted using the white

boundary has a better loop closure than that output by the

full-precision model.

We tested the Q-GEN model on images coming from

CIFAR10, SVHN, and STL10 datasets. We used DCGAN

generator and quantized its convolutional filters to 1, 2, 3,

and 4 bits. The reconstruction performance is given in Ta-

ble 1. The difference between full-precision and the quan-

tized models varies from as low as 0.27 dB in the case of

4-bit models to about 2.3 dB in the 1-bit case. The per-

formance of the quantized models in reconstructing color

images inspires greater confidence for deploying them in

energy-constrained settings. The quantized networks of-

fer lower model sizes, which is attractive for resource-

constrained devices, with a marginal performance drop.

5. Conclusion
We addressed the problem of compressed image recov-

ery with a neural network used as the nonlinear sensing op-

erator. We used a generative model with quantized weights

as an image prior and incorporated sparsity into the latent

space. Experimental results show that 4-bit quantized gen-

erative models perform close to full-precision (32-bit) mod-

els while reducing the model footprint by 8×. The 1-bit

model has a 32× smaller footprint with a mild degradation

in performance (PSNR of 0.74 dB in CIFAR10, 1.39 dB in

STL10, and 2.3 dB in SVHN datasets). The analysis of the

quantized weights shows that the presence of a few large

weights makes the 4-bit model superior to the 1-bit coun-

terpart. With a rapidly growing concern for saving energy

in the context of AI, low-precision models offer a viable en-

ergy saving alternative. Future work would include using

quantized generative image priors for other imaging appli-

cations such as ultrasound imaging and lensless imaging.

Original 32-bit SDLSS 
22.22, 0.8903

4-bit SDLSS 
21.48, 0.8681

3-bit SDLSS 
21.03, 0.8532

2-bit SDLSS 
20.49, 0.8404

1-bit SDLSS 
20.15, 0.8210

Figure 4. Images reconstructed using Q-GEN for various bit

precision in comparison with the original from the MNIST dataset.

The numbers at the bottom of the image are PSNR, SSIM.

Original 32-bit DCS 
34.66, 0.9515

32-bit SDLSS 
34.04, 0.9447

4-bit SDLSS 
33.66, 0.9422

2-bit SDLSS 
32.09, 0.9231

1-bit SDLSS 
31.83, 0.9194

Figure 5. SVHN images reconstructed using Q-GEN models

and 32-bit DCS model are compared here. We observe comparable

visual performance from low-precision Q-GEN models compared

to full-precision models.
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