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Abstract

We address the challenging problem of floor plan recon-
struction from sparse views and a room-connectivity graph.
As a first stage, we construct a flexible graph-structure
unifying the connectivity graph and the sparse observed
data. Using our Graph Neural Network architecture, we
can then refine the available information and predict unob-
served room properties. In a second step, we introduce a
Constrained Diffusion Model to reconstruct consistent floor
plan matching the available information, despite of its spar-
sity. More precisely, we use a Cross-Attention mechanism
armed with shape descriptors to guarantee that the gener-
ated floor plan reflects both the input room connectivity and
the geometry observed in the sparse views.

1. Introduction
Floor plans serve as a common representation to convey

accurate information about the layout of houses and apart-
ments, facilitating effective communication between archi-
tects, designers, or parties to a real estate transaction. When
considering real-case scenarios encountered in real estate
applications, accurate floor plans are rarely available. In-
stead, apartment descriptions are often provided in the form
of a small number of photos taken during visits, providing
only partial information, and supplemented by textual de-
scriptions of room types. The ability to reconstruct a plau-
sible floor plan from such incomplete and sparse data would
be of great benefit in real estate in the objective of con-
verging toward the real plan when combined with additional
data.

In recent years, there has been significant advancement
in the automatic generation of floor plans. However, ex-
isting methods typically fall into two categories. The first

approach involves a reconstruction method, necessitating a
dense dataset containing all the required information about
the layout [30]. Conversely, the second approach adopts
generative models, capable of synthesizing coherent floor
plans but presenting arbitrary layouts without respecting the
specific constraints of the input information [29]

Our goal is more ambitious. In this work, we tackle the
generation of a coherent floor plan while integrating all the
existing clues, however scattered and incomplete. These
clues can take the form of a partial layout of individual
rooms or information about the contiguity of rooms. This
case poses significant challenges as it requires effectively
reconciling local constraints with global consistency. Given
that only partial and local information is available, generat-
ing individual rooms separately is unfeasible. Instead, the
floor plan must be synthesized as a whole while preserving
these local constraints.

In our study, we examine a specific setting of the prob-
lem, where partial shape information is extracted from non-
panoramic photographic views, to form the basis of our
floor plan synthesis. To make this problem solvable, we also
make the following assumptions: First, topological connec-
tions between rooms, represented by a complete connection
graph, are assumed to be available. Furthermore, we as-
sume that the mapping between each view and the corre-
sponding room is known. Each room can be associated to
zero, one or more partial views. Lastly, we assume that the
partial layout information extracted from each view of the
room is always correctly and accurately extracted, without
suffering from projection or occlusion issues.

Our output is a vectorized floor plan describing the walls
of the rooms as polygons, and including the connections
formed by doors between these rooms. This output plan
ensures that the connection aligns with the information pro-
vided in the input graph, and that the room geometries ad-
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here to the partial constraints extracted from the available
views.

To achieve these results, we introduce three technical
contributions. Firstly, we propose a new, flexible Graph-
based representation, specifically designed to handle sparse
constraints, accommodating a variable number of views for
each room. Secondly, we leverage Graph Neural Networks
(GNNs) to merge the sparse geometrical representations of
individual rooms, creating a shared encoding that facili-
tates the inference of the global geometry of the entire floor
plan. Finally, we propose an extension of the HouseDif-
fusion [29] framework that integrates cross-attention mod-
ules, allowing geometric constraints to be taken into ac-
count in the vector floor plan synthesis process.

2. Related works
2.1. Floor plan reconstruction

Initially, floor plan reconstruction aimed at reconstruct-
ing maps from acquired images or scans, often using
panoramic images [30, 32, 41] or 3D point clouds [39].
These approaches can reconstruct complex maps but require
complete and dense input data covering the entire visible
area to be reconstructed. Interestingly, Huang et al. [15]
investigated the use of sparse and incomplete views for
plan reconstruction, but the approach was limited to syn-
thesizing a single room. In recent years, generative AI
techniques have proposed floor plan generation based on
very sparse constraints, incorporating a graph of topolog-
ical constraints between the rooms and potentially defining
the bounds of exterior walls [14, 33]. GAN-based synthe-
sis models were also developed to generate rasterized floor
plans with room connectivity graph constraints [24, 25],
and were extended using diffusion models to synthesis vec-
tor outputs [29]. However, these approaches did not con-
sider geometrical constraints specific to individual rooms.
In contrast, our work extends the diffusion model proposed
in HouseDiffusion [29] in injecting additional geometrical
constraints associated with each room using a Cross Atten-
tion [35] method. To make our approach robust to sparse
and incomplete data, we rely on the combined use of a ro-
bust prediction relying on a graph-based approach.

2.2. Graph neural networks

Graph Neural Networks (GNN) have recently gained
popularity for learning and inferring information structured
as graph with arbitrary topology. GNNs first featured
the message passing framework (MPNN) [11, 18, 36] us-
ing neighborhood feature aggregation to better represent a
node’s features. Although MPNNs perform well in local
data inference, they exhibit limitations with depth and long
range interactions, such as over-squashing [34] and over-
smoothing [26]. Graph Transformers [23, 38] have been

introduced to overcome these limitations. These models en-
able nodes to access information from all other nodes in the
graph through Global Self Attention. Using GraphTrans-
formers requires enriching the node feature vectors with
positional and structural information about the graph, com-
monly known as Positional Encodings and Structural En-
codings [28]. Positional Encodings are typically derived
from the Graph Laplacian [6, 19], while Structural Encod-
ings are often based on a Random Walk Matrix [7]. Com-
bining MPNN and Graph Transformer offers an efficient
compromise, leveraging their strengths at both local and
global scales. For instance, GraphTrans [37] uses an MPNN
encoder to enrich the node features before applying a Graph
Transformer on top. The so-called GPS (General, Pow-
erful, Scalable Graph Transformer) framework [28], asso-
ciates the two combining their resulting representations of
nodes at every layer. In this work, we rely on the recent
GPS++ [22] introduced in the context of molecular prop-
erty prediction that we adapt to the case of room connectiv-
ity. To the best of our knowledge, a GNN has not been used
to leverage geometrical information in combination with a
generative model for floor plan synthesis.

3. Methodology
3.1. Overview

Our method relies on the main steps illustrated in Fig. 1.
We consider as inputs a graph G indicating the connectivity
between the rooms i, and a set of associated partial views
represented as partial polygons. As explained in Sec. 3.2,
these two inputs are combined into an extended graph G’
incorporating additional nodes representing the geometrical
features of the partial views using Zernike moments. We
then employ a GNN following a GPS++ architecture to pre-
dict the room features as well as the number of corners ci of
each of them. This prediction of the number of corners is ef-
ficiently accomplished through the use of an ordinal regres-
sion technique, as outlined in Sec. 3.3. The final step uses
a diffusion model for synthesizing the floor plan. This dif-
fusion model inspired from HouseDiffusion [29], and takes
as input the connectivity graph, the room features learned
by the GNN, as well as the complete number of predicted
corners ci. As described in Sec. 3.4, we extend this diffu-
sion model to account for the geometry of the partial shapes,
constraining the alignment of the visible corners between
neighboring rooms. This extension is obtained by encoding
the polygons as a chain code sequence, and adding a cross-
attention module using this information in the decoder layer
of the diffusion architecture.

3.2. Graph construction

Let G = (V,E), called room connectivity graph, be an
undirected graph with V being a set of N nodes, where N
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Figure 1: We consider for input the connectivity graph and a set of partial shapes associated to different rooms. The graph
construction method attaches the Zernike Moments zi = Zernike(si) to the corresponding room, for every partial shape si.
We then computes the number of corners per room cj thanks to our Graph Encoder. These information are then utilized as
well as the Chain Code cci = ChainCode(si) to generate the corresponding floor plan. Each cci is used to condition the
Constrained Diffusion Model that outputs the floor plan

corresponds to the number of rooms. The edge ei ∈ E
represents whether two room nodes are accessible from one
another through a door. We call X = {x0, x1, ..., xN} the
graph features vector, where xi ∈ Rd corresponds to the
per-room feature element representation. In our approach,
the feature elements, such as room types, can be arbitrary
data. Notably, these features xi, are not directly provided as
input but are learned and inferred by the subsequent GNN
using the input graph connectivity and partial geometry. To
initiate the process, the values of xi are initialized with ran-
dom noise at the outset of our pipeline.

For each image representing a partial view of a room
vi, we consider the polygonal geometry of the walls from
a top-down view, extracted by the approach from Zhang et
al. [40]. These top-down views sj∈I(vi) ∈ S will be re-
ferred to as partial shapes throughout the paper with S the
set of partial shape and I(vi) the set of views of the room
vi. Note that each room can be associated to 0, one or more
partial shapes.

Since the input images lack calibration relative to a
global reference frame, the coordinates of the partial shapes
are expressed in an arbitrary frame. To mitigate the impact
of this reference frame, we adopt a method to encode the
polygon’s geometry to various levels of details using de-
scriptors invariant to rotation, translation, and scale. For
this purpose, we propose the use of Zernike Moments [16]
zj = Zernike(sj) ∈ Rd, which corresponds to the pro-
jection of the filled top-view polygon’s image over the first

Zernike polynomials defining an orthogonal basis on a disk.
Given these partial shapes values, we construct the ex-

tended Graph G′ as a superset of G with additional geomet-
ric information

G′ = (V ′, E′)

V ′ = V ∪ S
E′ = E ∪ {(vi, sj), sj ∈ I(vi), vi ∈ V }

(1)

G′ connects, for each room, each partial shape sj∈I(vi)
to the correct room node vi. Each of these partial shape
nodes have as node features their respective Zernike
Moments.
Adding such additional nodes enables us to decouple room
nodes from the information provided about them so that
predictions can be made whether data is present or not.
This fits the sparse nature of our input data as well as
contextualizing information. A floor plan is a compact
structure, often viewed as a jigsaw puzzle [12], so enabling
the structure to communicate between every room shape
is key to predict a coherent floor plan. Thus, a node
with no information attached to it, can still get an accurate
representation based on the representations of its neighbors.
While on the other hand, a node with a lot of observed
information will benefit from a more precise representation
and provide shape information to its neighborhood.
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3.3. GNN-based Corner Prediction

The second step of our pipeline corresponds to the use of
a trained GNN on the extended graph G′ to fill the generic
feature vectors X and predict the number of corners of each
room ci ∈ N with the help of the information of the Zernike
Moments. To this end, we use the architecture proposed
in GPS++ [22] and slightly adapt the MPNN module. We
replace the sum aggregation function, by the concatenation
of both sum and max aggregations for the node and graph
feature aggregations:

Aggj∈V ′(xj) = [
∑
j∈V ′

xj | max
j∈V ′

(xj)] (2)

We find that such aggregation scheme empirically improves
performance. We further used a Biased Attention Mod-
ule with the Shortest-Path-Distance bias [38], and relied
on the standard positional and structure node features with,
respectively, Laplacian Eigenvectors Positional Encoding,
and Random-Walk Structural Encodings, as well as node
degree information.

Our Graph Encoder computes representations for each
node in the graph. Mainly it will give us some geometry-
aware embeddings for the different nodes in the graph.
Also, our method is suited for our sparse setting as the
number of predictions in the output depends only on the
connectivity graph G and not the observed shapes sj∈I(vi).
We can then use these room embeddings to predict the
number of corners ci.

Although the number of corners could be predicted as
any generic feature element, our study revealed that em-
ploying an Ordinal Regression technique leads to more ro-
bust prediction. We first consider a so called Manhattan
assumption in our dataset, where only 90° angles exist be-
tween walls, ensuring that all rooms have an even num-
ber of corners. Given this information, we directly predict
the number of corners in the set of discrete even numbers
{2n ≥ 4, n ∈ N}. To this end, we employ the ordinal re-
gression technique proposed by Shi et al. [31] that enables
making predictions in an orderly manner.

Since our predicted classes follow an ascending order –
For instance, the class of a 6 corners room is necessarily af-
ter the class of the 4 corners room, and before the one with 8
corners –, the ordinal regression model can take advantage
of dependencies between the classes to provide more accu-
rate predictions compared to a generic classification where
the classes are treated independently.

The method is also more robust than standard regression
approaches as it predicts discrete values from the specific
distributions of valid corner values, allowing stable results
even for challenging rooms with complex geometries and a
high number of corners.

(a) Housediffusion archi-
tecture

(b) Our proposed architec-
ture

Figure 2: In both architectures, the diffusion denoising
(from xt to xt−1) is performed by the decoder, but un-
like HouseDiffusion [29], we add a cross-attention module
and an encoder to take into account constraints on partial
shapes, which are encoded as chaincodes.

3.4. Constrained Diffusion Floor plan generation

3.4.1 Diffusion Model architecture

The last step corresponds to the use of a diffusion model
that synthesizes the rooms as a vectorized floor plan rep-
resented by P = {P1, P2, ..., PN} which is a set of poly-
gon for each room or door to be generated by the diffu-
sion process embedded in a global reference frame. Our
method relies on an extension of the existing HouseDiffu-
sion model [29]. The original model can be seen as a de-
coder structure, and makes use of a Transformer architec-
ture to apply the diffusion process to the different corners’
coordinates, while suitable properties such as orthogonality,
and parallelism, are obtained using a mixture of continuous
and discrete denoising [2]. However, this existing approach
cannot take into account clues about the expected geometry
of the rooms, and is thus generating arbitrary room shapes.

To constrain the diffusion with additional information
about the room geometry, we propose to extend the ap-
proach into an encoder/decoder architecture as illustrated
in Fig. 2. While the decoder follows the same structure as
the original HouseDiffusion, we add an encoder taking as
input a descriptor of the geometry extracted from the partial
views, and plug the encoded geometric features to an addi-
tional cross attention module added into the decoder. This
final cross-attention is used to inject the partial shape infor-
mation into the denoising process. Throughout the process,
the geometrical features are used as soft constraints, allow-
ing robust handling of unseen rooms where no geometrical
clue is provided, as well as preserving compact and coher-
ent assembly even when the network needs to fill-in missing
information.

The details of the modified architecture are as follows:

The encoder has four multi-heads attention layers. It con-
sists of a standard self attention layer with residual
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connections followed by a normalization and a feed-
forward layers. The decoder uses the three multi-head
attention modules (four heads) described in the orig-
inal HouseDiffusion framework [28]. The modifica-
tions we have made to this architecture are as follows:

The decoder uses the three multi-head attention modules
(four heads) described in the original HouseDiffusion
framework [29]. The additions we have made are as
follows: the outputs of the three attention modules are
summed, followed a residual connection and a normal-
ization. Next, the output is fed into the cross-attention
module, followed by a final residual connection and
normalization plus a linear layer. The key and value of
this cross-attention layer is then the encoder output.

The constrained local alignment between the room shape
and the visible corners is ensured via the use of a cross-
attention mask [35] associated to the cross-attention mod-
ule. This block diagonal mask allows to focus the attention
of the geometrical representation relying on chain code en-
coding, as detailed in the next part, with the corresponding
polygon corner.

3.4.2 Partial shape encoding

To encode the partial shape of each room for the cross-
attention module, we use the Chain Code encoding [9] that
explicitly encodes the corners of the polygon as a sequence
compatible with a transformer. We further use the first-
difference transform over the chain code, ensuring that the
encoding is rotation-invariant.

We considered the chain code cci of the room i as a se-
quence of vectors ccij described with eight dimensions (7
one-hot encoding, and one length), as follows:

ccij = [nature︸ ︷︷ ︸
3 dims

, direction︸ ︷︷ ︸
4 dims

, L︸︷︷︸
∈[−1,1]

] (3)

Nature is a 3-dimensions one-hot encoding the nature of
the element. Following [5, 35], we employ a specific en-
coding to delimit the beginning and end of a chain code:
[1, 0, 0] indicates the start of the chain code, [0, 0, 1] its end,
and [0, 1, 0] represents an element of the chain code. Di-
rection is a 4-dimensions one-hot encoding describing the
four possible local change of direction relative to the cur-
rent one. L is the length of the polygon edge, normalized
between [−1, 1]. The normalization is performed per house.
For each room i, we represent the entire chain code cci as a
matrix of size li×8 where li is the number of vectors used to
represent the polygon associated with the partial view. The
global chain code representing the entire house is obtained
in concatenating all the matrices associated to cci.

Finally, the chain codes are processed using a linear layer
to align their dimension with that of the transformer (512).

The final size of the matrix of each chain code is therefore
li × 512. As the chain codes are ordered, we add a standard
positional sine and cosine encoding [21] to the chain codes.

Figure 3: Example of a cross-attention mask for three
rooms. Each white areas indicates where attention is fo-
cused. With this mask, a chain code CCi focuses only on
Pi. The length of the chain codes and the number of corners
in each room may not be equal, so the cross-attention mask
is not a square matrix.

These chain codes are finally used as input to the cross-
attention module to constrain the polygon corners Pi gen-
erated in the diffusion process by the chain code cci. The
cross attention is guided by a cross-attention mask to en-
sure that cci constrains only Pi. As illustrated in Fig. 3, this
mask can be represented as a block diagonal matrix of size
N ×M , with N the number of corners in the entire scene,
and M the size of all the concatenated chains code.

Figure 4: Effect of constraints on the diffusion process. The
first line contains the partial shape constraints (rotation and
scaling are arbitrary). The second and third line represent
the generated rooms with and without cross-attention re-
spectively. The last column represents the final floorplan
generated by the diffusion model. The blue dotted lines are
manually added to illustrate the possible matching corners.

Article published at ICCV Workshop on Computer Vision Aided Architectural Design (CVAAD) 2023



Figure 5: A few generation examples using our approach. For each scene the first floor plan is the Ground Truth and then
two generations outputs of the Constrained Diffusion Model

4. Results
4.1. Architecture setup

4.1.1 Dataset

For our experimental setup, all experiments are done on the
ProcTHOR-10K dataset [4]. This dataset contains a set of
ten thousand house scenes generated procedurally. We use
a sub-sample of this dataset, removing scenes that do not
contain a Living room, a Kitchen and a Bedroom, leading
to 5149 valid scenes. The scenes in this dataset are gen-
erated procedurally and contain some invisible walls. We
merge the polygons with an invisible wall as a common
side. These merged polygons are the room layouts we are
trying to reconstruct. We rely on procthor10k’s door anno-
tations to extract the connectivity graphs from the scenes
based on which rooms are connected by a door.

4.1.2 Initialization

To simulate the partial shapes extracted by a vision algo-
rithm, we generate random contiguous splits of the ground-
truth layout polygon for each room. These partial shapes
are then used to compute their respective shape descriptors
zi and cci, set as features of the additional leaf nodes and
generations constraint, respectively. While the room-node
xi are initialized with random noise. For the corner pre-
diction task, the number of corners of each room is labeled
with an integer value. These values are mapped in an or-
derly manner so that for ci > cj we have li > lj with c the

number of corner in the room, and l the label associated.

4.1.3 Models training

In our experiment, we use PyTorch Geometric [8] to imple-
ment our graph encoder and use PyTorch for the diffusion
model and train with the Adam [17] optimizer.
The graph encoder is trained for 200 epochs with 10 epochs
of learning rate warmup, followed by a linear decay. Fol-
lowing our graph encoder, every room node embeddings are
extracted and are the input of a CORN [31] loss to perform
Ordinal Regression.
The diffusion model is trained during 200000 steps with a
batch size of 192 on a P100 NVIDIA GPU. The training
takes approximately 1.5 days to complete. The initial learn-
ing rate is 1e− 3 which is divided by 10 after 100000 steps.
The number of diffusion steps is 1000.

4.2. Floor plan reconstruction results

We illustrate the results obtained by our approach, with
a scenario using one view per room, i.e. with exactly one
partial shape assigned to each room. Compared to previ-
ous baseline methods such as HouseDiffusion [29]. Fig-
ure 4 shows the geometrical constraint (first line), the syn-
thesized room and scene using our approach (second line),
and a baseline diffusion model without the cross-attention
module associated to the chain code (third line). We can
see that our approach integrating the constraints correctly
synthesize rooms featuring the expected geometry, while
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the more naive diffusion approach synthesizes arbitrary ge-
ometry that only preserves the correct number of corners.
Figure 5 shows a wide variety of floor plans generated by
our approach and illustrates qualitatively its capability to
adhere to the geometrical constraints given by the partial
shapes while providing a coherent map at the global scale.
We may note that while the method is able to generate a
very compact structure when few rooms are involved, some
gaps appear between walls when dealing with maps associ-
ated with a large number of rooms. This characterizes the
limit of the Diffusion Model to handle complex compact
floor plans. However even in these cases we can see that the
geometrical constraints are still respected (e.g. Scene 29).

4.3. Quantitative Analysis

4.3.1 Corner Prediction

We first show the advantage of using our enhanced graph
G′ in combination with our GNN to predict the number of
corners. To this end, we compared our method to an al-
ternative case where only one single view is seen for each
room. In this case, we generate a second simplified graph
solely based on G, attaching the single shape description
to the node feature xi = zi. Furthermore, we investigated
the performance obtained by using a GNN compared to an
MLP, as well as the effectiveness of the Ordinal Regres-
sion approach. The results obtained in the various cases are
depicted in Table 1, where we display the Mean Absolute
Error (MAE) per class in the test set, with the number of
corners used as the unit of measurement.
The top part (first three lines) corresponds to using the sim-
plified graph with one partial view per room. The first two
lines demonstrate the improvement provided by the Ordi-
nal Regression technique [31] compared to a more trivial
regression on the number of corners. The first line further
highlights that our GNN architecture improves predictions,
particularly for more complex rooms with a higher num-
ber of corners, as the GNN can utilize the global context of
other rooms. The bottom part of the table shows the results
obtained using our enhanced GNN capable of handling a
variable number of partial views per room. We present re-
sults for scenarios with 50%, 70%, 1, and 2 partial view
per room, where 50% indicates one partial view every two
rooms, and 2 indicates two partial views for each room. Our
enhanced graph approach always achieved superior accu-
racy compared to the simplified ones using MLP or GNN
in similar conditions, i.e. one partial view per room (En-
hanced GNN-1). Interestingly, it even obtained compara-
ble, or sometimes better accuracy, when using only 70% of
the views (Enhanced GNN-70%), indicating that the net-
work effectively leveraged the model’s sparsity through the
additional node feature. Additionally, the Enhanced GNN-
1 and Enhanced GNN-2 show that the results consistently
improve with the addition of more views per room. This

finding confirms that our method is robust and capable of
effectively handling varying situations.

4.3.2 Floor plan reconstruction

We assess the accuracy of the floor plan reconstruction over
our test dataset using two metrics. The first metric compares
the reconstructed floor plan to the ground truth. For a given
house, we compare each polygon of the generated rooms
with the polygons of the corresponding ground truth rooms
using Hu invariants [13]. These provide an error measure-
ment between the polygons, taking into account scale and
rotation invariance. Given that we consider only partial
views, our reconstruction cannot be identical to the ground
truth but provides, nevertheless, a reliable indicator of the
shape reconstruction quality. The second metric employed
is the modified Graph Edit Distance [1, 29] (mGED), mea-
suring the similarity between the input connection graph
and the estimated graph generated from the reconstructed
floor plan. This metric thus measures the extent to which
the connectivity graph is respected in the generated floor
plans.

Results are shown in Table 2 and compared the results
obtained with our approach using shape constraints (SC)
to the one obtained without considering such constraints
(NSC). We further assessed the influence of the corner num-
ber estimation accuracy toward this reconstruction using,
respectively, the correct ground truth corner number (GT),
the mean or median corner number associated with each
type of room based on the ground truth, or using our ded-
icated GNN-based estimator. One may note that the re-
sults using our shape constraint (SC) yields consistently bet-
ter results that without (NSC) for both Hu invariants and
mGED metrics, highlighting the effectiveness of our chain-
code based cross-attention module. While the scores ob-
tained using the ground truth prediction of the number of
corners are the lowest, we note that our results achieved
using GNN-based predictions are remarkably close to this
ideal scenario, and significantly outperform the naive use of
mean or median predictions.

5. Conclusion and future works
We have proposed an approach for synthesizing floor

plans consistent with partial and sparse constraints on the
rooms geometry, as well as with hypotheses on rooms con-
nectivity. Our approach is built on a graph-based frame-
work, allowing to seamlessly handle the geometrical infor-
mation provided by partial views. The generation method
combines a Graph Neural Network to predict the number
of corners with a diffusion model for floor map synthesis,
which takes into account geometric information through a
cross-attention module. The general pipeline is robust to an
arbitrary number of input views per room. This is partic-
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Configuration MAE per class (↓) ± SE
4 corners 6 corners 8 corners 10 corners 12 corners

MLP-Regression 0.16 ± 0.0 0.9 ± 0.0 2 ± 0.0 3.9 ± 0.01 5.67 ± 0.0
MLP-Ordinal [31] 0.07 ± 0.0 0.59 ± 0.0 1.55 ± 0.0 3.28 ± 0.03 5.33 ± 0.0

GNN-Ordinal 0.19 ± 0.0 0.67 ± 0.0 1.45 ± 0.01 2.27 ± 0.04 4.67 ± 0.24
Enhanced GNN-50% 0.47 ± 0.0 0.64 ± 0.0 2.52 ± 0.01 4.1 ± 0.08 5.9 ± 0.28
Enhanced GNN-70% 0.28 ± 0.0 0.42 ± 0.0 1.41 ± 0.01 2.1 ± 0.11 3.1 ± 0.19

Enhanced GNN-1 0.0 ± 0.0 0.03 ± 0.0 0.42 ± 0.01 1.44 ± 0.07 3.6 ± 0.31
Enhanced GNN-2 0.0 ± 0.0 0.02 ± 0.0 0.28 ± 0.02 0.9 ± 0.04 3.2 ± 0.28

Table 1: Results for the Corner Prediction task: The MAE is in terms of number of corners ± Standard Error. The MLPs take
in a shape descriptor and output a number of corner. GNN-Ordinal doesn’t make use of our graph construction technique and
has descriptors as node features. For the results utilizing our graph construction, Enhanced GNN-50% means that only 50%
of rooms have geometrical information. Where Enhanced GNN-2 has 2 shape descriptor per room. Predictions are always
made for the entire set of rooms, whether or not it has a shape descriptor

Configuration Hu invariants [13] (↓) mGED [1] (↓)
NSC/GT 0.32 ± 0.01 1.31 ± 0.12
NSC/mean 0.40 ± 0.04 1.4 ± 0.11
NSC/median 0.30 ± 0.02 1.42 ± 0.18
NSC/GNN 0.31 ± 0.02 1.33 ± 0.12
SC/GT 0.11 ± 0.01 0.91 ± 0.11
SC/mean 0.27 ± 0.05 1.5 ± 0.13
SC/median 0.28 ± 0.01 1.7 ± 0.23
SC/GNN 0.143 ± 0.01 1.13 ± 0.13

Table 2: Quality of the reconstruction given the Hu invari-
ants and the mGED. NSC means No Shape Constraint (the
diffusion process is therefore not constrained by the partial
shape). Mean / Median, GNN and GT (Ground Truth) is the
method for estimating the number of corners per room. ±
SE

ularly useful in real-case applications, where more images
can be added in a subset of the rooms to improve the re-
construction of the global map, without requiring a dense
and complete description of all the rooms, such as through
panoramic acquisition.

More generally, this work has shed light on the method-
ology needed to solve the problem of floor plans from
sparse views. The use of graphs enriched by the different
observations seems to be a major advantage in dealing with
the sparse character of the observations. However some im-
provements could be made on that aspect. First, other shape
descriptors could be studied and may further improve the
results. Using chain code encoding instead of, or in ad-
dition to, the Zernike moments may be beneficial fot the
GNN. Second, our model shows some failure cases that can
be seen by the gaps between the walls shown in Figure 5, as
well as in Figure 6 in predicting the wrong number of cor-

Figure 6: Two examples of failure cases. Generally the net-
work has trouble generating very compact floorplans that
contain a lot of rooms. And a yellow room has the wrong
number of corners (2 more than it should) predicted leading
to wrong or incoherent shapes

ners and thus generating a wrong shape. Improving the en-
coder may lead to improved results in allowing it to handle
additional properties that are inherently part of the architec-
ture such as in Equivariant Networks [3, 10, 20]. Further-
more we can also note that the Graph Construction could be
extended to address the multi-modal aspect of the consid-
ered real data (e.g. rental listings), as pre-processed textual
and visual data could co-exist in this framework (e.g. using
CLIP embeddings [27]). For the generation part, the choice
of shape descriptor remains important to study. A general
idea for the future would be to use the graph encoder as
a shape aggregator, so that every room embedding contains
the combined geometrical information. These room embed-
dings would then be used as the main constraint for the gen-
eration, enabling us to jointly optimize the two networks.
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