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Abstract

Motivated by the challenges of the Digital Ancient Near
Eastern Studies (DANES) community, we develop digital
tools for processing cuneiform script being a 3D script
imprinted into clay tablets used for more than three mil-
lennia and at least eight major languages. It consists of
thousands of characters that have changed over time and
space. Photographs are the most common representations
usable for machine learning, while ink drawings are prone
to interpretation. Best suited 3D datasets that are becom-
ing available. We created and used the HeiCuBeDa and
MaiCuBeDa datasets, which consist of around 500 anno-
tated tablets. For our novel OCR-like approach to mixed
image data, we provide an additional mapping tool for
transferring annotations between 3D renderings and pho-
tographs. Our sign localization uses a RepPoints detector
to predict the locations of characters as bounding boxes. We
use image data from GigaMesh’s MSII (curvature) based
rendering, Phong-shaded 3D models, and photographs as
well as illumination augmentation. The results show that
using rendered 3D images for sign detection performs bet-
ter than other work on photographs. In addition, our ap-
proach gives reasonably good results for photographs only,
while it is best used for mixed datasets. More importantly,
the Phong renderings, and especially the MSII renderings,
improve the results on photographs, which is the largest
dataset on a global scale.

1. Introduction
The cuneiform script is one of the oldest writing sys-

tems in the world. The majority of the cuneiform script

is found on clay tablets into which each wedge-shaped
cuneiform sign was impressed with a reed stylus. Due to
the three-dimensional nature of the signs, the script is only
legible with proper illumination. Consequently, the work
with single photographs is limited because the lighting is
fixed, while reading requires repositioning the often curved
tablets. So more recent approaches are based on imaging
systems capturing information about the 3D shape such as
the Leuven Dome [8]. Especially, Structured Light Scan-
ning (SLS) is becoming increasingly popular for documen-
tation of small archaeological findings [14]. So 3D models
captured by 3D scanners are also increasingly used to cap-
ture and visualize clay tablets with cuneiform script, espe-
cially in combination with high-quality curvature rendering
technique for 3D datasets using Multi-Scale Integral Invari-
ant (MSII) filtering [19]. Filtering and rendering is applied
with the Free and Open Source Software GigaMesh1. The
first steps in using neural networks to recognize cuneiform
writing on images were taken in the 1990s [21]. Apply-
ing artificial intelligence systems directly to 3D models has
proven challenging, but [1] has shown promising results for
period classification of tablets. This article, which is a con-
tribution to Digital Assyriology [2] also known as Digital
Ancient Near Eastern Studies (DANES), focuses on the use
of different types of renderings and explores their poten-
tial in machine learning as a step towards Object Character
Recognition (OCR) of this particular ancient script. In addi-
tion, we will compare the results on differently rendered 3D
datasets in combination and comparison with photographs
for the task of sign detection.

1https://gigamesh.eu
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Related Work

The formidable challenge of OCR for cuneiform is an
important DANES research topic and paves the way for
the vision of automatic ancient language translation as the
recently introduced Neural Machine Translation (NMT)
model that allows the translation of Akkadian into En-
glish by [7]. The promising results, evaluated by the test
data and experts, are interesting pioneering work in au-
tomatic Cuneiform translation. However, their NMT re-
quires transliterations in cuneiform Unicode or translitera-
tion in Latin script and cannot be performed on photographs
or 3D renderings. Consequently, the OCR preprocessing
of cuneiform tablets is necessary. [24] describes an OCR
system to determine transliterations which consist of sev-
eral subtasks such as sign localization, sign classification,
and sign-to-line assignment. This procedure is a complete
pipeline from a photograph as input to a transliteration as
output. This pipeline performs the above-mentioned steps
of OCR separately, first locating and cropping, then clas-
sifying the extracted signs, and finally arranging them into
lines. The end-to-end evaluation of the pipeline with Char-
acter Error Rate (CER) of 0.69 is improvable and insuffi-
cient yet. However, the sign detection task reached an Av-
erage Precision (AP) of 0.78. It is worth mentioning that
their available dataset of over 1300 fully annotated tablets
is a notably larger corpus compared to research presented
in [3], [9], and [20].

Cuneiform was used as the script of several languages,
including Elamite, Sumerian, and Assyrian. In the example
of the Elamite language, an annotated dataset2 is now avail-
able. However, the availability of expert annotated datasets
is still limited for other languages and periods. To con-
tribute to the solution of the missing datasets, we provide
our applied dataset of manually annotated 3D renderings
under a CC-BY license. Because of the scarcity of data, [3]
introduced a weak-supervised learning approach that uses a
large dataset of transliterations and annotated photographs
from the Cuneiform Digital Library Initiative (CDLI)3 to
train a cuneiform sign detector that locates and classifies the
signs. Another approach reduces the impact of data limita-
tions through illumination augmentation [20]. Using a 3D
model rendered under different lighting conditions to aug-
ment their dataset of cut-out signs has shown promising re-
sults in their sign classification. However, their main dataset
consists of cropped signs from photographs from the Hethi-
tologie Archiv at the Hethitologie Portal Mainz (HPM)4.

In this work, we use a Convolutional Neural Net-
work (CNN) to locate cuneiform signs on uniformly sized

2DeepScribe:https://github.com/edwardclem/
deepscribe

3https://cdli.mpiwg-berlin.mpg.de
4https://www.hethport.uni-wuerzburg.de/HPM/

index.php

cropped images which could be utilized in a pipeline as the
recently presented in [24]. Their results suggest a weak-
ness in accurately predicting overlapping bounding boxes
with the ground truth. As a consequence of incompletely
cropping signs due to the inaccurately predicted bounding
boxes, a potential information loss may occur. This could
explain the decrease in classification accuracy of the whole
pipeline compared to their classifier, which was evaluated
on cropped signs from the annotations. Therefore, we pro-
pose to focus on evaluating the sign localization by consid-
ering true positives with an Intersection-over-Union (IoU)
overlap with the ground truth bounding box of at least 75%.
We present a sign detector trained on 3D renderings that still
performs well with this more strict evaluation constraint.
For the evaluation, we compare different types of render-
ings with photographs to determine their potential for such
a task. Furthermore, our evaluation considers the type of
image used, the accuracy of the bounding boxes, and the ef-
fect of illumination augmentation. For our training, we use
four available raster image datasets separately and in com-
bination. We also apply a similar illumination augmentation
method as [20], but to our entire dataset of 3D models.

The aforementioned need for an accurate sign localiza-
tion as part of a pipeline is further motivated by our ap-
proach, which will be introduced in the following section,
along with our approach to this sign detection challenge.

2. Method
First, we briefly introduce a wedge detection pipeline

that includes the sign detector described in 2.2. Second, we
describe a data augmentation approach based on 3D render-
ings in Section 2.3.

2.1. Wedge Detection Pipeline

[23] introduced a pipeline approach to detect wedges in
images of entire Cuneiform tablets. Similar to [24], the
pipeline initially locates the signs as bounding boxes in im-
ages and crops them. These cutouts were used to detect
and classify the wedges, unlike [24] where the signs are
classified. In [23], the same architecture as in this work
was used for the sign detection, but only images of whole
tablet segments were used, which gave useful results with
a mean F1 − Score = 0.61 on renderings but performed
less optimal for large tablets. The investigated wedge de-
tector is based on the ideas of Point RCNN [26] approach.
In summary, a Region Proposal Network (RPN) based on
RepPoints [25], predicts an area in the image known as the
Region of Interest (RoI) as a bounding box, which may con-
tain a wedge, and the features of this region are extracted by
RoI Align [10]. These RoI features are the input of a refine-
ment neural network that provides offsets for each corner
point of the bounding box to specify a wedge-shaped rotated
quadrilateral instead of a bounding box. Furthermore, this

https://github.com/edwardclem/deepscribe
https://github.com/edwardclem/deepscribe
https://cdli.mpiwg-berlin.mpg.de
https://www.hethport.uni-wuerzburg.de/HPM/index.php
https://www.hethport.uni-wuerzburg.de/HPM/index.php


network classifies the wedge according to the PaleoCodage
encoding [12] or the Gottstein system [6]. The effect of
the two systems for the wedge detection was evaluated and
discussed in [23], where the Gottstein system achieved a
slightly higher mean precision of 0.52 compared to the Pa-
leoCodage mean precision of 0.43. In general, the precision
of the wedge detection appears to be sufficient to apply, e.g.
for an automatic alignment of the clay tablets, but the chal-
lenge is to improve on the low recall of less than 0.19 when
using the PaleoCodage encoding and 0.15 for the Gottstein
system. The further developments of this important chal-
lenge are not part of this work. However, the sign detector
was further investigated and improved by an augmentation
method described below.

2.2. Sign Detection

The sign detector is a single-class object detection
task, where the outputs are bounding boxes defined by
(xmin, ymin, xmax, ymax) with an assigned confidence
value between 0 and 1, whether the bounding box is a sign
or not. As in [23], we used the one-stage anchor-free ob-
ject detector RepPoints [25] with a ResNet18 [11] as back-
bone. Originally, [25] introduced the RepPoints architecture
with a ResNet backbone used as a Feature Pyramid Network
(FPN) [15]. However, we did not achieve better results with
FPN, so we simplified our architecture by using the layer c4
of ResNet18, which results in a feature map f with a reso-
lution of 64× 64 pixel for our input size of 512× 512 pixel
squares.

RepPoints does not directly predict the bounding box,
but a set of k representation points and a confidence value
for c+1 classes for each point (xf , yf ) of the feature map f
returned by the backbone, where c is the number of classes,
and one is added as the background. In our task, we set
c = 1 because we decided between sign and background.
Applying two non-shared subnetworks with the feature map
as input leads to the classifications and localizations con-
sisting of two point sets P1(xf , yf ) and P2(xf , yf ) of the
objects. The set P1(xf , yf ) is a result of k offsets ∆xf and
∆yf for each feature map point (cf. Equation (1)):

P1(xf , yf ) = {(xf +∆xfi , yf +∆yfi)}ki=1 (1)

These k offsets are the first part of the localization subnet
and are also used as deformable convolutional layer input
offsets in classification and further localization subnet. To
refine the point positions, the localization subnet predicts
the set P2(xf , yf ) by k offsets ∆x′

f and ∆y′f , based on the
points in P1 (cf. Equation (2)).

P2(xf , yf ) ={(xp1i +∆x′
fi , yp1i +∆y′fi)}

k
i=1,

(xp1i, yp1i) ∈ P1(xf , yf )
(2)

For each experiment, k = 9 is used, following [25]. To train
the network and to get a bounding box result, these k points

Figure 1: Example of the set P1(xf , yf )(brown) with the
resulting pseudo bounding box. The arrows symbolize the
offset from (xf , yf )(blue) to the k points.

Figure 2: Example of the set P2(xf , yf ) (yellow) with
the resulting pseudo bounding box. The arrows symbolize
the offset from P1(xf , yf ) (brown) to the corresponding k
points of P2(xf , yf ).

of the point set Pj for each feature map position (xf , yf )
must be converted to a pseudo bounding box, where the
min-max function is used for both dimensions, as shown
in Equation (3).

x̂min = min
xp∈Pj(xf ,yf )

(xp)

ŷmin = min
yp∈Pj(xf ,yf )

(yp)

x̂max = max
xp∈Pj(xf ,yf )

(xp)

ŷmax = max
yp∈Pj(xf ,yf )

(yp)

(3)

The Figure 1 shows an example of representation points
set P1(xf , yf ) and the offsets ∆x′

f and ∆y′f with the
pseudo bounding box at the feature map point (xf , yf ). The
refinement of these points by the second offsets ∆x′

f and
∆y′f and the resulting bounding box, which is also the final
detection result, is visualized in fig. 2.

The training is driven by two localization losses and
one classification loss. Both localization losses are calcu-



lated by the smooth l1 distance between the four bounding
boxes describing values xmin, ymin, xmax and ymax of the
ground truth (GT) bounding boxes and the predicted pseudo
bounding boxes. As described in [25], the center of the
GT bounding boxes are projected to the feature map posi-
tion, and only for these feature map points the location loss
Lloc1 of pseudo bounding boxes (x̂min, ŷmin, x̂max, ŷmax)
by the min-max function based on P1 is calculated. The sec-
ond location loss Lloc2 , based on P2, is computed only for
those feature map points where the pseudo bounding box
of P1 has an intersection-over-union (IoU) value with the
GT bounding box above the threshold θTP . The classifi-
cation loss Lclass, for which the Focal Loss [16] is used,
also depends on the bounding box of P1. In addition to the
threshold θTP , θFP is defined, where all predicted boxes
with an IoU value above θFP but below θTP belong to the
GT ’background’, and if the IoU value is above θTP the GT
class corresponding to the bounding box is considered as
’sign’. Unlike [25], we have increased the original values
θFP = 0.4 and θTP = 0.5 to θFP = 0.6 and θTP = 0.7
because the signs are dense and experiments with the orig-
inal values gave worse results. In summary, the complete
loss L of the architecture is defined as:

L = λ1Lloc1 + λ2Lloc2 + λ3Lclass (4)

,where λi are the weights of the partial loss functions. To fo-
cus the training on the localization and to make them on the
similar magnitude, we set λ1 = 50, λ2 = 100 and λ3 = 1.
Our hyperparameter optimization of the Stochastic Gradient
Descent (SGD) optimizer determined the learning rate as
5 · 10−4, the momentum as 0.9, and a weight decay of 10−5

as the best configuration for our training. A further differ-
ence is that our architecture includes dropout [22] with an
extinction probability of 0.2 for the input and the first con-
volution of the backbone and dropout with a probability of
0.5 for each additional convolution layer in the backbone
and for the first three convolution layers of the RepPoints
architecture.

As a post-processing, to keep only the most confident
predictions, we applied Non-Maximum Suppression (NMS)
with a threshold of 0.4 IoU to keep boxes.

2.3. Illumination Augmentation

Since the shape of the Cuneiform signs is three-
dimensional, they appear differently depending on the type
of illumination. Additional to the direct impact of the
brightness, the sign appearance depends strongly on the an-
gle of incidence. The wedge shadows vary due to their
curvature if the light is not orthogonal to the tablet front.
Similar to [20], we used this characteristic of Cuneiform to
render our available tablets with different illumination and
have augmented our data set with a huge set of virtual light
renderings. Our approach to illumination augmentation (IA)

Figure 3: Orbiting Light Source to render the clay tablets
under different illumination conditions. The upper part of
the diagram illustrates the front view of the tablet, around
which the direction light rotates 360°. The side view shown
below is only for a better 3D orientation and visualizes the
constant polar angle. The tablet shown is HS 1194.

is shown in 3. We used the open-source GigaMesh Software
Framework to render the meshes of the clay tablets under a
virtual light (Phong). Since only annotations of the back
and front are available, these sides are rendered with an or-
biting light source, with the azimuth angle ϕ varying in 45°
increments from 0° to 360°. To avoid data overload, we set
the polar angle θ constant to 45° (according to [20]).

3. Data
The methods described above are applied to the Frau

Professor Hilprecht Collection of Babylonian antiquities at
the University of Jena, which is published as 3D data in
combination with high-resolution renderings by the Heidel-
berg Cuneiform Benchmark Dataset) (HeiCuBeDa) [18].
The dataset consists of three different types of 3D render-
ings: VirtualLight (VL), MSII filter (MSII), and
a mixture of both (mixed). The VL is a Phong rendering
and the default technique of the GigaMesh Software Frame-

https://doi.org/10.11588/heidicon/1113625


work5 and can be seen in fig. 4. Increasing the contrast be-
tween the impressed wedges and the surface based on the
curvature is done by the MSII filter. This type of render-
ing was used to create figs. 1 and 2. The subset of tablets
used, with the exception of one tablet from the Old Babylo-
nian period (c. 1900-1600 BC), is dated between 2500 and
2000 BC. Except for one tablet in Akkadian, all tablets are
written in Sumerian.

The annotations of these renderings were made us-
ing the Cuneiform Annotator application Cuneur [13]
and published as the Mainz Cuneiform Benchmark
Dataset (MaiCuBeDa)6. Due to our focus on sign detec-
tion in this work, we only applied the sign annotations of
the dataset, ignoring the sign classes (the Unicode code
point of the cuneiform sign), which were deemed irrelevant
for this task. These annotations are based on the translit-
erations available at the Cuneiform Digital Library Initia-
tive (CDLI) [4] of the Hilprecht collection. Each annotated
sign of MaiCuBeDa refers to a sign in the transliteration.
Unfortunately, if a sign in the image could not be classified
and assigned, it led to missing sign annotations within the
dataset. In particular, the side signs of the tablet are often
not annotated, but there are also cases of missing annota-
tions in the center of a tablet since transliterations may be
incomplete or signs could not be clearly assigned by the an-
notating person. As a result, we have used a challenging
dataset that contains predominantly incompletely annotated
images.

Number of tablets 490
Number of segments 873
Number of 512× 512 pixels patches 10311
Number of sign annotations 21228

Table 1: Our available annotated data

As part of this work, several extensions and preprocess-
ing of the dataset were performed. First, due to the different
shapes of the clay tablets, the corresponding images have
different resolutions. To standardize and to avoid loss of in-
formation when rescaling to the input resolution described
in section 2.2, we crop the original images into patches of
512 × 512 pixels with an overlap of 256 pixels. The Ta-
ble 1 provides an overview of the resulting patches, the
original number of segment images, and the available an-
notations. In addition to the originally provided renderings,
applying the IA described in Section 2.3 extended the VL
image set by 7344 additional images of whole segments and
thus 82488 overlapping patches to an image set of 92799
VL rendering patches. We also added the corresponding

5https://gigamesh.eu
6MaiCuBeDa: https://doi.org/10.11588/data/QSNIQ2

photographs available at the CDLI to the dataset. Since
these photographs do not directly match the renderings, we
mapped the images using the Cuneur Transformer7 tool so
that the annotations created for the renderings could also be
used for the photographs. Since all types of renderings are
grayscale, the photographs are converted to grayscale and
performed a normalization. This is done to standardize the
input to the CNN.

4. Results

In this section, we introduce our evaluation method in
Section 4.1, which is used in section 4.2 to describe our
results of sign localization. These results are discussed in
Section 4.3.

4.1. Evaluation

For each of our experiments, we divide the same train-
ing, validation, and test dataset with a ratio of 2 : 1 : 1.
To avoid overlap between the datasets at the level of sign
clippings and cropped squares, we initially split the dataset
at the segment level and then we crop the images based on
this split. All evaluations are carried out on the separate test
set by the models that have performed best on the validation
set that is evaluated at the end of each epoch.

To evaluate our sign detector, we use the Average Pre-
cision (AP), which is a common evaluation metric for ob-
ject detection [17]. Varying the confidence threshold for
deciding whether a prediction is a sign or background re-
sults in different precision and recall values per threshold,
thus yielding a precision/recall curve. As defined in [5],
we use the interpolated precision/recall curve with 11 recall
levels between 0 and 1 to calculate the AP. Furthermore, we
vary the threshold of the IoU between the predicted bound-
ing box and the GT bounding box θIoU which determines
whether a detection is classified as true positive or as false
positive, to evaluate the localization accuracy of the bound-
ing boxes. In the following, AP@θIoU notes the thresholds
in percent used during the evaluation, e.g., AP@50 repre-
sents an evaluation where 50% IoU overlap is required for
a bounding box to be considered as true positive.

4.2. Sign Detection

The results take into account several aspects that affect
the performance of the sign detector: the role of various
training data, the applicability to different image types, and
the impact of IA. The table 2 provides an overview of all
results for models trained with different training bases and
evaluated on various test image sets. Having the same hy-
perparameters, they only differ in their input images, after

7Cuneur-Transformer:https://gitlab.com/fcgl/
cuneur-transformer

https://doi.org/10.11588/data/QSNIQ2
https://gitlab.com/fcgl/cuneur-transformer
https://gitlab.com/fcgl/cuneur-transformer


Train set Test set AP@50 AP@75 AP@90

VirtualLight
renderings

Photos 0.327 0.182 0.182
VL 0.570 0.362 0.182
MSII 0.503 0.268 0.182
Mixed 0.555 0.288 0.273

MSII
renderings

Photos 0.288 0.182 0.145
VL 0.375 0.212 0.182
MSII 0.602 0.437 0.273
Mixed 0.575 0.357 0.273

Mixed
renderings

Photos 0.244 0.182 0.071
VL 0.443 0.222 0.133
MSII 0.591 0.400 0.182
Mixed 0.609 0.420 0.182

Photos

Photos 0.456 0.222 0.182
VL 0.517 0.269 0.182
MSII 0.514 0.267 0.182
Mixed 0.523 0.287 0.182

VirtualLight
renderings
with IA

Photos 0.417 0.213 0.144
VL 0.603 0.452 0.364*
MSII 0.585 0.363 0.170
Mixed 0.583 0.365 0.152

Complete

Photos 0.508 0.229 0.132
VL 0.598 0.368 0.182
MSII 0.632 0.394 0.160
Mixed 0.633 0.394 0.177

Complete
with IA

Photos 0.569 0.214 0.170
VL 0.626 0.545* 0.182
MSII 0.591 0.400 0.182
Mixed 0.636* 0.431 0.182

Table 2: Results of the Sign Detector on cropped 512× 512
pixel-sized patches compared with different train and test
sets. Complete means the combination of mixed renderings,
MSII filter renderings, VL renderings, and photographs.
The best results of each training data set are highlighted in
bold and those close to the best are highlighted in italics.
The best results per evaluation method are marked with an
asterisk *.

which epoch the best model has been evaluated on the vali-
dation set. The models trained on a combination of various
image types or IA renderings achieved the best-performing
model in fewer epochs compared to training on a single-
source dataset.

The results of the pure datasets have shown that the best
evaluation results are obtained when the applied image type
for training is the same as for testing. One exception is the
training on photographs, which results in a model that per-
forms better on all types of renderings; however, these re-
sults are close to each other. Conversely, the models trained
on renderings achieve a lower average precision on pho-

Figure 4: Sign detection result on a VL rendering patch us-
ing the model trained on VL renderings with IA. This ex-
ample shows the GT bounding boxes (black), true positives
(yellow), false negatives (red), and false positives (blue) of
the evaluated patch.

tographs. Even the best result with VL renderings is over
0.1 lower than a model trained directly on photographs.

Applying a combination of the photographs and all types
of renderings slightly increased the performance of each
image type compared to the best models trained on pure
datasets. Thus, the model is generally applicable to each
type of image presented in this work because it is able to
detect the signs as well as the best model trained on the re-
spective image set.

The use of IA, as described in section 2.3, only as differ-
ent VL renderings, has shown a slight improvement com-
pared to the evaluation on VL renderings for AP@50 and
AP@75, but it has increased the AP@90 by about 20%.
Although this strength in AP@90 was not observed with
the training on the combination of all types of images and
the additional VL renderings by IA, this model achieved the
highest AP@75 on VL renderings, the highest AP@50 on
photographs and the highest AP@50 on mixed renderings.
However, the result on the mixed renderings is close to the
combination without IA.

In general, the gap between the AP@50 and the AP@75
is tiny when the sign detector is applied to the render-
ings, but the AP@90 is even smaller. However, the strict
90% IoU overlap restriction is not representative because of
the dependence on the GT bounding box. Some bounding
boxes are often not very close to the boundary of the sign,
so some very close detections will not be considered true
positives. Although not every GT bounding box exactly sur-
rounds the signs, the difference between AP@50, AP@75,
and AP@90 indicates how accurately the bounding boxes
are predicted. Consequently, the high AP@75 values of
the evaluation on the renderings suggest an accurate pre-
diction of the bounding box. Our visual investigations of
the results came to the same conclusion that the predicted



bounding boxes are close to the signs when we use render-
ings as inputs. This can be seen for one example on VL
renderings in fig. 4. In this figure, a weakness of the sign
detector can also be seen: the detector tends to predict signs
as small units and, consequently, to split larger compound
signs. This results in the two false positives (blue) of the
small units and one false negative (red) of the wide ground
truth sign. In addition, the model detects sometimes false
positives on seals and the broken surface of tablets, and it
rarely mistakes the written tablet identification number for
a sign in the photograph.

As mentioned before in Section 3, the tablets are incom-
pletely annotated, so there are a lot of false positives, which
are, in reality, signs. Consequently, the actual results are
better than the numbers. The Figure 5 shows one of these
false positives.

Figure 5: Sign Detection result on a photograph patch using
the model trained on the combination of the datasets with
IA. This example shows the GT bounding boxes (black),
true positives (yellow) and one false positive (blue) of the
evaluated patch.

4.3. Discussion of results

As described in Section 4.2, the sign detection achieved
sufficient results, especially considering our dataset’s miss-
ing ground truth annotation. To rank our results, we com-
pare them with a state-of-the-art cuneiform sign detector,
which performs the same task as ours on Elamite tablets
[24], in table 3. Due to the large difference in size of the
dataset, which contains only about 18% as many sign anno-
tations as [24], all results must be put into perspective. Our
approach achieved a lower AP@50 for detection in pho-
tographs but a similar AP@75. However, due to the ab-
sence of annotations, the actual performance is better. Fur-

Approach AP@50 AP@75
DeepScribe[24] 0.77 0.21
Ours for mixed renderings 0.64 0.43
Ours for VirtualLight renderings 0.63 0.55
Ours for photographs 0.57 0.21

Table 3: Sign detection result compared with [24]. Our
model was trained with all types of renderings, pho-
tographs, and augmented VL renderings through IA. The
model was evaluated for different input images.

thermore, our annotations were not created for these pho-
tographs, so due to the transformation to process the map-
ping by the Cuneur Transformer, there may be small devi-
ations in the annotated location, and some lateral signs are
generally not visible in the photographs. Since we do not
have a dataset with the annotations specifically created for
the photographs available, we are unable to measure the im-
pact of the transformation error and its associated effects on
the sign detector, but according to our visual evaluation of
the Cuneur Transformer, there are only a few examples with
incompletely matching bounding boxes for the signs.

According to our results, the utilization of renderings to
train a Cuneiform machine learning model seems to be a
suitable approach. Hence, despite the smaller amount of
data with incomplete sign annotations, our AP@50 is close
to the result in [24]. In addition, our AP@75 on render-
ings exceeds [24] results by as much as 0.3 due to our ac-
curately placed bounding boxes. For a pipeline approach
like the ones described in Section 2.1 or [24], where the
signs are cut out to process them in a subsequent step, it
could lead to the loss of essential information by locating
only partial signs. Therefore, our approach could have an
advantage over such a pipeline. Presumably, our approach
could achieve the same results if a fully annotated dataset
with more signs were available for training and testing.

As described in Section 4.2, dealing with compound-
wide signs has proven to be a challenge. Due to the wide
range of sign interpretations, it is even difficult for a human
to determine the sign boundaries. Consequently, there is
possibly no consistent dataset available.

Considering various methods of rendering a mesh, such
as with the MSII preprocessing, has shown that transfer-
ring 3D information to a 2D image can improve the detec-
tor performance. Using the MSII filter on the meshes re-
sults in a higher contrast between the wedges and the clay
surface based on the curvature. 3D renderings after MSII
filtering are much more legible than photographs, which is
consistent with human perception of cuneiform tablets. In
addition to preprocessing, a mesh of a clay tablet offers the
possibility of IA, as described in Section 2.3. Applying this
method to augment the dataset has shown an improvement



in the sign detector for VL renderings. Specifically, an in-
crease of about 0.1 of AP@75 and 0.2 of AP@90, indicates
that the accuracy of the bounding box has improved.

Despite the better results with the renderings, the best
results were obtained in combination with the photographs.
This could be explained by the different information pro-
vided by renderings and photographs, which helps the
model to generalize. Consequently, it seems necessary to
use both media to get good machine learning OCR results.

5. Conclusion and Outlook
We have investigated a Cuneiform sign detector based

on RepPoints to locate signs and cut them out for subse-
quent steps, as in the pipeline approach of [24] or [23], from
the viewpoint of the bounding box localization accuracy,
the dataset impact and the improvement by IA. Achieving a
high AP@75 on renderings suggests that the detector’s pro-
posed bounding boxes completely encircle the signs, which
is necessary to cut them out for a previous step in a pipeline.
In further research, it would be interesting to apply this sign
detection with a rendering training dataset in the pipeline
of DeepScribe [24] to see if the classification result can be
improved by more accurate bounding boxes and by the ren-
derings themselves. At the moment, the signs are only lo-
calized in the form of a bounding box; however, the repre-
sentation points of the RepPoints might be able to represent
them differently. Varying the backbone, pre-training the ar-
chitecture with a different dataset, or increasing the number
of ResNet [11] layers is another way to study the architec-
ture.

Furthermore, our research has shown that using 3D scans
offers a wide range of possibilities. First, the meshes pro-
vide the ability to apply IA, which has shown improved re-
sults and can be scaled by angle variation in the future. Sec-
ond, our results suggest that a preprocessing of the meshes,
in our case MSII, also increases the performance of the
sign detector. Further research could also evaluate other al-
gorithms as mesh preprocessing, e.g. Ambient Occlusion.
However, it should be noted that 3D model datasets are
rarely available and are time-consuming to create due to the
3D scanning process.

To compare the performance between the originally
unannotated photographs and the different types of ren-
derings, we mapped them onto the renderings to make
them accessible for the available annotations. Our results
have shown: All types of renderings can produce better
results than photographs. Although the mixed renderings
are the most suitable input to localize signs, the best re-
sults have been achieved by the training with a combination
of all datasets, including photographs. As our research has
shown, the combination of 3D scans with photographs pro-
vides a great opportunity to create and improve machine
learning models of cuneiform OCR.

Future Work

The localization and classification of cuneiform signs is
a crucial step towards the goal of automatic transcription
of cuneiform tablet images in the form of transliterations
or translations, or even their application in augmented re-
ality environments such as Google Lens, which could take
automated analysis of Cuneiform tablet content to a new
level. While this work has given insights into which types
of media and their combinations can improve the classifica-
tion and location tasks, future experiments could tackle the
combination of sign classification approaches with translit-
eration assignments or automated translation approaches.
Also, one could think of repeating the experiments of this
work with cuneiform tablet renderings of cuneiform tablets
of epochs that were not considered by the MaiCuBeDa
dataset or previous datasets to discover epoch, language,
or writing style specific challenges. Finally, the location
and classification of not only cuneiform signs but also of
paleographic sign variants, potentially varying even in the
same spatio-temporal settings, will be a research challenge
of great importance for creating and linking to accurate
cuneiform paleography databases, such as the emerging Pa-
leOrdia 8 based on Wikidata.
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